| 1 | /* Convert using charmaps and possibly iconv(). |
| 2 | Copyright (C) 2001-2023 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | This program is free software; you can redistribute it and/or modify |
| 6 | it under the terms of the GNU General Public License as published |
| 7 | by the Free Software Foundation; version 2 of the License, or |
| 8 | (at your option) any later version. |
| 9 | |
| 10 | This program is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | GNU General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License |
| 16 | along with this program; if not, see <https://www.gnu.org/licenses/>. */ |
| 17 | |
| 18 | #include <assert.h> |
| 19 | #include <errno.h> |
| 20 | #include <error.h> |
| 21 | #include <fcntl.h> |
| 22 | #include <iconv.h> |
| 23 | #include <libintl.h> |
| 24 | #include <stdio.h> |
| 25 | #include <stdlib.h> |
| 26 | #include <unistd.h> |
| 27 | #include <stdint.h> |
| 28 | #include <sys/mman.h> |
| 29 | #include <sys/stat.h> |
| 30 | |
| 31 | #include "iconv_prog.h" |
| 32 | |
| 33 | |
| 34 | /* Prototypes for a few program-wide used functions. */ |
| 35 | #include <programs/xmalloc.h> |
| 36 | |
| 37 | |
| 38 | struct convtable |
| 39 | { |
| 40 | int term[256 / 8]; |
| 41 | union |
| 42 | { |
| 43 | struct convtable *sub; |
| 44 | struct charseq *out; |
| 45 | } val[256]; |
| 46 | }; |
| 47 | |
| 48 | |
| 49 | static inline struct convtable * |
| 50 | allocate_table (void) |
| 51 | { |
| 52 | return (struct convtable *) xcalloc (1, sizeof (struct convtable)); |
| 53 | } |
| 54 | |
| 55 | static inline void |
| 56 | free_table (struct convtable *tbl) |
| 57 | { |
| 58 | free (tbl); |
| 59 | } |
| 60 | |
| 61 | |
| 62 | static inline int |
| 63 | is_term (struct convtable *tbl, unsigned int idx) |
| 64 | { |
| 65 | return tbl->term[idx / 8] & (1 << (idx % 8)); |
| 66 | } |
| 67 | |
| 68 | |
| 69 | static inline void |
| 70 | clear_term (struct convtable *tbl, unsigned int idx) |
| 71 | { |
| 72 | tbl->term[idx / 8] &= ~(1 << (idx % 8)); |
| 73 | } |
| 74 | |
| 75 | |
| 76 | static inline void |
| 77 | set_term (struct convtable *tbl, unsigned int idx) |
| 78 | { |
| 79 | tbl->term[idx / 8] |= 1 << (idx % 8); |
| 80 | } |
| 81 | |
| 82 | |
| 83 | /* Generate the conversion table. */ |
| 84 | static struct convtable *use_from_charmap (struct charmap_t *from_charmap, |
| 85 | const char *to_code); |
| 86 | static struct convtable *use_to_charmap (const char *from_code, |
| 87 | struct charmap_t *to_charmap); |
| 88 | static struct convtable *use_both_charmaps (struct charmap_t *from_charmap, |
| 89 | struct charmap_t *to_charmap); |
| 90 | |
| 91 | /* Prototypes for the functions doing the actual work. */ |
| 92 | static int process_block (struct convtable *tbl, char *addr, size_t len, |
| 93 | FILE *output); |
| 94 | static int process_fd (struct convtable *tbl, int fd, FILE *output); |
| 95 | static int process_file (struct convtable *tbl, FILE *input, FILE *output); |
| 96 | |
| 97 | |
| 98 | int |
| 99 | charmap_conversion (const char *from_code, struct charmap_t *from_charmap, |
| 100 | const char *to_code, struct charmap_t *to_charmap, |
| 101 | int argc, int remaining, char *argv[], |
| 102 | const char *output_file) |
| 103 | { |
| 104 | struct convtable *cvtbl; |
| 105 | int status = EXIT_SUCCESS; |
| 106 | |
| 107 | /* We have three different cases to handle: |
| 108 | |
| 109 | - both, from_charmap and to_charmap, are available. This means we |
| 110 | can assume that the symbolic names match and use them to create |
| 111 | the mapping. |
| 112 | |
| 113 | - only from_charmap is available. In this case we can only hope that |
| 114 | the symbolic names used are of the <Uxxxx> form in which case we |
| 115 | can use a UCS4->"to_code" iconv() conversion for the second step. |
| 116 | |
| 117 | - only to_charmap is available. This is similar, only that we would |
| 118 | use iconv() for the "to_code"->UCS4 conversion. |
| 119 | |
| 120 | We first create a table which maps input bytes into output bytes. |
| 121 | Once this is done we can handle all three of the cases above |
| 122 | equally. */ |
| 123 | if (from_charmap != NULL) |
| 124 | { |
| 125 | if (to_charmap == NULL) |
| 126 | cvtbl = use_from_charmap (from_charmap, to_code); |
| 127 | else |
| 128 | cvtbl = use_both_charmaps (from_charmap, to_charmap); |
| 129 | } |
| 130 | else |
| 131 | { |
| 132 | assert (to_charmap != NULL); |
| 133 | cvtbl = use_to_charmap (from_code, to_charmap); |
| 134 | } |
| 135 | |
| 136 | /* If we couldn't generate a table stop now. */ |
| 137 | if (cvtbl == NULL) |
| 138 | return EXIT_FAILURE; |
| 139 | |
| 140 | /* Determine output file. */ |
| 141 | FILE *output; |
| 142 | if (output_file != NULL && strcmp (output_file, "-" ) != 0) |
| 143 | { |
| 144 | output = fopen (output_file, "w" ); |
| 145 | if (output == NULL) |
| 146 | error (EXIT_FAILURE, errno, _("cannot open output file" )); |
| 147 | } |
| 148 | else |
| 149 | output = stdout; |
| 150 | |
| 151 | /* We can now start the conversion. */ |
| 152 | if (remaining == argc) |
| 153 | { |
| 154 | if (process_file (cvtbl, stdin, output) != 0) |
| 155 | status = EXIT_FAILURE; |
| 156 | } |
| 157 | else |
| 158 | do |
| 159 | { |
| 160 | int fd; |
| 161 | |
| 162 | if (verbose) |
| 163 | printf ("%s:\n" , argv[remaining]); |
| 164 | if (strcmp (argv[remaining], "-" ) == 0) |
| 165 | fd = 0; |
| 166 | else |
| 167 | { |
| 168 | fd = open (argv[remaining], O_RDONLY); |
| 169 | |
| 170 | if (fd == -1) |
| 171 | { |
| 172 | error (0, errno, _("cannot open input file `%s'" ), |
| 173 | argv[remaining]); |
| 174 | status = EXIT_FAILURE; |
| 175 | continue; |
| 176 | } |
| 177 | } |
| 178 | |
| 179 | #ifdef _POSIX_MAPPED_FILES |
| 180 | struct stat64 st; |
| 181 | char *addr; |
| 182 | /* We have possibilities for reading the input file. First try |
| 183 | to mmap() it since this will provide the fastest solution. */ |
| 184 | if (fstat64 (fd, &st) == 0 |
| 185 | && ((addr = mmap (NULL, st.st_size, PROT_READ, MAP_PRIVATE, |
| 186 | fd, 0)) != MAP_FAILED)) |
| 187 | { |
| 188 | /* Yes, we can use mmap(). The descriptor is not needed |
| 189 | anymore. */ |
| 190 | if (close (fd) != 0) |
| 191 | error (EXIT_FAILURE, errno, |
| 192 | _("error while closing input `%s'" ), argv[remaining]); |
| 193 | |
| 194 | if (process_block (cvtbl, addr, st.st_size, output) < 0) |
| 195 | { |
| 196 | /* Something went wrong. */ |
| 197 | status = EXIT_FAILURE; |
| 198 | |
| 199 | /* We don't need the input data anymore. */ |
| 200 | munmap ((void *) addr, st.st_size); |
| 201 | |
| 202 | /* We cannot go on with producing output since it might |
| 203 | lead to problem because the last output might leave |
| 204 | the output stream in an undefined state. */ |
| 205 | break; |
| 206 | } |
| 207 | |
| 208 | /* We don't need the input data anymore. */ |
| 209 | munmap ((void *) addr, st.st_size); |
| 210 | } |
| 211 | else |
| 212 | #endif /* _POSIX_MAPPED_FILES */ |
| 213 | { |
| 214 | /* Read the file in pieces. */ |
| 215 | if (process_fd (cvtbl, fd, output) != 0) |
| 216 | { |
| 217 | /* Something went wrong. */ |
| 218 | status = EXIT_FAILURE; |
| 219 | |
| 220 | /* We don't need the input file anymore. */ |
| 221 | close (fd); |
| 222 | |
| 223 | /* We cannot go on with producing output since it might |
| 224 | lead to problem because the last output might leave |
| 225 | the output stream in an undefined state. */ |
| 226 | break; |
| 227 | } |
| 228 | |
| 229 | /* Now close the file. */ |
| 230 | close (fd); |
| 231 | } |
| 232 | } |
| 233 | while (++remaining < argc); |
| 234 | |
| 235 | /* All done. */ |
| 236 | if (output != stdout) |
| 237 | fclose (output); |
| 238 | free_table (cvtbl); |
| 239 | return status; |
| 240 | } |
| 241 | |
| 242 | |
| 243 | /* Add the IN->OUT mapping to TBL. OUT is potentially stored in the table. |
| 244 | IN is used only here, so it need not be kept live afterwards. */ |
| 245 | static void |
| 246 | add_bytes (struct convtable *tbl, const struct charseq *in, struct charseq *out) |
| 247 | { |
| 248 | int n = 0; |
| 249 | unsigned int byte; |
| 250 | |
| 251 | assert (in->nbytes > 0); |
| 252 | |
| 253 | byte = ((unsigned char *) in->bytes)[n]; |
| 254 | while (n + 1 < in->nbytes) |
| 255 | { |
| 256 | if (is_term (tbl, byte) || tbl->val[byte].sub == NULL) |
| 257 | { |
| 258 | /* Note that we simply ignore a definition for a byte sequence |
| 259 | which is also the prefix for a longer one. */ |
| 260 | clear_term (tbl, byte); |
| 261 | tbl->val[byte].sub = |
| 262 | (struct convtable *) xcalloc (1, sizeof (struct convtable)); |
| 263 | } |
| 264 | |
| 265 | tbl = tbl->val[byte].sub; |
| 266 | |
| 267 | byte = ((unsigned char *) in->bytes)[++n]; |
| 268 | } |
| 269 | |
| 270 | /* Only add the new sequence if there is none yet and the byte sequence |
| 271 | is not part of an even longer one. */ |
| 272 | if (! is_term (tbl, byte) && tbl->val[byte].sub == NULL) |
| 273 | { |
| 274 | set_term (tbl, byte); |
| 275 | tbl->val[byte].out = out; |
| 276 | } |
| 277 | } |
| 278 | |
| 279 | /* Try to convert SEQ from WCHAR_T format using CD. |
| 280 | Returns a malloc'd struct or NULL. */ |
| 281 | static struct charseq * |
| 282 | convert_charseq (iconv_t cd, const struct charseq *seq) |
| 283 | { |
| 284 | struct charseq *result = NULL; |
| 285 | |
| 286 | if (seq->ucs4 != UNINITIALIZED_CHAR_VALUE) |
| 287 | { |
| 288 | /* There is a chance. Try the iconv module. */ |
| 289 | wchar_t inbuf[1] = { seq->ucs4 }; |
| 290 | unsigned char outbuf[64]; |
| 291 | char *inptr = (char *) inbuf; |
| 292 | size_t inlen = sizeof (inbuf); |
| 293 | char *outptr = (char *) outbuf; |
| 294 | size_t outlen = sizeof (outbuf); |
| 295 | |
| 296 | (void) iconv (cd, &inptr, &inlen, &outptr, &outlen); |
| 297 | |
| 298 | if (outptr != (char *) outbuf) |
| 299 | { |
| 300 | /* We got some output. Good, use it. */ |
| 301 | outlen = sizeof (outbuf) - outlen; |
| 302 | assert ((char *) outbuf + outlen == outptr); |
| 303 | |
| 304 | result = xmalloc (sizeof (struct charseq) + outlen); |
| 305 | result->name = seq->name; |
| 306 | result->ucs4 = seq->ucs4; |
| 307 | result->nbytes = outlen; |
| 308 | memcpy (result->bytes, outbuf, outlen); |
| 309 | } |
| 310 | |
| 311 | /* Clear any possible state left behind. */ |
| 312 | (void) iconv (cd, NULL, NULL, NULL, NULL); |
| 313 | } |
| 314 | |
| 315 | return result; |
| 316 | } |
| 317 | |
| 318 | |
| 319 | static struct convtable * |
| 320 | use_from_charmap (struct charmap_t *from_charmap, const char *to_code) |
| 321 | { |
| 322 | /* We iterate over all entries in the from_charmap and for those which |
| 323 | have a known UCS4 representation we use an iconv() call to determine |
| 324 | the mapping to the to_code charset. */ |
| 325 | struct convtable *rettbl; |
| 326 | iconv_t cd; |
| 327 | void *ptr = NULL; |
| 328 | const void *key; |
| 329 | size_t keylen; |
| 330 | void *data; |
| 331 | |
| 332 | cd = iconv_open (to_code, "WCHAR_T" ); |
| 333 | if (cd == (iconv_t) -1) |
| 334 | /* We cannot do anything. */ |
| 335 | return NULL; |
| 336 | |
| 337 | rettbl = allocate_table (); |
| 338 | |
| 339 | while (iterate_table (&from_charmap->char_table, &ptr, &key, &keylen, &data) |
| 340 | >= 0) |
| 341 | { |
| 342 | struct charseq *in = data; |
| 343 | struct charseq *newp = convert_charseq (cd, in); |
| 344 | if (newp != NULL) |
| 345 | add_bytes (rettbl, in, newp); |
| 346 | } |
| 347 | |
| 348 | iconv_close (cd); |
| 349 | |
| 350 | return rettbl; |
| 351 | } |
| 352 | |
| 353 | |
| 354 | static struct convtable * |
| 355 | use_to_charmap (const char *from_code, struct charmap_t *to_charmap) |
| 356 | { |
| 357 | /* We iterate over all entries in the to_charmap and for those which |
| 358 | have a known UCS4 representation we use an iconv() call to determine |
| 359 | the mapping to the from_code charset. */ |
| 360 | struct convtable *rettbl; |
| 361 | iconv_t cd; |
| 362 | void *ptr = NULL; |
| 363 | const void *key; |
| 364 | size_t keylen; |
| 365 | void *data; |
| 366 | |
| 367 | /* Note that the conversion we use here is the reverse direction. Without |
| 368 | exhaustive search we cannot figure out which input yields the UCS4 |
| 369 | character we are looking for. Therefore we determine it the other |
| 370 | way round. */ |
| 371 | cd = iconv_open (from_code, "WCHAR_T" ); |
| 372 | if (cd == (iconv_t) -1) |
| 373 | /* We cannot do anything. */ |
| 374 | return NULL; |
| 375 | |
| 376 | rettbl = allocate_table (); |
| 377 | |
| 378 | while (iterate_table (&to_charmap->char_table, &ptr, &key, &keylen, &data) |
| 379 | >= 0) |
| 380 | { |
| 381 | struct charseq *out = data; |
| 382 | struct charseq *newp = convert_charseq (cd, out); |
| 383 | if (newp != NULL) |
| 384 | { |
| 385 | add_bytes (rettbl, newp, out); |
| 386 | free (newp); |
| 387 | } |
| 388 | } |
| 389 | |
| 390 | iconv_close (cd); |
| 391 | |
| 392 | return rettbl; |
| 393 | } |
| 394 | |
| 395 | |
| 396 | static struct convtable * |
| 397 | use_both_charmaps (struct charmap_t *from_charmap, |
| 398 | struct charmap_t *to_charmap) |
| 399 | { |
| 400 | /* In this case we iterate over all the entries in the from_charmap, |
| 401 | determine the internal name, and find an appropriate entry in the |
| 402 | to_charmap (if it exists). */ |
| 403 | struct convtable *rettbl = allocate_table (); |
| 404 | void *ptr = NULL; |
| 405 | const void *key; |
| 406 | size_t keylen; |
| 407 | void *data; |
| 408 | |
| 409 | while (iterate_table (&from_charmap->char_table, &ptr, &key, &keylen, &data) |
| 410 | >= 0) |
| 411 | { |
| 412 | struct charseq *in = (struct charseq *) data; |
| 413 | struct charseq *out = charmap_find_value (to_charmap, key, keylen); |
| 414 | |
| 415 | if (out != NULL) |
| 416 | add_bytes (rettbl, in, out); |
| 417 | } |
| 418 | |
| 419 | return rettbl; |
| 420 | } |
| 421 | |
| 422 | |
| 423 | static int |
| 424 | process_block (struct convtable *tbl, char *addr, size_t len, FILE *output) |
| 425 | { |
| 426 | size_t n = 0; |
| 427 | |
| 428 | while (n < len) |
| 429 | { |
| 430 | struct convtable *cur = tbl; |
| 431 | unsigned char *curp = (unsigned char *) addr; |
| 432 | unsigned int byte = *curp; |
| 433 | int cnt; |
| 434 | struct charseq *out; |
| 435 | |
| 436 | while (! is_term (cur, byte)) |
| 437 | if (cur->val[byte].sub == NULL) |
| 438 | { |
| 439 | /* This is an invalid sequence. Skip the first byte if we are |
| 440 | ignoring errors. Otherwise punt. */ |
| 441 | if (! omit_invalid) |
| 442 | { |
| 443 | error (0, 0, _("illegal input sequence at position %zd" ), n); |
| 444 | return -1; |
| 445 | } |
| 446 | |
| 447 | n -= curp - (unsigned char *) addr; |
| 448 | |
| 449 | byte = *(curp = (unsigned char *) ++addr); |
| 450 | if (++n >= len) |
| 451 | /* All converted. */ |
| 452 | return 0; |
| 453 | |
| 454 | cur = tbl; |
| 455 | } |
| 456 | else |
| 457 | { |
| 458 | cur = cur->val[byte].sub; |
| 459 | |
| 460 | if (++n >= len) |
| 461 | { |
| 462 | error (0, 0, _("\ |
| 463 | incomplete character or shift sequence at end of buffer" )); |
| 464 | return -1; |
| 465 | } |
| 466 | |
| 467 | byte = *++curp; |
| 468 | } |
| 469 | |
| 470 | /* We found a final byte. Write the output bytes. */ |
| 471 | out = cur->val[byte].out; |
| 472 | for (cnt = 0; cnt < out->nbytes; ++cnt) |
| 473 | fputc_unlocked (out->bytes[cnt], output); |
| 474 | |
| 475 | addr = (char *) curp + 1; |
| 476 | ++n; |
| 477 | } |
| 478 | |
| 479 | return 0; |
| 480 | } |
| 481 | |
| 482 | |
| 483 | static int |
| 484 | process_fd (struct convtable *tbl, int fd, FILE *output) |
| 485 | { |
| 486 | /* We have a problem with reading from a descriptor since we must not |
| 487 | provide the iconv() function an incomplete character or shift |
| 488 | sequence at the end of the buffer. Since we have to deal with |
| 489 | arbitrary encodings we must read the whole text in a buffer and |
| 490 | process it in one step. */ |
| 491 | static char *inbuf = NULL; |
| 492 | static size_t maxlen = 0; |
| 493 | char *inptr = inbuf; |
| 494 | size_t actlen = 0; |
| 495 | |
| 496 | while (actlen < maxlen) |
| 497 | { |
| 498 | ssize_t n = read (fd, inptr, maxlen - actlen); |
| 499 | |
| 500 | if (n == 0) |
| 501 | /* No more text to read. */ |
| 502 | break; |
| 503 | |
| 504 | if (n == -1) |
| 505 | { |
| 506 | /* Error while reading. */ |
| 507 | error (0, errno, _("error while reading the input" )); |
| 508 | return -1; |
| 509 | } |
| 510 | |
| 511 | inptr += n; |
| 512 | actlen += n; |
| 513 | } |
| 514 | |
| 515 | if (actlen == maxlen) |
| 516 | while (1) |
| 517 | { |
| 518 | ssize_t n; |
| 519 | char *new_inbuf; |
| 520 | |
| 521 | /* Increase the buffer. */ |
| 522 | new_inbuf = (char *) realloc (inbuf, maxlen + 32768); |
| 523 | if (new_inbuf == NULL) |
| 524 | { |
| 525 | error (0, errno, _("unable to allocate buffer for input" )); |
| 526 | return -1; |
| 527 | } |
| 528 | inbuf = new_inbuf; |
| 529 | maxlen += 32768; |
| 530 | inptr = inbuf + actlen; |
| 531 | |
| 532 | do |
| 533 | { |
| 534 | n = read (fd, inptr, maxlen - actlen); |
| 535 | |
| 536 | if (n == 0) |
| 537 | /* No more text to read. */ |
| 538 | break; |
| 539 | |
| 540 | if (n == -1) |
| 541 | { |
| 542 | /* Error while reading. */ |
| 543 | error (0, errno, _("error while reading the input" )); |
| 544 | return -1; |
| 545 | } |
| 546 | |
| 547 | inptr += n; |
| 548 | actlen += n; |
| 549 | } |
| 550 | while (actlen < maxlen); |
| 551 | |
| 552 | if (n == 0) |
| 553 | /* Break again so we leave both loops. */ |
| 554 | break; |
| 555 | } |
| 556 | |
| 557 | /* Now we have all the input in the buffer. Process it in one run. */ |
| 558 | return process_block (tbl, inbuf, actlen, output); |
| 559 | } |
| 560 | |
| 561 | |
| 562 | static int |
| 563 | process_file (struct convtable *tbl, FILE *input, FILE *output) |
| 564 | { |
| 565 | /* This should be safe since we use this function only for `stdin' and |
| 566 | we haven't read anything so far. */ |
| 567 | return process_fd (tbl, fileno (input), output); |
| 568 | } |
| 569 | |