1 | /* Thread-local storage handling in the ELF dynamic linker. Generic version. |
2 | Copyright (C) 2002-2023 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #include <assert.h> |
20 | #include <errno.h> |
21 | #include <libintl.h> |
22 | #include <signal.h> |
23 | #include <stdlib.h> |
24 | #include <unistd.h> |
25 | #include <sys/param.h> |
26 | #include <atomic.h> |
27 | |
28 | #include <tls.h> |
29 | #include <dl-tls.h> |
30 | #include <ldsodefs.h> |
31 | |
32 | #if PTHREAD_IN_LIBC |
33 | # include <list.h> |
34 | #endif |
35 | |
36 | #define TUNABLE_NAMESPACE rtld |
37 | #include <dl-tunables.h> |
38 | |
39 | /* Surplus static TLS, GLRO(dl_tls_static_surplus), is used for |
40 | |
41 | - IE TLS in libc.so for all dlmopen namespaces except in the initial |
42 | one where libc.so is not loaded dynamically but at startup time, |
43 | - IE TLS in other libraries which may be dynamically loaded even in the |
44 | initial namespace, |
45 | - and optionally for optimizing dynamic TLS access. |
46 | |
47 | The maximum number of namespaces is DL_NNS, but to support that many |
48 | namespaces correctly the static TLS allocation should be significantly |
49 | increased, which may cause problems with small thread stacks due to the |
50 | way static TLS is accounted (bug 11787). |
51 | |
52 | So there is a rtld.nns tunable limit on the number of supported namespaces |
53 | that affects the size of the static TLS and by default it's small enough |
54 | not to cause problems with existing applications. The limit is not |
55 | enforced or checked: it is the user's responsibility to increase rtld.nns |
56 | if more dlmopen namespaces are used. |
57 | |
58 | Audit modules use their own namespaces, they are not included in rtld.nns, |
59 | but come on top when computing the number of namespaces. */ |
60 | |
61 | /* Size of initial-exec TLS in libc.so. This should be the maximum of |
62 | observed PT_GNU_TLS sizes across all architectures. Some |
63 | architectures have lower values due to differences in type sizes |
64 | and link editor capabilities. */ |
65 | #define LIBC_IE_TLS 144 |
66 | |
67 | /* Size of initial-exec TLS in libraries other than libc.so. |
68 | This should be large enough to cover runtime libraries of the |
69 | compiler such as libgomp and libraries in libc other than libc.so. */ |
70 | #define OTHER_IE_TLS 144 |
71 | |
72 | /* Default number of namespaces. */ |
73 | #define DEFAULT_NNS 4 |
74 | |
75 | /* Default for dl_tls_static_optional. */ |
76 | #define OPTIONAL_TLS 512 |
77 | |
78 | /* Compute the static TLS surplus based on the namespace count and the |
79 | TLS space that can be used for optimizations. */ |
80 | static inline int |
81 | tls_static_surplus (int nns, int opt_tls) |
82 | { |
83 | return (nns - 1) * LIBC_IE_TLS + nns * OTHER_IE_TLS + opt_tls; |
84 | } |
85 | |
86 | /* This value is chosen so that with default values for the tunables, |
87 | the computation of dl_tls_static_surplus in |
88 | _dl_tls_static_surplus_init yields the historic value 1664, for |
89 | backwards compatibility. */ |
90 | #define LEGACY_TLS (1664 - tls_static_surplus (DEFAULT_NNS, OPTIONAL_TLS)) |
91 | |
92 | /* Calculate the size of the static TLS surplus, when the given |
93 | number of audit modules are loaded. Must be called after the |
94 | number of audit modules is known and before static TLS allocation. */ |
95 | void |
96 | _dl_tls_static_surplus_init (size_t naudit) |
97 | { |
98 | size_t nns, opt_tls; |
99 | |
100 | nns = TUNABLE_GET (nns, size_t, NULL); |
101 | opt_tls = TUNABLE_GET (optional_static_tls, size_t, NULL); |
102 | if (nns > DL_NNS) |
103 | nns = DL_NNS; |
104 | if (DL_NNS - nns < naudit) |
105 | _dl_fatal_printf ("Failed loading %lu audit modules, %lu are supported.\n" , |
106 | (unsigned long) naudit, (unsigned long) (DL_NNS - nns)); |
107 | nns += naudit; |
108 | |
109 | GL(dl_tls_static_optional) = opt_tls; |
110 | assert (LEGACY_TLS >= 0); |
111 | GLRO(dl_tls_static_surplus) = tls_static_surplus (nns, opt_tls) + LEGACY_TLS; |
112 | } |
113 | |
114 | /* Out-of-memory handler. */ |
115 | static void |
116 | __attribute__ ((__noreturn__)) |
117 | oom (void) |
118 | { |
119 | _dl_fatal_printf ("cannot allocate memory for thread-local data: ABORT\n" ); |
120 | } |
121 | |
122 | |
123 | void |
124 | _dl_assign_tls_modid (struct link_map *l) |
125 | { |
126 | size_t result; |
127 | |
128 | if (__builtin_expect (GL(dl_tls_dtv_gaps), false)) |
129 | { |
130 | size_t disp = 0; |
131 | struct dtv_slotinfo_list *runp = GL(dl_tls_dtv_slotinfo_list); |
132 | |
133 | /* Note that this branch will never be executed during program |
134 | start since there are no gaps at that time. Therefore it |
135 | does not matter that the dl_tls_dtv_slotinfo is not allocated |
136 | yet when the function is called for the first times. |
137 | |
138 | NB: the offset +1 is due to the fact that DTV[0] is used |
139 | for something else. */ |
140 | result = GL(dl_tls_static_nelem) + 1; |
141 | if (result <= GL(dl_tls_max_dtv_idx)) |
142 | do |
143 | { |
144 | while (result - disp < runp->len) |
145 | { |
146 | if (runp->slotinfo[result - disp].map == NULL) |
147 | break; |
148 | |
149 | ++result; |
150 | assert (result <= GL(dl_tls_max_dtv_idx) + 1); |
151 | } |
152 | |
153 | if (result - disp < runp->len) |
154 | { |
155 | /* Mark the entry as used, so any dependency see it. */ |
156 | atomic_store_relaxed (&runp->slotinfo[result - disp].map, l); |
157 | break; |
158 | } |
159 | |
160 | disp += runp->len; |
161 | } |
162 | while ((runp = runp->next) != NULL); |
163 | |
164 | if (result > GL(dl_tls_max_dtv_idx)) |
165 | { |
166 | /* The new index must indeed be exactly one higher than the |
167 | previous high. */ |
168 | assert (result == GL(dl_tls_max_dtv_idx) + 1); |
169 | /* There is no gap anymore. */ |
170 | GL(dl_tls_dtv_gaps) = false; |
171 | |
172 | goto nogaps; |
173 | } |
174 | } |
175 | else |
176 | { |
177 | /* No gaps, allocate a new entry. */ |
178 | nogaps: |
179 | |
180 | result = GL(dl_tls_max_dtv_idx) + 1; |
181 | /* Can be read concurrently. */ |
182 | atomic_store_relaxed (&GL(dl_tls_max_dtv_idx), result); |
183 | } |
184 | |
185 | l->l_tls_modid = result; |
186 | } |
187 | |
188 | |
189 | size_t |
190 | _dl_count_modids (void) |
191 | { |
192 | /* The count is the max unless dlclose or failed dlopen created gaps. */ |
193 | if (__glibc_likely (!GL(dl_tls_dtv_gaps))) |
194 | return GL(dl_tls_max_dtv_idx); |
195 | |
196 | /* We have gaps and are forced to count the non-NULL entries. */ |
197 | size_t n = 0; |
198 | struct dtv_slotinfo_list *runp = GL(dl_tls_dtv_slotinfo_list); |
199 | while (runp != NULL) |
200 | { |
201 | for (size_t i = 0; i < runp->len; ++i) |
202 | if (runp->slotinfo[i].map != NULL) |
203 | ++n; |
204 | |
205 | runp = runp->next; |
206 | } |
207 | |
208 | return n; |
209 | } |
210 | |
211 | |
212 | #ifdef SHARED |
213 | void |
214 | _dl_determine_tlsoffset (void) |
215 | { |
216 | size_t max_align = TCB_ALIGNMENT; |
217 | size_t freetop = 0; |
218 | size_t freebottom = 0; |
219 | |
220 | /* The first element of the dtv slot info list is allocated. */ |
221 | assert (GL(dl_tls_dtv_slotinfo_list) != NULL); |
222 | /* There is at this point only one element in the |
223 | dl_tls_dtv_slotinfo_list list. */ |
224 | assert (GL(dl_tls_dtv_slotinfo_list)->next == NULL); |
225 | |
226 | struct dtv_slotinfo *slotinfo = GL(dl_tls_dtv_slotinfo_list)->slotinfo; |
227 | |
228 | /* Determining the offset of the various parts of the static TLS |
229 | block has several dependencies. In addition we have to work |
230 | around bugs in some toolchains. |
231 | |
232 | Each TLS block from the objects available at link time has a size |
233 | and an alignment requirement. The GNU ld computes the alignment |
234 | requirements for the data at the positions *in the file*, though. |
235 | I.e, it is not simply possible to allocate a block with the size |
236 | of the TLS program header entry. The data is laid out assuming |
237 | that the first byte of the TLS block fulfills |
238 | |
239 | p_vaddr mod p_align == &TLS_BLOCK mod p_align |
240 | |
241 | This means we have to add artificial padding at the beginning of |
242 | the TLS block. These bytes are never used for the TLS data in |
243 | this module but the first byte allocated must be aligned |
244 | according to mod p_align == 0 so that the first byte of the TLS |
245 | block is aligned according to p_vaddr mod p_align. This is ugly |
246 | and the linker can help by computing the offsets in the TLS block |
247 | assuming the first byte of the TLS block is aligned according to |
248 | p_align. |
249 | |
250 | The extra space which might be allocated before the first byte of |
251 | the TLS block need not go unused. The code below tries to use |
252 | that memory for the next TLS block. This can work if the total |
253 | memory requirement for the next TLS block is smaller than the |
254 | gap. */ |
255 | |
256 | #if TLS_TCB_AT_TP |
257 | /* We simply start with zero. */ |
258 | size_t offset = 0; |
259 | |
260 | for (size_t cnt = 0; slotinfo[cnt].map != NULL; ++cnt) |
261 | { |
262 | assert (cnt < GL(dl_tls_dtv_slotinfo_list)->len); |
263 | |
264 | size_t firstbyte = (-slotinfo[cnt].map->l_tls_firstbyte_offset |
265 | & (slotinfo[cnt].map->l_tls_align - 1)); |
266 | size_t off; |
267 | max_align = MAX (max_align, slotinfo[cnt].map->l_tls_align); |
268 | |
269 | if (freebottom - freetop >= slotinfo[cnt].map->l_tls_blocksize) |
270 | { |
271 | off = roundup (freetop + slotinfo[cnt].map->l_tls_blocksize |
272 | - firstbyte, slotinfo[cnt].map->l_tls_align) |
273 | + firstbyte; |
274 | if (off <= freebottom) |
275 | { |
276 | freetop = off; |
277 | |
278 | /* XXX For some architectures we perhaps should store the |
279 | negative offset. */ |
280 | slotinfo[cnt].map->l_tls_offset = off; |
281 | continue; |
282 | } |
283 | } |
284 | |
285 | off = roundup (offset + slotinfo[cnt].map->l_tls_blocksize - firstbyte, |
286 | slotinfo[cnt].map->l_tls_align) + firstbyte; |
287 | if (off > offset + slotinfo[cnt].map->l_tls_blocksize |
288 | + (freebottom - freetop)) |
289 | { |
290 | freetop = offset; |
291 | freebottom = off - slotinfo[cnt].map->l_tls_blocksize; |
292 | } |
293 | offset = off; |
294 | |
295 | /* XXX For some architectures we perhaps should store the |
296 | negative offset. */ |
297 | slotinfo[cnt].map->l_tls_offset = off; |
298 | } |
299 | |
300 | GL(dl_tls_static_used) = offset; |
301 | GLRO (dl_tls_static_size) = (roundup (offset + GLRO(dl_tls_static_surplus), |
302 | max_align) |
303 | + TLS_TCB_SIZE); |
304 | #elif TLS_DTV_AT_TP |
305 | /* The TLS blocks start right after the TCB. */ |
306 | size_t offset = TLS_TCB_SIZE; |
307 | |
308 | for (size_t cnt = 0; slotinfo[cnt].map != NULL; ++cnt) |
309 | { |
310 | assert (cnt < GL(dl_tls_dtv_slotinfo_list)->len); |
311 | |
312 | size_t firstbyte = (-slotinfo[cnt].map->l_tls_firstbyte_offset |
313 | & (slotinfo[cnt].map->l_tls_align - 1)); |
314 | size_t off; |
315 | max_align = MAX (max_align, slotinfo[cnt].map->l_tls_align); |
316 | |
317 | if (slotinfo[cnt].map->l_tls_blocksize <= freetop - freebottom) |
318 | { |
319 | off = roundup (freebottom, slotinfo[cnt].map->l_tls_align); |
320 | if (off - freebottom < firstbyte) |
321 | off += slotinfo[cnt].map->l_tls_align; |
322 | if (off + slotinfo[cnt].map->l_tls_blocksize - firstbyte <= freetop) |
323 | { |
324 | slotinfo[cnt].map->l_tls_offset = off - firstbyte; |
325 | freebottom = (off + slotinfo[cnt].map->l_tls_blocksize |
326 | - firstbyte); |
327 | continue; |
328 | } |
329 | } |
330 | |
331 | off = roundup (offset, slotinfo[cnt].map->l_tls_align); |
332 | if (off - offset < firstbyte) |
333 | off += slotinfo[cnt].map->l_tls_align; |
334 | |
335 | slotinfo[cnt].map->l_tls_offset = off - firstbyte; |
336 | if (off - firstbyte - offset > freetop - freebottom) |
337 | { |
338 | freebottom = offset; |
339 | freetop = off - firstbyte; |
340 | } |
341 | |
342 | offset = off + slotinfo[cnt].map->l_tls_blocksize - firstbyte; |
343 | } |
344 | |
345 | GL(dl_tls_static_used) = offset; |
346 | GLRO (dl_tls_static_size) = roundup (offset + GLRO(dl_tls_static_surplus), |
347 | TCB_ALIGNMENT); |
348 | #else |
349 | # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined" |
350 | #endif |
351 | |
352 | /* The alignment requirement for the static TLS block. */ |
353 | GLRO (dl_tls_static_align) = max_align; |
354 | } |
355 | #endif /* SHARED */ |
356 | |
357 | static void * |
358 | allocate_dtv (void *result) |
359 | { |
360 | dtv_t *dtv; |
361 | size_t dtv_length; |
362 | |
363 | /* Relaxed MO, because the dtv size is later rechecked, not relied on. */ |
364 | size_t max_modid = atomic_load_relaxed (&GL(dl_tls_max_dtv_idx)); |
365 | /* We allocate a few more elements in the dtv than are needed for the |
366 | initial set of modules. This should avoid in most cases expansions |
367 | of the dtv. */ |
368 | dtv_length = max_modid + DTV_SURPLUS; |
369 | dtv = calloc (dtv_length + 2, sizeof (dtv_t)); |
370 | if (dtv != NULL) |
371 | { |
372 | /* This is the initial length of the dtv. */ |
373 | dtv[0].counter = dtv_length; |
374 | |
375 | /* The rest of the dtv (including the generation counter) is |
376 | Initialize with zero to indicate nothing there. */ |
377 | |
378 | /* Add the dtv to the thread data structures. */ |
379 | INSTALL_DTV (result, dtv); |
380 | } |
381 | else |
382 | result = NULL; |
383 | |
384 | return result; |
385 | } |
386 | |
387 | /* Get size and alignment requirements of the static TLS block. This |
388 | function is no longer used by glibc itself, but the GCC sanitizers |
389 | use it despite the GLIBC_PRIVATE status. */ |
390 | void |
391 | _dl_get_tls_static_info (size_t *sizep, size_t *alignp) |
392 | { |
393 | *sizep = GLRO (dl_tls_static_size); |
394 | *alignp = GLRO (dl_tls_static_align); |
395 | } |
396 | |
397 | /* Derive the location of the pointer to the start of the original |
398 | allocation (before alignment) from the pointer to the TCB. */ |
399 | static inline void ** |
400 | tcb_to_pointer_to_free_location (void *tcb) |
401 | { |
402 | #if TLS_TCB_AT_TP |
403 | /* The TCB follows the TLS blocks, and the pointer to the front |
404 | follows the TCB. */ |
405 | void **original_pointer_location = tcb + TLS_TCB_SIZE; |
406 | #elif TLS_DTV_AT_TP |
407 | /* The TCB comes first, preceded by the pre-TCB, and the pointer is |
408 | before that. */ |
409 | void **original_pointer_location = tcb - TLS_PRE_TCB_SIZE - sizeof (void *); |
410 | #endif |
411 | return original_pointer_location; |
412 | } |
413 | |
414 | void * |
415 | _dl_allocate_tls_storage (void) |
416 | { |
417 | void *result; |
418 | size_t size = GLRO (dl_tls_static_size); |
419 | |
420 | #if TLS_DTV_AT_TP |
421 | /* Memory layout is: |
422 | [ TLS_PRE_TCB_SIZE ] [ TLS_TCB_SIZE ] [ TLS blocks ] |
423 | ^ This should be returned. */ |
424 | size += TLS_PRE_TCB_SIZE; |
425 | #endif |
426 | |
427 | /* Perform the allocation. Reserve space for the required alignment |
428 | and the pointer to the original allocation. */ |
429 | size_t alignment = GLRO (dl_tls_static_align); |
430 | void *allocated = malloc (size + alignment + sizeof (void *)); |
431 | if (__glibc_unlikely (allocated == NULL)) |
432 | return NULL; |
433 | |
434 | /* Perform alignment and allocate the DTV. */ |
435 | #if TLS_TCB_AT_TP |
436 | /* The TCB follows the TLS blocks, which determine the alignment. |
437 | (TCB alignment requirements have been taken into account when |
438 | calculating GLRO (dl_tls_static_align).) */ |
439 | void *aligned = (void *) roundup ((uintptr_t) allocated, alignment); |
440 | result = aligned + size - TLS_TCB_SIZE; |
441 | |
442 | /* Clear the TCB data structure. We can't ask the caller (i.e. |
443 | libpthread) to do it, because we will initialize the DTV et al. */ |
444 | memset (result, '\0', TLS_TCB_SIZE); |
445 | #elif TLS_DTV_AT_TP |
446 | /* Pre-TCB and TCB come before the TLS blocks. The layout computed |
447 | in _dl_determine_tlsoffset assumes that the TCB is aligned to the |
448 | TLS block alignment, and not just the TLS blocks after it. This |
449 | can leave an unused alignment gap between the TCB and the TLS |
450 | blocks. */ |
451 | result = (void *) roundup |
452 | (sizeof (void *) + TLS_PRE_TCB_SIZE + (uintptr_t) allocated, |
453 | alignment); |
454 | |
455 | /* Clear the TCB data structure and TLS_PRE_TCB_SIZE bytes before |
456 | it. We can't ask the caller (i.e. libpthread) to do it, because |
457 | we will initialize the DTV et al. */ |
458 | memset (result - TLS_PRE_TCB_SIZE, '\0', TLS_PRE_TCB_SIZE + TLS_TCB_SIZE); |
459 | #endif |
460 | |
461 | /* Record the value of the original pointer for later |
462 | deallocation. */ |
463 | *tcb_to_pointer_to_free_location (result) = allocated; |
464 | |
465 | result = allocate_dtv (result); |
466 | if (result == NULL) |
467 | free (allocated); |
468 | return result; |
469 | } |
470 | |
471 | |
472 | #ifndef SHARED |
473 | extern dtv_t _dl_static_dtv[]; |
474 | # define _dl_initial_dtv (&_dl_static_dtv[1]) |
475 | #endif |
476 | |
477 | static dtv_t * |
478 | _dl_resize_dtv (dtv_t *dtv, size_t max_modid) |
479 | { |
480 | /* Resize the dtv. */ |
481 | dtv_t *newp; |
482 | size_t newsize = max_modid + DTV_SURPLUS; |
483 | size_t oldsize = dtv[-1].counter; |
484 | |
485 | if (dtv == GL(dl_initial_dtv)) |
486 | { |
487 | /* This is the initial dtv that was either statically allocated in |
488 | __libc_setup_tls or allocated during rtld startup using the |
489 | dl-minimal.c malloc instead of the real malloc. We can't free |
490 | it, we have to abandon the old storage. */ |
491 | |
492 | newp = malloc ((2 + newsize) * sizeof (dtv_t)); |
493 | if (newp == NULL) |
494 | oom (); |
495 | memcpy (newp, &dtv[-1], (2 + oldsize) * sizeof (dtv_t)); |
496 | } |
497 | else |
498 | { |
499 | newp = realloc (&dtv[-1], |
500 | (2 + newsize) * sizeof (dtv_t)); |
501 | if (newp == NULL) |
502 | oom (); |
503 | } |
504 | |
505 | newp[0].counter = newsize; |
506 | |
507 | /* Clear the newly allocated part. */ |
508 | memset (newp + 2 + oldsize, '\0', |
509 | (newsize - oldsize) * sizeof (dtv_t)); |
510 | |
511 | /* Return the generation counter. */ |
512 | return &newp[1]; |
513 | } |
514 | |
515 | |
516 | /* Allocate initial TLS. RESULT should be a non-NULL pointer to storage |
517 | for the TLS space. The DTV may be resized, and so this function may |
518 | call malloc to allocate that space. The loader's GL(dl_load_tls_lock) |
519 | is taken when manipulating global TLS-related data in the loader. */ |
520 | void * |
521 | _dl_allocate_tls_init (void *result, bool init_tls) |
522 | { |
523 | if (result == NULL) |
524 | /* The memory allocation failed. */ |
525 | return NULL; |
526 | |
527 | dtv_t *dtv = GET_DTV (result); |
528 | struct dtv_slotinfo_list *listp; |
529 | size_t total = 0; |
530 | size_t maxgen = 0; |
531 | |
532 | /* Protects global dynamic TLS related state. */ |
533 | __rtld_lock_lock_recursive (GL(dl_load_tls_lock)); |
534 | |
535 | /* Check if the current dtv is big enough. */ |
536 | if (dtv[-1].counter < GL(dl_tls_max_dtv_idx)) |
537 | { |
538 | /* Resize the dtv. */ |
539 | dtv = _dl_resize_dtv (dtv, GL(dl_tls_max_dtv_idx)); |
540 | |
541 | /* Install this new dtv in the thread data structures. */ |
542 | INSTALL_DTV (result, &dtv[-1]); |
543 | } |
544 | |
545 | /* We have to prepare the dtv for all currently loaded modules using |
546 | TLS. For those which are dynamically loaded we add the values |
547 | indicating deferred allocation. */ |
548 | listp = GL(dl_tls_dtv_slotinfo_list); |
549 | while (1) |
550 | { |
551 | size_t cnt; |
552 | |
553 | for (cnt = total == 0 ? 1 : 0; cnt < listp->len; ++cnt) |
554 | { |
555 | struct link_map *map; |
556 | void *dest; |
557 | |
558 | /* Check for the total number of used slots. */ |
559 | if (total + cnt > GL(dl_tls_max_dtv_idx)) |
560 | break; |
561 | |
562 | map = listp->slotinfo[cnt].map; |
563 | if (map == NULL) |
564 | /* Unused entry. */ |
565 | continue; |
566 | |
567 | /* Keep track of the maximum generation number. This might |
568 | not be the generation counter. */ |
569 | assert (listp->slotinfo[cnt].gen <= GL(dl_tls_generation)); |
570 | maxgen = MAX (maxgen, listp->slotinfo[cnt].gen); |
571 | |
572 | dtv[map->l_tls_modid].pointer.val = TLS_DTV_UNALLOCATED; |
573 | dtv[map->l_tls_modid].pointer.to_free = NULL; |
574 | |
575 | if (map->l_tls_offset == NO_TLS_OFFSET |
576 | || map->l_tls_offset == FORCED_DYNAMIC_TLS_OFFSET) |
577 | continue; |
578 | |
579 | assert (map->l_tls_modid == total + cnt); |
580 | assert (map->l_tls_blocksize >= map->l_tls_initimage_size); |
581 | #if TLS_TCB_AT_TP |
582 | assert ((size_t) map->l_tls_offset >= map->l_tls_blocksize); |
583 | dest = (char *) result - map->l_tls_offset; |
584 | #elif TLS_DTV_AT_TP |
585 | dest = (char *) result + map->l_tls_offset; |
586 | #else |
587 | # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined" |
588 | #endif |
589 | |
590 | /* Set up the DTV entry. The simplified __tls_get_addr that |
591 | some platforms use in static programs requires it. */ |
592 | dtv[map->l_tls_modid].pointer.val = dest; |
593 | |
594 | /* Copy the initialization image and clear the BSS part. For |
595 | audit modules or dependencies with initial-exec TLS, we can not |
596 | set the initial TLS image on default loader initialization |
597 | because it would already be set by the audit setup. However, |
598 | subsequent thread creation would need to follow the default |
599 | behaviour. */ |
600 | if (map->l_ns != LM_ID_BASE && !init_tls) |
601 | continue; |
602 | memset (__mempcpy (dest, map->l_tls_initimage, |
603 | map->l_tls_initimage_size), '\0', |
604 | map->l_tls_blocksize - map->l_tls_initimage_size); |
605 | } |
606 | |
607 | total += cnt; |
608 | if (total > GL(dl_tls_max_dtv_idx)) |
609 | break; |
610 | |
611 | listp = listp->next; |
612 | assert (listp != NULL); |
613 | } |
614 | __rtld_lock_unlock_recursive (GL(dl_load_tls_lock)); |
615 | |
616 | /* The DTV version is up-to-date now. */ |
617 | dtv[0].counter = maxgen; |
618 | |
619 | return result; |
620 | } |
621 | rtld_hidden_def (_dl_allocate_tls_init) |
622 | |
623 | void * |
624 | _dl_allocate_tls (void *mem) |
625 | { |
626 | return _dl_allocate_tls_init (mem == NULL |
627 | ? _dl_allocate_tls_storage () |
628 | : allocate_dtv (mem), true); |
629 | } |
630 | rtld_hidden_def (_dl_allocate_tls) |
631 | |
632 | |
633 | void |
634 | _dl_deallocate_tls (void *tcb, bool dealloc_tcb) |
635 | { |
636 | dtv_t *dtv = GET_DTV (tcb); |
637 | |
638 | /* We need to free the memory allocated for non-static TLS. */ |
639 | for (size_t cnt = 0; cnt < dtv[-1].counter; ++cnt) |
640 | free (dtv[1 + cnt].pointer.to_free); |
641 | |
642 | /* The array starts with dtv[-1]. */ |
643 | if (dtv != GL(dl_initial_dtv)) |
644 | free (dtv - 1); |
645 | |
646 | if (dealloc_tcb) |
647 | free (*tcb_to_pointer_to_free_location (tcb)); |
648 | } |
649 | rtld_hidden_def (_dl_deallocate_tls) |
650 | |
651 | |
652 | #ifdef SHARED |
653 | /* The __tls_get_addr function has two basic forms which differ in the |
654 | arguments. The IA-64 form takes two parameters, the module ID and |
655 | offset. The form used, among others, on IA-32 takes a reference to |
656 | a special structure which contain the same information. The second |
657 | form seems to be more often used (in the moment) so we default to |
658 | it. Users of the IA-64 form have to provide adequate definitions |
659 | of the following macros. */ |
660 | # ifndef GET_ADDR_ARGS |
661 | # define GET_ADDR_ARGS tls_index *ti |
662 | # define GET_ADDR_PARAM ti |
663 | # endif |
664 | # ifndef GET_ADDR_MODULE |
665 | # define GET_ADDR_MODULE ti->ti_module |
666 | # endif |
667 | # ifndef GET_ADDR_OFFSET |
668 | # define GET_ADDR_OFFSET ti->ti_offset |
669 | # endif |
670 | |
671 | /* Allocate one DTV entry. */ |
672 | static struct dtv_pointer |
673 | allocate_dtv_entry (size_t alignment, size_t size) |
674 | { |
675 | if (powerof2 (alignment) && alignment <= _Alignof (max_align_t)) |
676 | { |
677 | /* The alignment is supported by malloc. */ |
678 | void *ptr = malloc (size); |
679 | return (struct dtv_pointer) { ptr, ptr }; |
680 | } |
681 | |
682 | /* Emulate memalign to by manually aligning a pointer returned by |
683 | malloc. First compute the size with an overflow check. */ |
684 | size_t alloc_size = size + alignment; |
685 | if (alloc_size < size) |
686 | return (struct dtv_pointer) {}; |
687 | |
688 | /* Perform the allocation. This is the pointer we need to free |
689 | later. */ |
690 | void *start = malloc (alloc_size); |
691 | if (start == NULL) |
692 | return (struct dtv_pointer) {}; |
693 | |
694 | /* Find the aligned position within the larger allocation. */ |
695 | void *aligned = (void *) roundup ((uintptr_t) start, alignment); |
696 | |
697 | return (struct dtv_pointer) { .val = aligned, .to_free = start }; |
698 | } |
699 | |
700 | static struct dtv_pointer |
701 | allocate_and_init (struct link_map *map) |
702 | { |
703 | struct dtv_pointer result = allocate_dtv_entry |
704 | (map->l_tls_align, map->l_tls_blocksize); |
705 | if (result.val == NULL) |
706 | oom (); |
707 | |
708 | /* Initialize the memory. */ |
709 | memset (__mempcpy (result.val, map->l_tls_initimage, |
710 | map->l_tls_initimage_size), |
711 | '\0', map->l_tls_blocksize - map->l_tls_initimage_size); |
712 | |
713 | return result; |
714 | } |
715 | |
716 | |
717 | struct link_map * |
718 | _dl_update_slotinfo (unsigned long int req_modid) |
719 | { |
720 | struct link_map *the_map = NULL; |
721 | dtv_t *dtv = THREAD_DTV (); |
722 | |
723 | /* The global dl_tls_dtv_slotinfo array contains for each module |
724 | index the generation counter current when the entry was created. |
725 | This array never shrinks so that all module indices which were |
726 | valid at some time can be used to access it. Before the first |
727 | use of a new module index in this function the array was extended |
728 | appropriately. Access also does not have to be guarded against |
729 | modifications of the array. It is assumed that pointer-size |
730 | values can be read atomically even in SMP environments. It is |
731 | possible that other threads at the same time dynamically load |
732 | code and therefore add to the slotinfo list. This is a problem |
733 | since we must not pick up any information about incomplete work. |
734 | The solution to this is to ignore all dtv slots which were |
735 | created after the one we are currently interested. We know that |
736 | dynamic loading for this module is completed and this is the last |
737 | load operation we know finished. */ |
738 | unsigned long int idx = req_modid; |
739 | struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list); |
740 | |
741 | while (idx >= listp->len) |
742 | { |
743 | idx -= listp->len; |
744 | listp = listp->next; |
745 | } |
746 | |
747 | if (dtv[0].counter < listp->slotinfo[idx].gen) |
748 | { |
749 | /* CONCURRENCY NOTES: |
750 | |
751 | Here the dtv needs to be updated to new_gen generation count. |
752 | |
753 | This code may be called during TLS access when GL(dl_load_tls_lock) |
754 | is not held. In that case the user code has to synchronize with |
755 | dlopen and dlclose calls of relevant modules. A module m is |
756 | relevant if the generation of m <= new_gen and dlclose of m is |
757 | synchronized: a memory access here happens after the dlopen and |
758 | before the dlclose of relevant modules. The dtv entries for |
759 | relevant modules need to be updated, other entries can be |
760 | arbitrary. |
761 | |
762 | This e.g. means that the first part of the slotinfo list can be |
763 | accessed race free, but the tail may be concurrently extended. |
764 | Similarly relevant slotinfo entries can be read race free, but |
765 | other entries are racy. However updating a non-relevant dtv |
766 | entry does not affect correctness. For a relevant module m, |
767 | max_modid >= modid of m. */ |
768 | size_t new_gen = listp->slotinfo[idx].gen; |
769 | size_t total = 0; |
770 | size_t max_modid = atomic_load_relaxed (&GL(dl_tls_max_dtv_idx)); |
771 | assert (max_modid >= req_modid); |
772 | |
773 | /* We have to look through the entire dtv slotinfo list. */ |
774 | listp = GL(dl_tls_dtv_slotinfo_list); |
775 | do |
776 | { |
777 | for (size_t cnt = total == 0 ? 1 : 0; cnt < listp->len; ++cnt) |
778 | { |
779 | size_t modid = total + cnt; |
780 | |
781 | /* Later entries are not relevant. */ |
782 | if (modid > max_modid) |
783 | break; |
784 | |
785 | size_t gen = atomic_load_relaxed (&listp->slotinfo[cnt].gen); |
786 | |
787 | if (gen > new_gen) |
788 | /* Not relevant. */ |
789 | continue; |
790 | |
791 | /* If the entry is older than the current dtv layout we |
792 | know we don't have to handle it. */ |
793 | if (gen <= dtv[0].counter) |
794 | continue; |
795 | |
796 | /* If there is no map this means the entry is empty. */ |
797 | struct link_map *map |
798 | = atomic_load_relaxed (&listp->slotinfo[cnt].map); |
799 | /* Check whether the current dtv array is large enough. */ |
800 | if (dtv[-1].counter < modid) |
801 | { |
802 | if (map == NULL) |
803 | continue; |
804 | |
805 | /* Resize the dtv. */ |
806 | dtv = _dl_resize_dtv (dtv, max_modid); |
807 | |
808 | assert (modid <= dtv[-1].counter); |
809 | |
810 | /* Install this new dtv in the thread data |
811 | structures. */ |
812 | INSTALL_NEW_DTV (dtv); |
813 | } |
814 | |
815 | /* If there is currently memory allocate for this |
816 | dtv entry free it. */ |
817 | /* XXX Ideally we will at some point create a memory |
818 | pool. */ |
819 | free (dtv[modid].pointer.to_free); |
820 | dtv[modid].pointer.val = TLS_DTV_UNALLOCATED; |
821 | dtv[modid].pointer.to_free = NULL; |
822 | |
823 | if (modid == req_modid) |
824 | the_map = map; |
825 | } |
826 | |
827 | total += listp->len; |
828 | if (total > max_modid) |
829 | break; |
830 | |
831 | /* Synchronize with _dl_add_to_slotinfo. Ideally this would |
832 | be consume MO since we only need to order the accesses to |
833 | the next node after the read of the address and on most |
834 | hardware (other than alpha) a normal load would do that |
835 | because of the address dependency. */ |
836 | listp = atomic_load_acquire (&listp->next); |
837 | } |
838 | while (listp != NULL); |
839 | |
840 | /* This will be the new maximum generation counter. */ |
841 | dtv[0].counter = new_gen; |
842 | } |
843 | |
844 | return the_map; |
845 | } |
846 | |
847 | |
848 | static void * |
849 | __attribute_noinline__ |
850 | tls_get_addr_tail (GET_ADDR_ARGS, dtv_t *dtv, struct link_map *the_map) |
851 | { |
852 | /* The allocation was deferred. Do it now. */ |
853 | if (the_map == NULL) |
854 | { |
855 | /* Find the link map for this module. */ |
856 | size_t idx = GET_ADDR_MODULE; |
857 | struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list); |
858 | |
859 | while (idx >= listp->len) |
860 | { |
861 | idx -= listp->len; |
862 | listp = listp->next; |
863 | } |
864 | |
865 | the_map = listp->slotinfo[idx].map; |
866 | } |
867 | |
868 | /* Make sure that, if a dlopen running in parallel forces the |
869 | variable into static storage, we'll wait until the address in the |
870 | static TLS block is set up, and use that. If we're undecided |
871 | yet, make sure we make the decision holding the lock as well. */ |
872 | if (__glibc_unlikely (the_map->l_tls_offset |
873 | != FORCED_DYNAMIC_TLS_OFFSET)) |
874 | { |
875 | __rtld_lock_lock_recursive (GL(dl_load_tls_lock)); |
876 | if (__glibc_likely (the_map->l_tls_offset == NO_TLS_OFFSET)) |
877 | { |
878 | the_map->l_tls_offset = FORCED_DYNAMIC_TLS_OFFSET; |
879 | __rtld_lock_unlock_recursive (GL(dl_load_tls_lock)); |
880 | } |
881 | else if (__glibc_likely (the_map->l_tls_offset |
882 | != FORCED_DYNAMIC_TLS_OFFSET)) |
883 | { |
884 | #if TLS_TCB_AT_TP |
885 | void *p = (char *) THREAD_SELF - the_map->l_tls_offset; |
886 | #elif TLS_DTV_AT_TP |
887 | void *p = (char *) THREAD_SELF + the_map->l_tls_offset + TLS_PRE_TCB_SIZE; |
888 | #else |
889 | # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined" |
890 | #endif |
891 | __rtld_lock_unlock_recursive (GL(dl_load_tls_lock)); |
892 | |
893 | dtv[GET_ADDR_MODULE].pointer.to_free = NULL; |
894 | dtv[GET_ADDR_MODULE].pointer.val = p; |
895 | |
896 | return (char *) p + GET_ADDR_OFFSET; |
897 | } |
898 | else |
899 | __rtld_lock_unlock_recursive (GL(dl_load_tls_lock)); |
900 | } |
901 | struct dtv_pointer result = allocate_and_init (the_map); |
902 | dtv[GET_ADDR_MODULE].pointer = result; |
903 | assert (result.to_free != NULL); |
904 | |
905 | return (char *) result.val + GET_ADDR_OFFSET; |
906 | } |
907 | |
908 | |
909 | static struct link_map * |
910 | __attribute_noinline__ |
911 | update_get_addr (GET_ADDR_ARGS) |
912 | { |
913 | struct link_map *the_map = _dl_update_slotinfo (GET_ADDR_MODULE); |
914 | dtv_t *dtv = THREAD_DTV (); |
915 | |
916 | void *p = dtv[GET_ADDR_MODULE].pointer.val; |
917 | |
918 | if (__glibc_unlikely (p == TLS_DTV_UNALLOCATED)) |
919 | return tls_get_addr_tail (GET_ADDR_PARAM, dtv, the_map); |
920 | |
921 | return (void *) p + GET_ADDR_OFFSET; |
922 | } |
923 | |
924 | /* For all machines that have a non-macro version of __tls_get_addr, we |
925 | want to use rtld_hidden_proto/rtld_hidden_def in order to call the |
926 | internal alias for __tls_get_addr from ld.so. This avoids a PLT entry |
927 | in ld.so for __tls_get_addr. */ |
928 | |
929 | #ifndef __tls_get_addr |
930 | extern void * __tls_get_addr (GET_ADDR_ARGS); |
931 | rtld_hidden_proto (__tls_get_addr) |
932 | rtld_hidden_def (__tls_get_addr) |
933 | #endif |
934 | |
935 | /* The generic dynamic and local dynamic model cannot be used in |
936 | statically linked applications. */ |
937 | void * |
938 | __tls_get_addr (GET_ADDR_ARGS) |
939 | { |
940 | dtv_t *dtv = THREAD_DTV (); |
941 | |
942 | /* Update is needed if dtv[0].counter < the generation of the accessed |
943 | module. The global generation counter is used here as it is easier |
944 | to check. Synchronization for the relaxed MO access is guaranteed |
945 | by user code, see CONCURRENCY NOTES in _dl_update_slotinfo. */ |
946 | size_t gen = atomic_load_relaxed (&GL(dl_tls_generation)); |
947 | if (__glibc_unlikely (dtv[0].counter != gen)) |
948 | return update_get_addr (GET_ADDR_PARAM); |
949 | |
950 | void *p = dtv[GET_ADDR_MODULE].pointer.val; |
951 | |
952 | if (__glibc_unlikely (p == TLS_DTV_UNALLOCATED)) |
953 | return tls_get_addr_tail (GET_ADDR_PARAM, dtv, NULL); |
954 | |
955 | return (char *) p + GET_ADDR_OFFSET; |
956 | } |
957 | #endif |
958 | |
959 | |
960 | /* Look up the module's TLS block as for __tls_get_addr, |
961 | but never touch anything. Return null if it's not allocated yet. */ |
962 | void * |
963 | _dl_tls_get_addr_soft (struct link_map *l) |
964 | { |
965 | if (__glibc_unlikely (l->l_tls_modid == 0)) |
966 | /* This module has no TLS segment. */ |
967 | return NULL; |
968 | |
969 | dtv_t *dtv = THREAD_DTV (); |
970 | /* This may be called without holding the GL(dl_load_tls_lock). Reading |
971 | arbitrary gen value is fine since this is best effort code. */ |
972 | size_t gen = atomic_load_relaxed (&GL(dl_tls_generation)); |
973 | if (__glibc_unlikely (dtv[0].counter != gen)) |
974 | { |
975 | /* This thread's DTV is not completely current, |
976 | but it might already cover this module. */ |
977 | |
978 | if (l->l_tls_modid >= dtv[-1].counter) |
979 | /* Nope. */ |
980 | return NULL; |
981 | |
982 | size_t idx = l->l_tls_modid; |
983 | struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list); |
984 | while (idx >= listp->len) |
985 | { |
986 | idx -= listp->len; |
987 | listp = listp->next; |
988 | } |
989 | |
990 | /* We've reached the slot for this module. |
991 | If its generation counter is higher than the DTV's, |
992 | this thread does not know about this module yet. */ |
993 | if (dtv[0].counter < listp->slotinfo[idx].gen) |
994 | return NULL; |
995 | } |
996 | |
997 | void *data = dtv[l->l_tls_modid].pointer.val; |
998 | if (__glibc_unlikely (data == TLS_DTV_UNALLOCATED)) |
999 | /* The DTV is current, but this thread has not yet needed |
1000 | to allocate this module's segment. */ |
1001 | data = NULL; |
1002 | |
1003 | return data; |
1004 | } |
1005 | |
1006 | |
1007 | void |
1008 | _dl_add_to_slotinfo (struct link_map *l, bool do_add) |
1009 | { |
1010 | /* Now that we know the object is loaded successfully add |
1011 | modules containing TLS data to the dtv info table. We |
1012 | might have to increase its size. */ |
1013 | struct dtv_slotinfo_list *listp; |
1014 | struct dtv_slotinfo_list *prevp; |
1015 | size_t idx = l->l_tls_modid; |
1016 | |
1017 | /* Find the place in the dtv slotinfo list. */ |
1018 | listp = GL(dl_tls_dtv_slotinfo_list); |
1019 | prevp = NULL; /* Needed to shut up gcc. */ |
1020 | do |
1021 | { |
1022 | /* Does it fit in the array of this list element? */ |
1023 | if (idx < listp->len) |
1024 | break; |
1025 | idx -= listp->len; |
1026 | prevp = listp; |
1027 | listp = listp->next; |
1028 | } |
1029 | while (listp != NULL); |
1030 | |
1031 | if (listp == NULL) |
1032 | { |
1033 | /* When we come here it means we have to add a new element |
1034 | to the slotinfo list. And the new module must be in |
1035 | the first slot. */ |
1036 | assert (idx == 0); |
1037 | |
1038 | listp = (struct dtv_slotinfo_list *) |
1039 | malloc (sizeof (struct dtv_slotinfo_list) |
1040 | + TLS_SLOTINFO_SURPLUS * sizeof (struct dtv_slotinfo)); |
1041 | if (listp == NULL) |
1042 | { |
1043 | /* We ran out of memory while resizing the dtv slotinfo list. */ |
1044 | _dl_signal_error (ENOMEM, "dlopen" , NULL, N_("\ |
1045 | cannot create TLS data structures" )); |
1046 | } |
1047 | |
1048 | listp->len = TLS_SLOTINFO_SURPLUS; |
1049 | listp->next = NULL; |
1050 | memset (listp->slotinfo, '\0', |
1051 | TLS_SLOTINFO_SURPLUS * sizeof (struct dtv_slotinfo)); |
1052 | /* Synchronize with _dl_update_slotinfo. */ |
1053 | atomic_store_release (&prevp->next, listp); |
1054 | } |
1055 | |
1056 | /* Add the information into the slotinfo data structure. */ |
1057 | if (do_add) |
1058 | { |
1059 | /* Can be read concurrently. See _dl_update_slotinfo. */ |
1060 | atomic_store_relaxed (&listp->slotinfo[idx].map, l); |
1061 | atomic_store_relaxed (&listp->slotinfo[idx].gen, |
1062 | GL(dl_tls_generation) + 1); |
1063 | } |
1064 | } |
1065 | |
1066 | #if PTHREAD_IN_LIBC |
1067 | static inline void __attribute__((always_inline)) |
1068 | init_one_static_tls (struct pthread *curp, struct link_map *map) |
1069 | { |
1070 | # if TLS_TCB_AT_TP |
1071 | void *dest = (char *) curp - map->l_tls_offset; |
1072 | # elif TLS_DTV_AT_TP |
1073 | void *dest = (char *) curp + map->l_tls_offset + TLS_PRE_TCB_SIZE; |
1074 | # else |
1075 | # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined" |
1076 | # endif |
1077 | |
1078 | /* Initialize the memory. */ |
1079 | memset (__mempcpy (dest, map->l_tls_initimage, map->l_tls_initimage_size), |
1080 | '\0', map->l_tls_blocksize - map->l_tls_initimage_size); |
1081 | } |
1082 | |
1083 | void |
1084 | _dl_init_static_tls (struct link_map *map) |
1085 | { |
1086 | lll_lock (GL (dl_stack_cache_lock), LLL_PRIVATE); |
1087 | |
1088 | /* Iterate over the list with system-allocated threads first. */ |
1089 | list_t *runp; |
1090 | list_for_each (runp, &GL (dl_stack_used)) |
1091 | init_one_static_tls (list_entry (runp, struct pthread, list), map); |
1092 | |
1093 | /* Now the list with threads using user-allocated stacks. */ |
1094 | list_for_each (runp, &GL (dl_stack_user)) |
1095 | init_one_static_tls (list_entry (runp, struct pthread, list), map); |
1096 | |
1097 | lll_unlock (GL (dl_stack_cache_lock), LLL_PRIVATE); |
1098 | } |
1099 | #endif /* PTHREAD_IN_LIBC */ |
1100 | |