1 | /* Convert a 'struct tm' to a time_t value. |
2 | Copyright (C) 1993-2023 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Paul Eggert <eggert@twinsun.com>. |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, see |
18 | <https://www.gnu.org/licenses/>. */ |
19 | |
20 | /* The following macros influence what gets defined when this file is compiled: |
21 | |
22 | Macro/expression Which gnulib module This compilation unit |
23 | should define |
24 | |
25 | _LIBC (glibc proper) mktime |
26 | |
27 | NEED_MKTIME_WORKING mktime rpl_mktime |
28 | || NEED_MKTIME_WINDOWS |
29 | |
30 | NEED_MKTIME_INTERNAL mktime-internal mktime_internal |
31 | */ |
32 | |
33 | #ifndef _LIBC |
34 | # include <libc-config.h> |
35 | #endif |
36 | |
37 | /* Assume that leap seconds are possible, unless told otherwise. |
38 | If the host has a 'zic' command with a '-L leapsecondfilename' option, |
39 | then it supports leap seconds; otherwise it probably doesn't. */ |
40 | #ifndef LEAP_SECONDS_POSSIBLE |
41 | # define LEAP_SECONDS_POSSIBLE 1 |
42 | #endif |
43 | |
44 | #include <time.h> |
45 | |
46 | #include <errno.h> |
47 | #include <limits.h> |
48 | #include <stdbool.h> |
49 | #include <stdlib.h> |
50 | #include <string.h> |
51 | |
52 | #include <intprops.h> |
53 | #include <verify.h> |
54 | |
55 | #ifndef NEED_MKTIME_INTERNAL |
56 | # define NEED_MKTIME_INTERNAL 0 |
57 | #endif |
58 | #ifndef NEED_MKTIME_WINDOWS |
59 | # define NEED_MKTIME_WINDOWS 0 |
60 | #endif |
61 | #ifndef NEED_MKTIME_WORKING |
62 | # define NEED_MKTIME_WORKING 0 |
63 | #endif |
64 | |
65 | #include "mktime-internal.h" |
66 | |
67 | #if !defined _LIBC && (NEED_MKTIME_WORKING || NEED_MKTIME_WINDOWS) |
68 | static void |
69 | my_tzset (void) |
70 | { |
71 | # if NEED_MKTIME_WINDOWS |
72 | /* Rectify the value of the environment variable TZ. |
73 | There are four possible kinds of such values: |
74 | - Traditional US time zone names, e.g. "PST8PDT". Syntax: see |
75 | <https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/tzset> |
76 | - Time zone names based on geography, that contain one or more |
77 | slashes, e.g. "Europe/Moscow". |
78 | - Time zone names based on geography, without slashes, e.g. |
79 | "Singapore". |
80 | - Time zone names that contain explicit DST rules. Syntax: see |
81 | <https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html#tag_08_03> |
82 | The Microsoft CRT understands only the first kind. It produces incorrect |
83 | results if the value of TZ is of the other kinds. |
84 | But in a Cygwin environment, /etc/profile.d/tzset.sh sets TZ to a value |
85 | of the second kind for most geographies, or of the first kind in a few |
86 | other geographies. If it is of the second kind, neutralize it. For the |
87 | Microsoft CRT, an absent or empty TZ means the time zone that the user |
88 | has set in the Windows Control Panel. |
89 | If the value of TZ is of the third or fourth kind -- Cygwin programs |
90 | understand these syntaxes as well --, it does not matter whether we |
91 | neutralize it or not, since these values occur only when a Cygwin user |
92 | has set TZ explicitly; this case is 1. rare and 2. under the user's |
93 | responsibility. */ |
94 | const char *tz = getenv ("TZ" ); |
95 | if (tz != NULL && strchr (tz, '/') != NULL) |
96 | _putenv ("TZ=" ); |
97 | # else |
98 | tzset (); |
99 | # endif |
100 | } |
101 | # undef __tzset |
102 | # define __tzset() my_tzset () |
103 | #endif |
104 | |
105 | #if defined _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_INTERNAL |
106 | |
107 | /* A signed type that can represent an integer number of years |
108 | multiplied by four times the number of seconds in a year. It is |
109 | needed when converting a tm_year value times the number of seconds |
110 | in a year. The factor of four comes because these products need |
111 | to be subtracted from each other, and sometimes with an offset |
112 | added to them, and then with another timestamp added, without |
113 | worrying about overflow. |
114 | |
115 | Much of the code uses long_int to represent __time64_t values, to |
116 | lessen the hassle of dealing with platforms where __time64_t is |
117 | unsigned, and because long_int should suffice to represent all |
118 | __time64_t values that mktime can generate even on platforms where |
119 | __time64_t is wider than the int components of struct tm. */ |
120 | |
121 | #if INT_MAX <= LONG_MAX / 4 / 366 / 24 / 60 / 60 |
122 | typedef long int long_int; |
123 | #else |
124 | typedef long long int long_int; |
125 | #endif |
126 | verify (INT_MAX <= TYPE_MAXIMUM (long_int) / 4 / 366 / 24 / 60 / 60); |
127 | |
128 | /* Shift A right by B bits portably, by dividing A by 2**B and |
129 | truncating towards minus infinity. B should be in the range 0 <= B |
130 | <= LONG_INT_BITS - 2, where LONG_INT_BITS is the number of useful |
131 | bits in a long_int. LONG_INT_BITS is at least 32. |
132 | |
133 | ISO C99 says that A >> B is implementation-defined if A < 0. Some |
134 | implementations (e.g., UNICOS 9.0 on a Cray Y-MP EL) don't shift |
135 | right in the usual way when A < 0, so SHR falls back on division if |
136 | ordinary A >> B doesn't seem to be the usual signed shift. */ |
137 | |
138 | static long_int |
139 | shr (long_int a, int b) |
140 | { |
141 | long_int one = 1; |
142 | return (-one >> 1 == -1 |
143 | ? a >> b |
144 | : (a + (a < 0)) / (one << b) - (a < 0)); |
145 | } |
146 | |
147 | /* Bounds for the intersection of __time64_t and long_int. */ |
148 | |
149 | static long_int const mktime_min |
150 | = ((TYPE_SIGNED (__time64_t) |
151 | && TYPE_MINIMUM (__time64_t) < TYPE_MINIMUM (long_int)) |
152 | ? TYPE_MINIMUM (long_int) : TYPE_MINIMUM (__time64_t)); |
153 | static long_int const mktime_max |
154 | = (TYPE_MAXIMUM (long_int) < TYPE_MAXIMUM (__time64_t) |
155 | ? TYPE_MAXIMUM (long_int) : TYPE_MAXIMUM (__time64_t)); |
156 | |
157 | #define EPOCH_YEAR 1970 |
158 | #define TM_YEAR_BASE 1900 |
159 | verify (TM_YEAR_BASE % 100 == 0); |
160 | |
161 | /* Is YEAR + TM_YEAR_BASE a leap year? */ |
162 | static bool |
163 | leapyear (long_int year) |
164 | { |
165 | /* Don't add YEAR to TM_YEAR_BASE, as that might overflow. |
166 | Also, work even if YEAR is negative. */ |
167 | return |
168 | ((year & 3) == 0 |
169 | && (year % 100 != 0 |
170 | || ((year / 100) & 3) == (- (TM_YEAR_BASE / 100) & 3))); |
171 | } |
172 | |
173 | /* How many days come before each month (0-12). */ |
174 | #ifndef _LIBC |
175 | static |
176 | #endif |
177 | const unsigned short int __mon_yday[2][13] = |
178 | { |
179 | /* Normal years. */ |
180 | { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 }, |
181 | /* Leap years. */ |
182 | { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 } |
183 | }; |
184 | |
185 | |
186 | /* Do the values A and B differ according to the rules for tm_isdst? |
187 | A and B differ if one is zero and the other positive. */ |
188 | static bool |
189 | isdst_differ (int a, int b) |
190 | { |
191 | return (!a != !b) && (0 <= a) && (0 <= b); |
192 | } |
193 | |
194 | /* Return an integer value measuring (YEAR1-YDAY1 HOUR1:MIN1:SEC1) - |
195 | (YEAR0-YDAY0 HOUR0:MIN0:SEC0) in seconds, assuming that the clocks |
196 | were not adjusted between the timestamps. |
197 | |
198 | The YEAR values uses the same numbering as TP->tm_year. Values |
199 | need not be in the usual range. However, YEAR1 - YEAR0 must not |
200 | overflow even when multiplied by three times the number of seconds |
201 | in a year, and likewise for YDAY1 - YDAY0 and three times the |
202 | number of seconds in a day. */ |
203 | |
204 | static long_int |
205 | ydhms_diff (long_int year1, long_int yday1, int hour1, int min1, int sec1, |
206 | int year0, int yday0, int hour0, int min0, int sec0) |
207 | { |
208 | verify (-1 / 2 == 0); |
209 | |
210 | /* Compute intervening leap days correctly even if year is negative. |
211 | Take care to avoid integer overflow here. */ |
212 | int a4 = shr (year1, 2) + shr (TM_YEAR_BASE, 2) - ! (year1 & 3); |
213 | int b4 = shr (year0, 2) + shr (TM_YEAR_BASE, 2) - ! (year0 & 3); |
214 | int a100 = (a4 + (a4 < 0)) / 25 - (a4 < 0); |
215 | int b100 = (b4 + (b4 < 0)) / 25 - (b4 < 0); |
216 | int a400 = shr (a100, 2); |
217 | int b400 = shr (b100, 2); |
218 | int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400); |
219 | |
220 | /* Compute the desired time without overflowing. */ |
221 | long_int years = year1 - year0; |
222 | long_int days = 365 * years + yday1 - yday0 + intervening_leap_days; |
223 | long_int hours = 24 * days + hour1 - hour0; |
224 | long_int minutes = 60 * hours + min1 - min0; |
225 | long_int seconds = 60 * minutes + sec1 - sec0; |
226 | return seconds; |
227 | } |
228 | |
229 | /* Return the average of A and B, even if A + B would overflow. |
230 | Round toward positive infinity. */ |
231 | static long_int |
232 | long_int_avg (long_int a, long_int b) |
233 | { |
234 | return shr (a, 1) + shr (b, 1) + ((a | b) & 1); |
235 | } |
236 | |
237 | /* Return a long_int value corresponding to (YEAR-YDAY HOUR:MIN:SEC) |
238 | minus *TP seconds, assuming no clock adjustments occurred between |
239 | the two timestamps. |
240 | |
241 | YEAR and YDAY must not be so large that multiplying them by three times the |
242 | number of seconds in a year (or day, respectively) would overflow long_int. |
243 | *TP should be in the usual range. */ |
244 | static long_int |
245 | tm_diff (long_int year, long_int yday, int hour, int min, int sec, |
246 | struct tm const *tp) |
247 | { |
248 | return ydhms_diff (year, yday, hour, min, sec, |
249 | tp->tm_year, tp->tm_yday, |
250 | tp->tm_hour, tp->tm_min, tp->tm_sec); |
251 | } |
252 | |
253 | /* Use CONVERT to convert T to a struct tm value in *TM. T must be in |
254 | range for __time64_t. Return TM if successful, NULL (setting errno) on |
255 | failure. */ |
256 | static struct tm * |
257 | convert_time (struct tm *(*convert) (const __time64_t *, struct tm *), |
258 | long_int t, struct tm *tm) |
259 | { |
260 | __time64_t x = t; |
261 | return convert (&x, tm); |
262 | } |
263 | |
264 | /* Use CONVERT to convert *T to a broken down time in *TP. |
265 | If *T is out of range for conversion, adjust it so that |
266 | it is the nearest in-range value and then convert that. |
267 | A value is in range if it fits in both __time64_t and long_int. |
268 | Return TP on success, NULL (setting errno) on failure. */ |
269 | static struct tm * |
270 | ranged_convert (struct tm *(*convert) (const __time64_t *, struct tm *), |
271 | long_int *t, struct tm *tp) |
272 | { |
273 | long_int t1 = (*t < mktime_min ? mktime_min |
274 | : *t <= mktime_max ? *t : mktime_max); |
275 | struct tm *r = convert_time (convert, t1, tp); |
276 | if (r) |
277 | { |
278 | *t = t1; |
279 | return r; |
280 | } |
281 | if (errno != EOVERFLOW) |
282 | return NULL; |
283 | |
284 | long_int bad = t1; |
285 | long_int ok = 0; |
286 | struct tm oktm; oktm.tm_sec = -1; |
287 | |
288 | /* BAD is a known out-of-range value, and OK is a known in-range one. |
289 | Use binary search to narrow the range between BAD and OK until |
290 | they differ by 1. */ |
291 | while (true) |
292 | { |
293 | long_int mid = long_int_avg (ok, bad); |
294 | if (mid == ok || mid == bad) |
295 | break; |
296 | if (convert_time (convert, mid, tp)) |
297 | ok = mid, oktm = *tp; |
298 | else if (errno != EOVERFLOW) |
299 | return NULL; |
300 | else |
301 | bad = mid; |
302 | } |
303 | |
304 | if (oktm.tm_sec < 0) |
305 | return NULL; |
306 | *t = ok; |
307 | *tp = oktm; |
308 | return tp; |
309 | } |
310 | |
311 | |
312 | /* Convert *TP to a __time64_t value, inverting |
313 | the monotonic and mostly-unit-linear conversion function CONVERT. |
314 | Use *OFFSET to keep track of a guess at the offset of the result, |
315 | compared to what the result would be for UTC without leap seconds. |
316 | If *OFFSET's guess is correct, only one CONVERT call is needed. |
317 | If successful, set *TP to the canonicalized struct tm; |
318 | otherwise leave *TP alone, return ((time_t) -1) and set errno. |
319 | This function is external because it is used also by timegm.c. */ |
320 | __time64_t |
321 | __mktime_internal (struct tm *tp, |
322 | struct tm *(*convert) (const __time64_t *, struct tm *), |
323 | mktime_offset_t *offset) |
324 | { |
325 | struct tm tm; |
326 | |
327 | /* The maximum number of probes (calls to CONVERT) should be enough |
328 | to handle any combinations of time zone rule changes, solar time, |
329 | leap seconds, and oscillations around a spring-forward gap. |
330 | POSIX.1 prohibits leap seconds, but some hosts have them anyway. */ |
331 | int remaining_probes = 6; |
332 | |
333 | /* Time requested. Copy it in case CONVERT modifies *TP; this can |
334 | occur if TP is localtime's returned value and CONVERT is localtime. */ |
335 | int sec = tp->tm_sec; |
336 | int min = tp->tm_min; |
337 | int hour = tp->tm_hour; |
338 | int mday = tp->tm_mday; |
339 | int mon = tp->tm_mon; |
340 | int year_requested = tp->tm_year; |
341 | int isdst = tp->tm_isdst; |
342 | |
343 | /* 1 if the previous probe was DST. */ |
344 | int dst2 = 0; |
345 | |
346 | /* Ensure that mon is in range, and set year accordingly. */ |
347 | int mon_remainder = mon % 12; |
348 | int negative_mon_remainder = mon_remainder < 0; |
349 | int mon_years = mon / 12 - negative_mon_remainder; |
350 | long_int lyear_requested = year_requested; |
351 | long_int year = lyear_requested + mon_years; |
352 | |
353 | /* The other values need not be in range: |
354 | the remaining code handles overflows correctly. */ |
355 | |
356 | /* Calculate day of year from year, month, and day of month. |
357 | The result need not be in range. */ |
358 | int mon_yday = ((__mon_yday[leapyear (year)] |
359 | [mon_remainder + 12 * negative_mon_remainder]) |
360 | - 1); |
361 | long_int lmday = mday; |
362 | long_int yday = mon_yday + lmday; |
363 | |
364 | mktime_offset_t off = *offset; |
365 | int negative_offset_guess; |
366 | |
367 | int sec_requested = sec; |
368 | |
369 | if (LEAP_SECONDS_POSSIBLE) |
370 | { |
371 | /* Handle out-of-range seconds specially, |
372 | since ydhms_diff assumes every minute has 60 seconds. */ |
373 | if (sec < 0) |
374 | sec = 0; |
375 | if (59 < sec) |
376 | sec = 59; |
377 | } |
378 | |
379 | /* Invert CONVERT by probing. First assume the same offset as last |
380 | time. */ |
381 | |
382 | INT_SUBTRACT_WRAPV (0, off, &negative_offset_guess); |
383 | long_int t0 = ydhms_diff (year, yday, hour, min, sec, |
384 | EPOCH_YEAR - TM_YEAR_BASE, 0, 0, 0, |
385 | negative_offset_guess); |
386 | long_int t = t0, t1 = t0, t2 = t0; |
387 | |
388 | /* Repeatedly use the error to improve the guess. */ |
389 | |
390 | while (true) |
391 | { |
392 | if (! ranged_convert (convert, &t, &tm)) |
393 | return -1; |
394 | long_int dt = tm_diff (year, yday, hour, min, sec, &tm); |
395 | if (dt == 0) |
396 | break; |
397 | |
398 | if (t == t1 && t != t2 |
399 | && (tm.tm_isdst < 0 |
400 | || (isdst < 0 |
401 | ? dst2 <= (tm.tm_isdst != 0) |
402 | : (isdst != 0) != (tm.tm_isdst != 0)))) |
403 | /* We can't possibly find a match, as we are oscillating |
404 | between two values. The requested time probably falls |
405 | within a spring-forward gap of size DT. Follow the common |
406 | practice in this case, which is to return a time that is DT |
407 | away from the requested time, preferring a time whose |
408 | tm_isdst differs from the requested value. (If no tm_isdst |
409 | was requested and only one of the two values has a nonzero |
410 | tm_isdst, prefer that value.) In practice, this is more |
411 | useful than returning -1. */ |
412 | goto offset_found; |
413 | |
414 | remaining_probes--; |
415 | if (remaining_probes == 0) |
416 | { |
417 | __set_errno (EOVERFLOW); |
418 | return -1; |
419 | } |
420 | |
421 | t1 = t2, t2 = t, t += dt, dst2 = tm.tm_isdst != 0; |
422 | } |
423 | |
424 | /* We have a match. Check whether tm.tm_isdst has the requested |
425 | value, if any. */ |
426 | if (isdst_differ (isdst, tm.tm_isdst)) |
427 | { |
428 | /* tm.tm_isdst has the wrong value. Look for a neighboring |
429 | time with the right value, and use its UTC offset. |
430 | |
431 | Heuristic: probe the adjacent timestamps in both directions, |
432 | looking for the desired isdst. If none is found within a |
433 | reasonable duration bound, assume a one-hour DST difference. |
434 | This should work for all real time zone histories in the tz |
435 | database. */ |
436 | |
437 | /* +1 if we wanted standard time but got DST, -1 if the reverse. */ |
438 | int dst_difference = (isdst == 0) - (tm.tm_isdst == 0); |
439 | |
440 | /* Distance between probes when looking for a DST boundary. In |
441 | tzdata2003a, the shortest period of DST is 601200 seconds |
442 | (e.g., America/Recife starting 2000-10-08 01:00), and the |
443 | shortest period of non-DST surrounded by DST is 694800 |
444 | seconds (Africa/Tunis starting 1943-04-17 01:00). Use the |
445 | minimum of these two values, so we don't miss these short |
446 | periods when probing. */ |
447 | int stride = 601200; |
448 | |
449 | /* In TZDB 2021e, the longest period of DST (or of non-DST), in |
450 | which the DST (or adjacent DST) difference is not one hour, |
451 | is 457243209 seconds: e.g., America/Cambridge_Bay with leap |
452 | seconds, starting 1965-10-31 00:00 in a switch from |
453 | double-daylight time (-05) to standard time (-07), and |
454 | continuing to 1980-04-27 02:00 in a switch from standard time |
455 | (-07) to daylight time (-06). */ |
456 | int duration_max = 457243209; |
457 | |
458 | /* Search in both directions, so the maximum distance is half |
459 | the duration; add the stride to avoid off-by-1 problems. */ |
460 | int delta_bound = duration_max / 2 + stride; |
461 | |
462 | int delta, direction; |
463 | |
464 | for (delta = stride; delta < delta_bound; delta += stride) |
465 | for (direction = -1; direction <= 1; direction += 2) |
466 | { |
467 | long_int ot; |
468 | if (! INT_ADD_WRAPV (t, delta * direction, &ot)) |
469 | { |
470 | struct tm otm; |
471 | if (! ranged_convert (convert, &ot, &otm)) |
472 | return -1; |
473 | if (! isdst_differ (isdst, otm.tm_isdst)) |
474 | { |
475 | /* We found the desired tm_isdst. |
476 | Extrapolate back to the desired time. */ |
477 | long_int gt = ot + tm_diff (year, yday, hour, min, sec, |
478 | &otm); |
479 | if (mktime_min <= gt && gt <= mktime_max) |
480 | { |
481 | if (convert_time (convert, gt, &tm)) |
482 | { |
483 | t = gt; |
484 | goto offset_found; |
485 | } |
486 | if (errno != EOVERFLOW) |
487 | return -1; |
488 | } |
489 | } |
490 | } |
491 | } |
492 | |
493 | /* No unusual DST offset was found nearby. Assume one-hour DST. */ |
494 | t += 60 * 60 * dst_difference; |
495 | if (mktime_min <= t && t <= mktime_max && convert_time (convert, t, &tm)) |
496 | goto offset_found; |
497 | |
498 | __set_errno (EOVERFLOW); |
499 | return -1; |
500 | } |
501 | |
502 | offset_found: |
503 | /* Set *OFFSET to the low-order bits of T - T0 - NEGATIVE_OFFSET_GUESS. |
504 | This is just a heuristic to speed up the next mktime call, and |
505 | correctness is unaffected if integer overflow occurs here. */ |
506 | INT_SUBTRACT_WRAPV (t, t0, offset); |
507 | INT_SUBTRACT_WRAPV (*offset, negative_offset_guess, offset); |
508 | |
509 | if (LEAP_SECONDS_POSSIBLE && sec_requested != tm.tm_sec) |
510 | { |
511 | /* Adjust time to reflect the tm_sec requested, not the normalized value. |
512 | Also, repair any damage from a false match due to a leap second. */ |
513 | long_int sec_adjustment = sec == 0 && tm.tm_sec == 60; |
514 | sec_adjustment -= sec; |
515 | sec_adjustment += sec_requested; |
516 | if (INT_ADD_WRAPV (t, sec_adjustment, &t) |
517 | || ! (mktime_min <= t && t <= mktime_max)) |
518 | { |
519 | __set_errno (EOVERFLOW); |
520 | return -1; |
521 | } |
522 | if (! convert_time (convert, t, &tm)) |
523 | return -1; |
524 | } |
525 | |
526 | *tp = tm; |
527 | return t; |
528 | } |
529 | |
530 | #endif /* _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_INTERNAL */ |
531 | |
532 | #if defined _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_WINDOWS |
533 | |
534 | /* Convert *TP to a __time64_t value. */ |
535 | __time64_t |
536 | __mktime64 (struct tm *tp) |
537 | { |
538 | /* POSIX.1 8.1.1 requires that whenever mktime() is called, the |
539 | time zone names contained in the external variable 'tzname' shall |
540 | be set as if the tzset() function had been called. */ |
541 | __tzset (); |
542 | |
543 | # if defined _LIBC || NEED_MKTIME_WORKING |
544 | static mktime_offset_t localtime_offset; |
545 | return __mktime_internal (tp, __localtime64_r, &localtime_offset); |
546 | # else |
547 | # undef mktime |
548 | return mktime (tp); |
549 | # endif |
550 | } |
551 | #endif /* _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_WINDOWS */ |
552 | |
553 | #if defined _LIBC && __TIMESIZE != 64 |
554 | |
555 | libc_hidden_def (__mktime64) |
556 | |
557 | time_t |
558 | mktime (struct tm *tp) |
559 | { |
560 | struct tm tm = *tp; |
561 | __time64_t t = __mktime64 (&tm); |
562 | if (in_time_t_range (t)) |
563 | { |
564 | *tp = tm; |
565 | return t; |
566 | } |
567 | else |
568 | { |
569 | __set_errno (EOVERFLOW); |
570 | return -1; |
571 | } |
572 | } |
573 | |
574 | #endif |
575 | |
576 | weak_alias (mktime, timelocal) |
577 | libc_hidden_def (mktime) |
578 | libc_hidden_weak (timelocal) |
579 | |