| 1 | /* rawmemchr optimized with 256-bit EVEX instructions. |
| 2 | Copyright (C) 2022-2023 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <isa-level.h> |
| 20 | #include <sysdep.h> |
| 21 | |
| 22 | #if ISA_SHOULD_BUILD (4) |
| 23 | |
| 24 | # ifndef VEC_SIZE |
| 25 | # include "x86-evex256-vecs.h" |
| 26 | # endif |
| 27 | |
| 28 | # ifndef RAWMEMCHR |
| 29 | # define RAWMEMCHR __rawmemchr_evex |
| 30 | # endif |
| 31 | |
| 32 | |
| 33 | # define PC_SHIFT_GPR rdi |
| 34 | # define REG_WIDTH VEC_SIZE |
| 35 | # define VPTESTN vptestnmb |
| 36 | # define VPBROADCAST vpbroadcastb |
| 37 | # define VPMINU vpminub |
| 38 | # define VPCMP vpcmpb |
| 39 | # define VPCMPEQ vpcmpeqb |
| 40 | # define CHAR_SIZE 1 |
| 41 | |
| 42 | # include "reg-macros.h" |
| 43 | |
| 44 | /* If not in an RTM and VEC_SIZE != 64 (the VEC_SIZE = 64 |
| 45 | doesn't have VEX encoding), use VEX encoding in loop so we |
| 46 | can use vpcmpeqb + vptern which is more efficient than the |
| 47 | EVEX alternative. */ |
| 48 | # if defined USE_IN_RTM || VEC_SIZE == 64 |
| 49 | # undef COND_VZEROUPPER |
| 50 | # undef VZEROUPPER_RETURN |
| 51 | # undef VZEROUPPER |
| 52 | |
| 53 | |
| 54 | # define COND_VZEROUPPER |
| 55 | # define VZEROUPPER_RETURN ret |
| 56 | # define VZEROUPPER |
| 57 | |
| 58 | # define USE_TERN_IN_LOOP 0 |
| 59 | # else |
| 60 | # define USE_TERN_IN_LOOP 1 |
| 61 | # undef VZEROUPPER |
| 62 | # define VZEROUPPER vzeroupper |
| 63 | # endif |
| 64 | |
| 65 | # define CHAR_PER_VEC VEC_SIZE |
| 66 | |
| 67 | # if CHAR_PER_VEC == 64 |
| 68 | |
| 69 | # define TAIL_RETURN_LBL first_vec_x2 |
| 70 | # define TAIL_RETURN_OFFSET (CHAR_PER_VEC * 2) |
| 71 | |
| 72 | # define FALLTHROUGH_RETURN_LBL first_vec_x3 |
| 73 | # define FALLTHROUGH_RETURN_OFFSET (CHAR_PER_VEC * 3) |
| 74 | |
| 75 | # else /* !(CHAR_PER_VEC == 64) */ |
| 76 | |
| 77 | # define TAIL_RETURN_LBL first_vec_x3 |
| 78 | # define TAIL_RETURN_OFFSET (CHAR_PER_VEC * 3) |
| 79 | |
| 80 | # define FALLTHROUGH_RETURN_LBL first_vec_x2 |
| 81 | # define FALLTHROUGH_RETURN_OFFSET (CHAR_PER_VEC * 2) |
| 82 | # endif /* !(CHAR_PER_VEC == 64) */ |
| 83 | |
| 84 | |
| 85 | # define VMATCH VMM(0) |
| 86 | # define VMATCH_LO VMM_lo(0) |
| 87 | |
| 88 | # define PAGE_SIZE 4096 |
| 89 | |
| 90 | .section SECTION(.text), "ax" , @progbits |
| 91 | ENTRY_P2ALIGN (RAWMEMCHR, 6) |
| 92 | VPBROADCAST %esi, %VMATCH |
| 93 | /* Check if we may cross page boundary with one vector load. */ |
| 94 | movl %edi, %eax |
| 95 | andl $(PAGE_SIZE - 1), %eax |
| 96 | cmpl $(PAGE_SIZE - VEC_SIZE), %eax |
| 97 | ja L(page_cross) |
| 98 | |
| 99 | VPCMPEQ (%rdi), %VMATCH, %k0 |
| 100 | KMOV %k0, %VRAX |
| 101 | |
| 102 | test %VRAX, %VRAX |
| 103 | jz L(aligned_more) |
| 104 | L(first_vec_x0): |
| 105 | bsf %VRAX, %VRAX |
| 106 | addq %rdi, %rax |
| 107 | ret |
| 108 | |
| 109 | .p2align 4,, 4 |
| 110 | L(first_vec_x4): |
| 111 | bsf %VRAX, %VRAX |
| 112 | leaq (VEC_SIZE * 4)(%rdi, %rax), %rax |
| 113 | ret |
| 114 | |
| 115 | /* For VEC_SIZE == 32 we can fit this in aligning bytes so might |
| 116 | as well place it more locally. For VEC_SIZE == 64 we reuse |
| 117 | return code at the end of loop's return. */ |
| 118 | # if VEC_SIZE == 32 |
| 119 | .p2align 4,, 4 |
| 120 | L(FALLTHROUGH_RETURN_LBL): |
| 121 | bsf %VRAX, %VRAX |
| 122 | leaq (FALLTHROUGH_RETURN_OFFSET)(%rdi, %rax), %rax |
| 123 | ret |
| 124 | # endif |
| 125 | |
| 126 | .p2align 4,, 6 |
| 127 | L(page_cross): |
| 128 | /* eax has lower page-offset bits of rdi so xor will zero them |
| 129 | out. */ |
| 130 | xorq %rdi, %rax |
| 131 | VPCMPEQ (PAGE_SIZE - VEC_SIZE)(%rax), %VMATCH, %k0 |
| 132 | KMOV %k0, %VRAX |
| 133 | |
| 134 | /* Shift out out-of-bounds matches. */ |
| 135 | shrx %VRDI, %VRAX, %VRAX |
| 136 | test %VRAX, %VRAX |
| 137 | jnz L(first_vec_x0) |
| 138 | |
| 139 | .p2align 4,, 10 |
| 140 | L(aligned_more): |
| 141 | L(page_cross_continue): |
| 142 | /* Align pointer. */ |
| 143 | andq $(VEC_SIZE * -1), %rdi |
| 144 | |
| 145 | VPCMPEQ VEC_SIZE(%rdi), %VMATCH, %k0 |
| 146 | KMOV %k0, %VRAX |
| 147 | test %VRAX, %VRAX |
| 148 | jnz L(first_vec_x1) |
| 149 | |
| 150 | VPCMPEQ (VEC_SIZE * 2)(%rdi), %VMATCH, %k0 |
| 151 | KMOV %k0, %VRAX |
| 152 | test %VRAX, %VRAX |
| 153 | jnz L(first_vec_x2) |
| 154 | |
| 155 | VPCMPEQ (VEC_SIZE * 3)(%rdi), %VMATCH, %k0 |
| 156 | KMOV %k0, %VRAX |
| 157 | test %VRAX, %VRAX |
| 158 | jnz L(first_vec_x3) |
| 159 | |
| 160 | VPCMPEQ (VEC_SIZE * 4)(%rdi), %VMATCH, %k0 |
| 161 | KMOV %k0, %VRAX |
| 162 | test %VRAX, %VRAX |
| 163 | jnz L(first_vec_x4) |
| 164 | |
| 165 | subq $-(VEC_SIZE * 1), %rdi |
| 166 | # if VEC_SIZE == 64 |
| 167 | /* Saves code size. No evex512 processor has partial register |
| 168 | stalls. If that change this can be replaced with `andq |
| 169 | $-(VEC_SIZE * 4), %rdi`. */ |
| 170 | xorb %dil, %dil |
| 171 | # else |
| 172 | andq $-(VEC_SIZE * 4), %rdi |
| 173 | # endif |
| 174 | |
| 175 | # if USE_TERN_IN_LOOP |
| 176 | /* copy VMATCH to low ymm so we can use vpcmpeq which is not |
| 177 | encodable with EVEX registers. NB: this is VEC_SIZE == 32 |
| 178 | only as there is no way to encode vpcmpeq with zmm0-15. */ |
| 179 | vmovdqa64 %VMATCH, %VMATCH_LO |
| 180 | # endif |
| 181 | |
| 182 | .p2align 4 |
| 183 | L(loop_4x_vec): |
| 184 | /* Two versions of the loop. One that does not require |
| 185 | vzeroupper by not using ymm0-15 and another does that |
| 186 | require vzeroupper because it uses ymm0-15. The reason why |
| 187 | ymm0-15 is used at all is because there is no EVEX encoding |
| 188 | vpcmpeq and with vpcmpeq this loop can be performed more |
| 189 | efficiently. The non-vzeroupper version is safe for RTM |
| 190 | while the vzeroupper version should be prefered if RTM are |
| 191 | not supported. Which loop version we use is determined by |
| 192 | USE_TERN_IN_LOOP. */ |
| 193 | |
| 194 | # if USE_TERN_IN_LOOP |
| 195 | /* Since vptern can only take 3x vectors fastest to do 1 vec |
| 196 | seperately with EVEX vpcmp. */ |
| 197 | VPCMPEQ (VEC_SIZE * 4)(%rdi), %VMATCH, %k1 |
| 198 | /* Compare 3x with vpcmpeq and or them all together with vptern. |
| 199 | */ |
| 200 | |
| 201 | VPCMPEQ (VEC_SIZE * 5)(%rdi), %VMATCH_LO, %VMM_lo(2) |
| 202 | subq $(VEC_SIZE * -4), %rdi |
| 203 | VPCMPEQ (VEC_SIZE * 2)(%rdi), %VMATCH_LO, %VMM_lo(3) |
| 204 | VPCMPEQ (VEC_SIZE * 3)(%rdi), %VMATCH_LO, %VMM_lo(4) |
| 205 | |
| 206 | /* 254 is mask for oring VEC_lo(2), VEC_lo(3), VEC_lo(4) into |
| 207 | VEC_lo(4). */ |
| 208 | vpternlogd $254, %VMM_lo(2), %VMM_lo(3), %VMM_lo(4) |
| 209 | vpmovmskb %VMM_lo(4), %VRCX |
| 210 | |
| 211 | KMOV %k1, %eax |
| 212 | |
| 213 | /* NB: rax has match from first VEC and rcx has matches from |
| 214 | VEC 2-4. If rax is non-zero we will return that match. If |
| 215 | rax is zero adding won't disturb the bits in rcx. */ |
| 216 | add %rax, %rcx |
| 217 | # else |
| 218 | /* Loop version that uses EVEX encoding. */ |
| 219 | VPCMP $4, (VEC_SIZE * 4)(%rdi), %VMATCH, %k1 |
| 220 | vpxorq (VEC_SIZE * 5)(%rdi), %VMATCH, %VMM(2) |
| 221 | vpxorq (VEC_SIZE * 6)(%rdi), %VMATCH, %VMM(3) |
| 222 | VPCMPEQ (VEC_SIZE * 7)(%rdi), %VMATCH, %k3 |
| 223 | VPMINU %VMM(2), %VMM(3), %VMM(3){%k1}{z} |
| 224 | VPTESTN %VMM(3), %VMM(3), %k2 |
| 225 | subq $(VEC_SIZE * -4), %rdi |
| 226 | KORTEST %k2, %k3 |
| 227 | # endif |
| 228 | jz L(loop_4x_vec) |
| 229 | |
| 230 | # if USE_TERN_IN_LOOP |
| 231 | test %VRAX, %VRAX |
| 232 | # else |
| 233 | KMOV %k1, %VRAX |
| 234 | inc %VRAX |
| 235 | # endif |
| 236 | jnz L(last_vec_x0) |
| 237 | |
| 238 | |
| 239 | # if USE_TERN_IN_LOOP |
| 240 | vpmovmskb %VMM_lo(2), %VRAX |
| 241 | # else |
| 242 | VPTESTN %VMM(2), %VMM(2), %k1 |
| 243 | KMOV %k1, %VRAX |
| 244 | # endif |
| 245 | test %VRAX, %VRAX |
| 246 | jnz L(last_vec_x1) |
| 247 | |
| 248 | |
| 249 | # if USE_TERN_IN_LOOP |
| 250 | vpmovmskb %VMM_lo(3), %VRAX |
| 251 | # else |
| 252 | KMOV %k2, %VRAX |
| 253 | # endif |
| 254 | |
| 255 | /* No longer need any of the lo vecs (ymm0-15) so vzeroupper |
| 256 | (only if used VEX encoded loop). */ |
| 257 | COND_VZEROUPPER |
| 258 | |
| 259 | /* Seperate logic for VEC_SIZE == 64 and VEC_SIZE == 32 for |
| 260 | returning last 2x VEC. For VEC_SIZE == 64 we test each VEC |
| 261 | individually, for VEC_SIZE == 32 we combine them in a single |
| 262 | 64-bit GPR. */ |
| 263 | # if CHAR_PER_VEC == 64 |
| 264 | # if USE_TERN_IN_LOOP |
| 265 | # error "Unsupported" |
| 266 | # endif |
| 267 | |
| 268 | |
| 269 | /* If CHAR_PER_VEC == 64 we can't combine the last two VEC. */ |
| 270 | test %VRAX, %VRAX |
| 271 | jnz L(first_vec_x2) |
| 272 | KMOV %k3, %VRAX |
| 273 | L(FALLTHROUGH_RETURN_LBL): |
| 274 | # else |
| 275 | /* CHAR_PER_VEC <= 32 so we can combine the results from the |
| 276 | last 2x VEC. */ |
| 277 | # if !USE_TERN_IN_LOOP |
| 278 | KMOV %k3, %VRCX |
| 279 | # endif |
| 280 | salq $CHAR_PER_VEC, %rcx |
| 281 | addq %rcx, %rax |
| 282 | # endif |
| 283 | bsf %rax, %rax |
| 284 | leaq (FALLTHROUGH_RETURN_OFFSET)(%rdi, %rax), %rax |
| 285 | ret |
| 286 | |
| 287 | .p2align 4,, 8 |
| 288 | L(TAIL_RETURN_LBL): |
| 289 | bsf %rax, %rax |
| 290 | leaq (TAIL_RETURN_OFFSET)(%rdi, %rax), %rax |
| 291 | ret |
| 292 | |
| 293 | .p2align 4,, 8 |
| 294 | L(last_vec_x1): |
| 295 | COND_VZEROUPPER |
| 296 | L(first_vec_x1): |
| 297 | bsf %VRAX, %VRAX |
| 298 | leaq (VEC_SIZE * 1)(%rdi, %rax), %rax |
| 299 | ret |
| 300 | |
| 301 | .p2align 4,, 8 |
| 302 | L(last_vec_x0): |
| 303 | COND_VZEROUPPER |
| 304 | bsf %VRAX, %VRAX |
| 305 | addq %rdi, %rax |
| 306 | ret |
| 307 | END (RAWMEMCHR) |
| 308 | #endif |
| 309 | |