| 1 | /* __memcmpeq optimized with EVEX. |
| 2 | Copyright (C) 2017-2023 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <isa-level.h> |
| 20 | |
| 21 | #if ISA_SHOULD_BUILD (4) |
| 22 | |
| 23 | /* __memcmpeq is implemented as: |
| 24 | 1. Use ymm vector compares when possible. The only case where |
| 25 | vector compares is not possible for when size < VEC_SIZE |
| 26 | and loading from either s1 or s2 would cause a page cross. |
| 27 | 2. Use xmm vector compare when size >= 8 bytes. |
| 28 | 3. Optimistically compare up to first 4 * VEC_SIZE one at a |
| 29 | to check for early mismatches. Only do this if its guranteed the |
| 30 | work is not wasted. |
| 31 | 4. If size is 8 * VEC_SIZE or less, unroll the loop. |
| 32 | 5. Compare 4 * VEC_SIZE at a time with the aligned first memory |
| 33 | area. |
| 34 | 6. Use 2 vector compares when size is 2 * VEC_SIZE or less. |
| 35 | 7. Use 4 vector compares when size is 4 * VEC_SIZE or less. |
| 36 | 8. Use 8 vector compares when size is 8 * VEC_SIZE or less. */ |
| 37 | |
| 38 | # include <sysdep.h> |
| 39 | |
| 40 | # ifndef MEMCMPEQ |
| 41 | # define MEMCMPEQ __memcmpeq_evex |
| 42 | # endif |
| 43 | |
| 44 | # ifndef VEC_SIZE |
| 45 | # include "x86-evex512-vecs.h" |
| 46 | # endif |
| 47 | # include "reg-macros.h" |
| 48 | |
| 49 | |
| 50 | # if VEC_SIZE == 32 |
| 51 | |
| 52 | # define TEST_ZERO_VCMP(reg) inc %VGPR(reg) |
| 53 | # define TEST_ZERO(reg) test %VGPR(reg), %VGPR(reg) |
| 54 | |
| 55 | # define TO_32BIT_P1(reg) /* Do nothing. */ |
| 56 | # define TO_32BIT_P2(reg) /* Do nothing. */ |
| 57 | # define TO_32BIT(reg) /* Do nothing. */ |
| 58 | |
| 59 | # define VEC_CMP VPCMPEQ |
| 60 | |
| 61 | # elif VEC_SIZE == 64 |
| 62 | |
| 63 | # define TEST_ZERO_VCMP(reg) TEST_ZERO(reg) |
| 64 | # define TEST_ZERO(reg) neg %VGPR(reg) |
| 65 | |
| 66 | |
| 67 | /* VEC_SIZE == 64 needs to reduce the 64-bit mask to a 32-bit |
| 68 | int. We have two methods for this. If the mask with branched |
| 69 | on, we use `neg` for the branch then `sbb` to get the 32-bit |
| 70 | return. If the mask was no branched on, we just use |
| 71 | `popcntq`. */ |
| 72 | # define TO_32BIT_P1(reg) TEST_ZERO(reg) |
| 73 | # define TO_32BIT_P2(reg) sbb %VGPR_SZ(reg, 32), %VGPR_SZ(reg, 32) |
| 74 | # define TO_32BIT(reg) popcntq %reg, %reg |
| 75 | |
| 76 | # define VEC_CMP VPCMPNEQ |
| 77 | |
| 78 | # else |
| 79 | # error "Unsupported VEC_SIZE" |
| 80 | # endif |
| 81 | |
| 82 | |
| 83 | # define VMOVU_MASK vmovdqu8 |
| 84 | # define VPCMPNEQ vpcmpneqb |
| 85 | # define VPCMPEQ vpcmpeqb |
| 86 | # define VPTEST vptestmb |
| 87 | |
| 88 | # define PAGE_SIZE 4096 |
| 89 | |
| 90 | .section SECTION(.text), "ax" , @progbits |
| 91 | ENTRY_P2ALIGN (MEMCMPEQ, 6) |
| 92 | # ifdef __ILP32__ |
| 93 | /* Clear the upper 32 bits. */ |
| 94 | movl %edx, %edx |
| 95 | # endif |
| 96 | cmp $VEC_SIZE, %RDX_LP |
| 97 | /* Fall through for [0, VEC_SIZE] as its the hottest. */ |
| 98 | ja L(more_1x_vec) |
| 99 | |
| 100 | /* Create mask of bytes that are guranteed to be valid because |
| 101 | of length (edx). Using masked movs allows us to skip checks |
| 102 | for page crosses/zero size. */ |
| 103 | mov $-1, %VRAX |
| 104 | bzhi %VRDX, %VRAX, %VRAX |
| 105 | /* NB: A `jz` might be useful here. Page-faults that are |
| 106 | invalidated by predicate execution (the evex mask) can be |
| 107 | very slow. The expectation is this is not the norm so and |
| 108 | "most" code will not regularly call 'memcmp' with length = 0 |
| 109 | and memory that is not wired up. */ |
| 110 | KMOV %VRAX, %k2 |
| 111 | |
| 112 | /* Use masked loads as VEC_SIZE could page cross where length |
| 113 | (edx) would not. */ |
| 114 | VMOVU_MASK (%rsi), %VMM(2){%k2}{z} |
| 115 | VPCMPNEQ (%rdi), %VMM(2), %k1{%k2} |
| 116 | KMOV %k1, %VRAX |
| 117 | TO_32BIT (VRAX) |
| 118 | ret |
| 119 | |
| 120 | .p2align 4,, 3 |
| 121 | L(last_1x_vec): |
| 122 | VMOVU -(VEC_SIZE * 1)(%rsi, %rdx), %VMM(1) |
| 123 | VPCMPNEQ -(VEC_SIZE * 1)(%rdi, %rdx), %VMM(1), %k1 |
| 124 | KMOV %k1, %VRAX |
| 125 | TO_32BIT_P1 (rax) |
| 126 | L(return_neq0): |
| 127 | TO_32BIT_P2 (rax) |
| 128 | ret |
| 129 | |
| 130 | |
| 131 | .p2align 4,, 12 |
| 132 | L(more_1x_vec): |
| 133 | /* From VEC + 1 to 2 * VEC. */ |
| 134 | VMOVU (%rsi), %VMM(1) |
| 135 | /* Use compare not equals to directly check for mismatch. */ |
| 136 | VPCMPNEQ (%rdi), %VMM(1), %k1 |
| 137 | KMOV %k1, %VRAX |
| 138 | TEST_ZERO (rax) |
| 139 | jnz L(return_neq0) |
| 140 | |
| 141 | cmpq $(VEC_SIZE * 2), %rdx |
| 142 | jbe L(last_1x_vec) |
| 143 | |
| 144 | /* Check second VEC no matter what. */ |
| 145 | VMOVU VEC_SIZE(%rsi), %VMM(2) |
| 146 | VPCMPNEQ VEC_SIZE(%rdi), %VMM(2), %k1 |
| 147 | KMOV %k1, %VRAX |
| 148 | TEST_ZERO (rax) |
| 149 | jnz L(return_neq0) |
| 150 | |
| 151 | /* Less than 4 * VEC. */ |
| 152 | cmpq $(VEC_SIZE * 4), %rdx |
| 153 | jbe L(last_2x_vec) |
| 154 | |
| 155 | /* Check third and fourth VEC no matter what. */ |
| 156 | VMOVU (VEC_SIZE * 2)(%rsi), %VMM(3) |
| 157 | VEC_CMP (VEC_SIZE * 2)(%rdi), %VMM(3), %k1 |
| 158 | KMOV %k1, %VRAX |
| 159 | TEST_ZERO_VCMP (rax) |
| 160 | jnz L(return_neq0) |
| 161 | |
| 162 | VMOVU (VEC_SIZE * 3)(%rsi), %VMM(4) |
| 163 | VEC_CMP (VEC_SIZE * 3)(%rdi), %VMM(4), %k1 |
| 164 | KMOV %k1, %VRAX |
| 165 | TEST_ZERO_VCMP (rax) |
| 166 | jnz L(return_neq0) |
| 167 | |
| 168 | /* Go to 4x VEC loop. */ |
| 169 | cmpq $(VEC_SIZE * 8), %rdx |
| 170 | ja L(more_8x_vec) |
| 171 | |
| 172 | /* Handle remainder of size = 4 * VEC + 1 to 8 * VEC without any |
| 173 | branches. */ |
| 174 | |
| 175 | VMOVU -(VEC_SIZE * 1)(%rsi, %rdx), %VMM(1) |
| 176 | VMOVU -(VEC_SIZE * 2)(%rsi, %rdx), %VMM(2) |
| 177 | addq %rdx, %rdi |
| 178 | |
| 179 | /* Wait to load from s1 until addressed adjust due to |
| 180 | unlamination. */ |
| 181 | |
| 182 | /* vpxor will be all 0s if s1 and s2 are equal. Otherwise it |
| 183 | will have some 1s. */ |
| 184 | vpxorq -(VEC_SIZE * 1)(%rdi), %VMM(1), %VMM(1) |
| 185 | /* Ternary logic to xor -(VEC_SIZE * 3)(%rdi) with VEC(2) while |
| 186 | oring with VEC(1). Result is stored in VEC(1). */ |
| 187 | vpternlogd $0xde, -(VEC_SIZE * 2)(%rdi), %VMM(1), %VMM(2) |
| 188 | |
| 189 | cmpl $(VEC_SIZE * 6), %edx |
| 190 | jbe L(4x_last_2x_vec) |
| 191 | |
| 192 | VMOVU -(VEC_SIZE * 3)(%rsi, %rdx), %VMM(3) |
| 193 | vpxorq -(VEC_SIZE * 3)(%rdi), %VMM(3), %VMM(3) |
| 194 | /* Or together VEC(1), VEC(2), and VEC(3) into VEC(3). */ |
| 195 | VMOVU -(VEC_SIZE * 4)(%rsi, %rdx), %VMM(4) |
| 196 | vpxorq -(VEC_SIZE * 4)(%rdi), %VMM(4), %VMM(4) |
| 197 | |
| 198 | /* Or together VEC(4), VEC(3), and VEC(2) into VEC(2). */ |
| 199 | vpternlogd $0xfe, %VMM(4), %VMM(3), %VMM(2) |
| 200 | |
| 201 | /* Compare VEC(4) with 0. If any 1s s1 and s2 don't match. */ |
| 202 | L(4x_last_2x_vec): |
| 203 | VPTEST %VMM(2), %VMM(2), %k1 |
| 204 | KMOV %k1, %VRAX |
| 205 | TO_32BIT (VRAX) |
| 206 | ret |
| 207 | |
| 208 | |
| 209 | .p2align 4,, 10 |
| 210 | L(more_8x_vec): |
| 211 | /* Set end of s1 in rdx. */ |
| 212 | leaq -(VEC_SIZE * 4)(%rdi, %rdx), %rdx |
| 213 | /* rsi stores s2 - s1. This allows loop to only update one |
| 214 | pointer. */ |
| 215 | subq %rdi, %rsi |
| 216 | /* Align s1 pointer. */ |
| 217 | andq $-VEC_SIZE, %rdi |
| 218 | /* Adjust because first 4x vec where check already. */ |
| 219 | subq $-(VEC_SIZE * 4), %rdi |
| 220 | .p2align 5,, 12 |
| 221 | .p2align 4,, 8 |
| 222 | L(loop_4x_vec): |
| 223 | VMOVU (%rsi, %rdi), %VMM(1) |
| 224 | vpxorq (%rdi), %VMM(1), %VMM(1) |
| 225 | |
| 226 | VMOVU VEC_SIZE(%rsi, %rdi), %VMM(2) |
| 227 | vpternlogd $0xde, (VEC_SIZE)(%rdi), %VMM(1), %VMM(2) |
| 228 | |
| 229 | VMOVU (VEC_SIZE * 2)(%rsi, %rdi), %VMM(3) |
| 230 | vpxorq (VEC_SIZE * 2)(%rdi), %VMM(3), %VMM(3) |
| 231 | |
| 232 | VMOVU (VEC_SIZE * 3)(%rsi, %rdi), %VMM(4) |
| 233 | vpxorq (VEC_SIZE * 3)(%rdi), %VMM(4), %VMM(4) |
| 234 | |
| 235 | vpternlogd $0xfe, %VMM(2), %VMM(3), %VMM(4) |
| 236 | VPTEST %VMM(4), %VMM(4), %k1 |
| 237 | KMOV %k1, %VRAX |
| 238 | TEST_ZERO (rax) |
| 239 | jnz L(return_neq2) |
| 240 | subq $-(VEC_SIZE * 4), %rdi |
| 241 | cmpq %rdx, %rdi |
| 242 | jb L(loop_4x_vec) |
| 243 | |
| 244 | subq %rdx, %rdi |
| 245 | |
| 246 | VMOVU (VEC_SIZE * 3)(%rsi, %rdx), %VMM(4) |
| 247 | vpxorq (VEC_SIZE * 3)(%rdx), %VMM(4), %VMM(4) |
| 248 | /* rdi has 4 * VEC_SIZE - remaining length. */ |
| 249 | |
| 250 | /* Load regardless of branch. */ |
| 251 | VMOVU (VEC_SIZE * 2)(%rsi, %rdx), %VMM(3) |
| 252 | /* Ternary logic to xor (VEC_SIZE * 2)(%rdx) with VEC(3) while |
| 253 | oring with VEC(4). Result is stored in VEC(4). */ |
| 254 | vpternlogd $0xf6, (VEC_SIZE * 2)(%rdx), %VMM(3), %VMM(4) |
| 255 | |
| 256 | /* Seperate logic as we can only use testb for VEC_SIZE == 64. |
| 257 | */ |
| 258 | # if VEC_SIZE == 64 |
| 259 | testb %dil, %dil |
| 260 | js L(8x_last_2x_vec) |
| 261 | # else |
| 262 | cmpl $(VEC_SIZE * 2), %edi |
| 263 | jge L(8x_last_2x_vec) |
| 264 | # endif |
| 265 | |
| 266 | VMOVU VEC_SIZE(%rsi, %rdx), %VMM(2) |
| 267 | vpxorq VEC_SIZE(%rdx), %VMM(2), %VMM(2) |
| 268 | |
| 269 | VMOVU (%rsi, %rdx), %VMM(1) |
| 270 | vpxorq (%rdx), %VMM(1), %VMM(1) |
| 271 | |
| 272 | vpternlogd $0xfe, %VMM(1), %VMM(2), %VMM(4) |
| 273 | L(8x_last_1x_vec): |
| 274 | L(8x_last_2x_vec): |
| 275 | VPTEST %VMM(4), %VMM(4), %k1 |
| 276 | KMOV %k1, %VRAX |
| 277 | TO_32BIT_P1 (rax) |
| 278 | L(return_neq2): |
| 279 | TO_32BIT_P2 (rax) |
| 280 | ret |
| 281 | |
| 282 | .p2align 4,, 4 |
| 283 | L(last_2x_vec): |
| 284 | VMOVU -(VEC_SIZE * 2)(%rsi, %rdx), %VMM(1) |
| 285 | vpxorq -(VEC_SIZE * 2)(%rdi, %rdx), %VMM(1), %VMM(1) |
| 286 | VMOVU -(VEC_SIZE * 1)(%rsi, %rdx), %VMM(2) |
| 287 | vpternlogd $0xde, -(VEC_SIZE * 1)(%rdi, %rdx), %VMM(1), %VMM(2) |
| 288 | VPTEST %VMM(2), %VMM(2), %k1 |
| 289 | KMOV %k1, %VRAX |
| 290 | TO_32BIT (VRAX) |
| 291 | ret |
| 292 | |
| 293 | /* evex256: 1 Bytes from next cache line. evex512: 15 Bytes from |
| 294 | next cache line. */ |
| 295 | END (MEMCMPEQ) |
| 296 | #endif |
| 297 | |