| 1 | /* memcmp/wmemcmp optimized with 256-bit EVEX instructions. |
| 2 | Copyright (C) 2021-2023 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <isa-level.h> |
| 20 | |
| 21 | #if ISA_SHOULD_BUILD (4) |
| 22 | |
| 23 | |
| 24 | /* memcmp/wmemcmp is implemented as: |
| 25 | 1. Use ymm vector compares when possible. The only case where |
| 26 | vector compares is not possible for when size < CHAR_PER_VEC |
| 27 | and loading from either s1 or s2 would cause a page cross. |
| 28 | 2. For size from 2 to 7 bytes on page cross, load as big endian |
| 29 | with movbe and bswap to avoid branches. |
| 30 | 3. Use xmm vector compare when size >= 4 bytes for memcmp or |
| 31 | size >= 8 bytes for wmemcmp. |
| 32 | 4. Optimistically compare up to first 4 * CHAR_PER_VEC one at a |
| 33 | to check for early mismatches. Only do this if its guranteed the |
| 34 | work is not wasted. |
| 35 | 5. If size is 8 * VEC_SIZE or less, unroll the loop. |
| 36 | 6. Compare 4 * VEC_SIZE at a time with the aligned first memory |
| 37 | area. |
| 38 | 7. Use 2 vector compares when size is 2 * CHAR_PER_VEC or less. |
| 39 | 8. Use 4 vector compares when size is 4 * CHAR_PER_VEC or less. |
| 40 | 9. Use 8 vector compares when size is 8 * CHAR_PER_VEC or less. |
| 41 | |
| 42 | When possible the implementation tries to optimize for frontend in the |
| 43 | following ways: |
| 44 | Throughput: |
| 45 | 1. All code sections that fit are able to run optimally out of the |
| 46 | LSD. |
| 47 | 2. All code sections that fit are able to run optimally out of the |
| 48 | DSB |
| 49 | 3. Basic blocks are contained in minimum number of fetch blocks |
| 50 | necessary. |
| 51 | |
| 52 | Latency: |
| 53 | 1. Logically connected basic blocks are put in the same |
| 54 | cache-line. |
| 55 | 2. Logically connected basic blocks that do not fit in the same |
| 56 | cache-line are put in adjacent lines. This can get beneficial |
| 57 | L2 spatial prefetching and L1 next-line prefetching. */ |
| 58 | |
| 59 | # include <sysdep.h> |
| 60 | |
| 61 | # ifndef MEMCMP |
| 62 | # define MEMCMP __memcmp_evex_movbe |
| 63 | # endif |
| 64 | |
| 65 | # ifndef VEC_SIZE |
| 66 | # include "x86-evex256-vecs.h" |
| 67 | # endif |
| 68 | |
| 69 | # ifdef USE_AS_WMEMCMP |
| 70 | # define VMOVU_MASK vmovdqu32 |
| 71 | # define CHAR_SIZE 4 |
| 72 | # define VPCMP vpcmpd |
| 73 | # define VPCMPEQ vpcmpeqd |
| 74 | # define VPTEST vptestmd |
| 75 | |
| 76 | # define USE_WIDE_CHAR |
| 77 | # else |
| 78 | # define VMOVU_MASK vmovdqu8 |
| 79 | # define CHAR_SIZE 1 |
| 80 | # define VPCMP vpcmpub |
| 81 | # define VPCMPEQ vpcmpeqb |
| 82 | # define VPTEST vptestmb |
| 83 | # endif |
| 84 | |
| 85 | # include "reg-macros.h" |
| 86 | |
| 87 | # define PAGE_SIZE 4096 |
| 88 | # define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE) |
| 89 | |
| 90 | |
| 91 | /* Warning! |
| 92 | wmemcmp has to use SIGNED comparison for elements. |
| 93 | memcmp has to use UNSIGNED comparison for elemnts. |
| 94 | */ |
| 95 | |
| 96 | .section SECTION(.text), "ax" , @progbits |
| 97 | /* Cache align memcmp entry. This allows for much more thorough |
| 98 | frontend optimization. */ |
| 99 | ENTRY_P2ALIGN (MEMCMP, 6) |
| 100 | # ifdef __ILP32__ |
| 101 | /* Clear the upper 32 bits. */ |
| 102 | movl %edx, %edx |
| 103 | # endif |
| 104 | cmp $CHAR_PER_VEC, %RDX_LP |
| 105 | /* Fall through for [0, VEC_SIZE] as its the hottest. */ |
| 106 | ja L(more_1x_vec) |
| 107 | |
| 108 | /* Create mask of bytes that are guranteed to be valid because |
| 109 | of length (edx). Using masked movs allows us to skip checks |
| 110 | for page crosses/zero size. */ |
| 111 | mov $-1, %VRAX |
| 112 | bzhi %VRDX, %VRAX, %VRAX |
| 113 | /* NB: A `jz` might be useful here. Page-faults that are |
| 114 | invalidated by predicate execution (the evex mask) can be |
| 115 | very slow. The expectation is this is not the norm so and |
| 116 | "most" code will not regularly call 'memcmp' with length = 0 |
| 117 | and memory that is not wired up. */ |
| 118 | KMOV %VRAX, %k2 |
| 119 | |
| 120 | |
| 121 | |
| 122 | /* Safe to load full ymm with mask. */ |
| 123 | VMOVU_MASK (%rsi), %VMM(2){%k2}{z} |
| 124 | /* Slightly different method for VEC_SIZE == 64 to save a bit of |
| 125 | code size. This allows us to fit L(return_vec_0) entirely in |
| 126 | the first cache line. */ |
| 127 | # if VEC_SIZE == 64 |
| 128 | VPCMPEQ (%rdi), %VMM(2), %k1{%k2} |
| 129 | KMOV %k1, %VRCX |
| 130 | sub %VRCX, %VRAX |
| 131 | # else |
| 132 | VPCMP $4, (%rdi), %VMM(2), %k1{%k2} |
| 133 | KMOV %k1, %VRAX |
| 134 | test %VRAX, %VRAX |
| 135 | # endif |
| 136 | jnz L(return_vec_0) |
| 137 | ret |
| 138 | |
| 139 | .p2align 4,, 11 |
| 140 | L(return_vec_0): |
| 141 | bsf %VRAX, %VRAX |
| 142 | # ifdef USE_AS_WMEMCMP |
| 143 | movl (%rdi, %rax, CHAR_SIZE), %ecx |
| 144 | xorl %edx, %edx |
| 145 | cmpl (%rsi, %rax, CHAR_SIZE), %ecx |
| 146 | /* NB: no partial register stall here because xorl zero idiom |
| 147 | above. */ |
| 148 | setg %dl |
| 149 | leal -1(%rdx, %rdx), %eax |
| 150 | # else |
| 151 | movzbl (%rsi, %rax), %ecx |
| 152 | # if VEC_SIZE == 64 |
| 153 | movb (%rdi, %rax), %al |
| 154 | # else |
| 155 | movzbl (%rdi, %rax), %eax |
| 156 | # endif |
| 157 | subl %ecx, %eax |
| 158 | # endif |
| 159 | ret |
| 160 | |
| 161 | .p2align 4,, 11 |
| 162 | L(more_1x_vec): |
| 163 | /* From VEC to 2 * VEC. No branch when size == VEC_SIZE. */ |
| 164 | VMOVU (%rsi), %VMM(1) |
| 165 | /* Use compare not equals to directly check for mismatch. */ |
| 166 | VPCMP $4, (%rdi), %VMM(1), %k1 |
| 167 | KMOV %k1, %VRAX |
| 168 | /* NB: eax must be destination register if going to |
| 169 | L(return_vec_[0,2]). For L(return_vec_3) destination |
| 170 | register must be ecx. */ |
| 171 | test %VRAX, %VRAX |
| 172 | jnz L(return_vec_0) |
| 173 | |
| 174 | cmpq $(CHAR_PER_VEC * 2), %rdx |
| 175 | jbe L(last_1x_vec) |
| 176 | |
| 177 | /* Check second VEC no matter what. */ |
| 178 | VMOVU VEC_SIZE(%rsi), %VMM(2) |
| 179 | VPCMP $4, VEC_SIZE(%rdi), %VMM(2), %k1 |
| 180 | KMOV %k1, %VRAX |
| 181 | test %VRAX, %VRAX |
| 182 | jnz L(return_vec_1) |
| 183 | |
| 184 | /* Less than 4 * VEC. */ |
| 185 | cmpq $(CHAR_PER_VEC * 4), %rdx |
| 186 | jbe L(last_2x_vec) |
| 187 | |
| 188 | /* Check third and fourth VEC no matter what. */ |
| 189 | VMOVU (VEC_SIZE * 2)(%rsi), %VMM(3) |
| 190 | VPCMP $4, (VEC_SIZE * 2)(%rdi), %VMM(3), %k1 |
| 191 | KMOV %k1, %VRAX |
| 192 | test %VRAX, %VRAX |
| 193 | jnz L(return_vec_2) |
| 194 | |
| 195 | VMOVU (VEC_SIZE * 3)(%rsi), %VMM(4) |
| 196 | VPCMP $4, (VEC_SIZE * 3)(%rdi), %VMM(4), %k1 |
| 197 | KMOV %k1, %VRCX |
| 198 | test %VRCX, %VRCX |
| 199 | jnz L(return_vec_3) |
| 200 | |
| 201 | /* Go to 4x VEC loop. */ |
| 202 | cmpq $(CHAR_PER_VEC * 8), %rdx |
| 203 | ja L(more_8x_vec) |
| 204 | |
| 205 | /* Handle remainder of size = 4 * VEC + 1 to 8 * VEC without any |
| 206 | branches. */ |
| 207 | |
| 208 | /* Load first two VEC from s2 before adjusting addresses. */ |
| 209 | VMOVU -(VEC_SIZE * 4)(%rsi, %rdx, CHAR_SIZE), %VMM(1) |
| 210 | VMOVU -(VEC_SIZE * 3)(%rsi, %rdx, CHAR_SIZE), %VMM(2) |
| 211 | leaq -(4 * VEC_SIZE)(%rdi, %rdx, CHAR_SIZE), %rdi |
| 212 | leaq -(4 * VEC_SIZE)(%rsi, %rdx, CHAR_SIZE), %rsi |
| 213 | |
| 214 | /* Wait to load from s1 until addressed adjust due to |
| 215 | unlamination of microfusion with complex address mode. */ |
| 216 | |
| 217 | /* vpxor will be all 0s if s1 and s2 are equal. Otherwise it |
| 218 | will have some 1s. */ |
| 219 | vpxorq (%rdi), %VMM(1), %VMM(1) |
| 220 | vpxorq (VEC_SIZE)(%rdi), %VMM(2), %VMM(2) |
| 221 | |
| 222 | VMOVU (VEC_SIZE * 2)(%rsi), %VMM(3) |
| 223 | vpxorq (VEC_SIZE * 2)(%rdi), %VMM(3), %VMM(3) |
| 224 | |
| 225 | VMOVU (VEC_SIZE * 3)(%rsi), %VMM(4) |
| 226 | /* Ternary logic to xor (VEC_SIZE * 3)(%rdi) with VEC(4) while |
| 227 | oring with VEC(1). Result is stored in VEC(4). */ |
| 228 | vpternlogd $0xde, (VEC_SIZE * 3)(%rdi), %VMM(1), %VMM(4) |
| 229 | |
| 230 | /* Or together VEC(2), VEC(3), and VEC(4) into VEC(4). */ |
| 231 | vpternlogd $0xfe, %VMM(2), %VMM(3), %VMM(4) |
| 232 | |
| 233 | /* Test VEC(4) against itself. Store any CHAR mismatches in k1. |
| 234 | */ |
| 235 | VPTEST %VMM(4), %VMM(4), %k1 |
| 236 | /* k1 must go to ecx for L(return_vec_0_1_2_3). */ |
| 237 | KMOV %k1, %VRCX |
| 238 | test %VRCX, %VRCX |
| 239 | jnz L(return_vec_0_1_2_3) |
| 240 | /* NB: eax must be zero to reach here. */ |
| 241 | ret |
| 242 | |
| 243 | |
| 244 | .p2align 4,, 9 |
| 245 | L(8x_end_return_vec_0_1_2_3): |
| 246 | movq %rdx, %rdi |
| 247 | L(8x_return_vec_0_1_2_3): |
| 248 | /* L(loop_4x_vec) leaves result in `k1` for VEC_SIZE == 64. */ |
| 249 | # if VEC_SIZE == 64 |
| 250 | KMOV %k1, %VRCX |
| 251 | # endif |
| 252 | addq %rdi, %rsi |
| 253 | L(return_vec_0_1_2_3): |
| 254 | VPTEST %VMM(1), %VMM(1), %k0 |
| 255 | KMOV %k0, %VRAX |
| 256 | test %VRAX, %VRAX |
| 257 | jnz L(return_vec_0) |
| 258 | |
| 259 | VPTEST %VMM(2), %VMM(2), %k0 |
| 260 | KMOV %k0, %VRAX |
| 261 | test %VRAX, %VRAX |
| 262 | jnz L(return_vec_1) |
| 263 | |
| 264 | VPTEST %VMM(3), %VMM(3), %k0 |
| 265 | KMOV %k0, %VRAX |
| 266 | test %VRAX, %VRAX |
| 267 | jnz L(return_vec_2) |
| 268 | .p2align 4,, 2 |
| 269 | L(return_vec_3): |
| 270 | /* bsf saves 1 byte from tzcnt. This keep L(return_vec_3) in one |
| 271 | fetch block and the entire L(*return_vec_0_1_2_3) in 1 cache |
| 272 | line. */ |
| 273 | bsf %VRCX, %VRCX |
| 274 | # ifdef USE_AS_WMEMCMP |
| 275 | movl (VEC_SIZE * 3)(%rdi, %rcx, CHAR_SIZE), %eax |
| 276 | xorl %edx, %edx |
| 277 | cmpl (VEC_SIZE * 3)(%rsi, %rcx, CHAR_SIZE), %eax |
| 278 | setg %dl |
| 279 | leal -1(%rdx, %rdx), %eax |
| 280 | # else |
| 281 | movzbl (VEC_SIZE * 3)(%rdi, %rcx), %eax |
| 282 | movzbl (VEC_SIZE * 3)(%rsi, %rcx), %ecx |
| 283 | subl %ecx, %eax |
| 284 | # endif |
| 285 | ret |
| 286 | |
| 287 | |
| 288 | .p2align 4,, 8 |
| 289 | L(return_vec_1): |
| 290 | /* bsf saves 1 byte over tzcnt and keeps L(return_vec_1) in one |
| 291 | fetch block. */ |
| 292 | bsf %VRAX, %VRAX |
| 293 | # ifdef USE_AS_WMEMCMP |
| 294 | movl VEC_SIZE(%rdi, %rax, CHAR_SIZE), %ecx |
| 295 | xorl %edx, %edx |
| 296 | cmpl VEC_SIZE(%rsi, %rax, CHAR_SIZE), %ecx |
| 297 | setg %dl |
| 298 | leal -1(%rdx, %rdx), %eax |
| 299 | # else |
| 300 | movzbl VEC_SIZE(%rsi, %rax), %ecx |
| 301 | movzbl VEC_SIZE(%rdi, %rax), %eax |
| 302 | subl %ecx, %eax |
| 303 | # endif |
| 304 | ret |
| 305 | |
| 306 | .p2align 4,, 7 |
| 307 | L(return_vec_2): |
| 308 | /* bsf saves 1 byte over tzcnt and keeps L(return_vec_2) in one |
| 309 | fetch block. */ |
| 310 | bsf %VRAX, %VRAX |
| 311 | # ifdef USE_AS_WMEMCMP |
| 312 | movl (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %ecx |
| 313 | xorl %edx, %edx |
| 314 | cmpl (VEC_SIZE * 2)(%rsi, %rax, CHAR_SIZE), %ecx |
| 315 | setg %dl |
| 316 | leal -1(%rdx, %rdx), %eax |
| 317 | # else |
| 318 | movzbl (VEC_SIZE * 2)(%rsi, %rax), %ecx |
| 319 | movzbl (VEC_SIZE * 2)(%rdi, %rax), %eax |
| 320 | subl %ecx, %eax |
| 321 | # endif |
| 322 | ret |
| 323 | |
| 324 | .p2align 4,, 8 |
| 325 | L(more_8x_vec): |
| 326 | /* Set end of s1 in rdx. */ |
| 327 | leaq -(VEC_SIZE * 4)(%rdi, %rdx, CHAR_SIZE), %rdx |
| 328 | /* rsi stores s2 - s1. This allows loop to only update one |
| 329 | pointer. */ |
| 330 | subq %rdi, %rsi |
| 331 | /* Align s1 pointer. */ |
| 332 | andq $-VEC_SIZE, %rdi |
| 333 | /* Adjust because first 4x vec where check already. */ |
| 334 | subq $-(VEC_SIZE * 4), %rdi |
| 335 | |
| 336 | .p2align 4 |
| 337 | L(loop_4x_vec): |
| 338 | VMOVU (%rsi, %rdi), %VMM(1) |
| 339 | vpxorq (%rdi), %VMM(1), %VMM(1) |
| 340 | VMOVU VEC_SIZE(%rsi, %rdi), %VMM(2) |
| 341 | vpxorq VEC_SIZE(%rdi), %VMM(2), %VMM(2) |
| 342 | VMOVU (VEC_SIZE * 2)(%rsi, %rdi), %VMM(3) |
| 343 | vpxorq (VEC_SIZE * 2)(%rdi), %VMM(3), %VMM(3) |
| 344 | VMOVU (VEC_SIZE * 3)(%rsi, %rdi), %VMM(4) |
| 345 | vpternlogd $0xde, (VEC_SIZE * 3)(%rdi), %VMM(1), %VMM(4) |
| 346 | vpternlogd $0xfe, %VMM(2), %VMM(3), %VMM(4) |
| 347 | VPTEST %VMM(4), %VMM(4), %k1 |
| 348 | /* If VEC_SIZE == 64 just branch with KTEST. We have free port0 |
| 349 | space and it allows the loop to fit in 2x cache lines |
| 350 | instead of 3. */ |
| 351 | # if VEC_SIZE == 64 |
| 352 | KTEST %k1, %k1 |
| 353 | # else |
| 354 | KMOV %k1, %VRCX |
| 355 | test %VRCX, %VRCX |
| 356 | # endif |
| 357 | jnz L(8x_return_vec_0_1_2_3) |
| 358 | subq $-(VEC_SIZE * 4), %rdi |
| 359 | cmpq %rdx, %rdi |
| 360 | jb L(loop_4x_vec) |
| 361 | subq %rdx, %rdi |
| 362 | /* rdi has 4 * VEC_SIZE - remaining length. */ |
| 363 | cmpl $(VEC_SIZE * 3), %edi |
| 364 | jge L(8x_last_1x_vec) |
| 365 | /* Load regardless of branch. */ |
| 366 | VMOVU (VEC_SIZE * 2)(%rsi, %rdx), %VMM(3) |
| 367 | |
| 368 | /* Seperate logic as we can only use testb for VEC_SIZE == 64. |
| 369 | */ |
| 370 | # if VEC_SIZE == 64 |
| 371 | testb %dil, %dil |
| 372 | js L(8x_last_2x_vec) |
| 373 | # else |
| 374 | cmpl $(VEC_SIZE * 2), %edi |
| 375 | jge L(8x_last_2x_vec) |
| 376 | # endif |
| 377 | |
| 378 | vpxorq (VEC_SIZE * 2)(%rdx), %VMM(3), %VMM(3) |
| 379 | |
| 380 | VMOVU (%rsi, %rdx), %VMM(1) |
| 381 | vpxorq (%rdx), %VMM(1), %VMM(1) |
| 382 | |
| 383 | VMOVU VEC_SIZE(%rsi, %rdx), %VMM(2) |
| 384 | vpxorq VEC_SIZE(%rdx), %VMM(2), %VMM(2) |
| 385 | VMOVU (VEC_SIZE * 3)(%rsi, %rdx), %VMM(4) |
| 386 | vpternlogd $0xde, (VEC_SIZE * 3)(%rdx), %VMM(1), %VMM(4) |
| 387 | vpternlogd $0xfe, %VMM(2), %VMM(3), %VMM(4) |
| 388 | VPTEST %VMM(4), %VMM(4), %k1 |
| 389 | /* L(8x_end_return_vec_0_1_2_3) expects bitmask to still be in |
| 390 | `k1` if VEC_SIZE == 64. */ |
| 391 | # if VEC_SIZE == 64 |
| 392 | KTEST %k1, %k1 |
| 393 | # else |
| 394 | KMOV %k1, %VRCX |
| 395 | test %VRCX, %VRCX |
| 396 | # endif |
| 397 | jnz L(8x_end_return_vec_0_1_2_3) |
| 398 | /* NB: eax must be zero to reach here. */ |
| 399 | ret |
| 400 | |
| 401 | /* Only entry is from L(more_8x_vec). */ |
| 402 | .p2align 4,, 6 |
| 403 | L(8x_last_2x_vec): |
| 404 | VPCMP $4, (VEC_SIZE * 2)(%rdx), %VMM(3), %k1 |
| 405 | KMOV %k1, %VRAX |
| 406 | test %VRAX, %VRAX |
| 407 | jnz L(8x_return_vec_2) |
| 408 | .p2align 4,, 5 |
| 409 | L(8x_last_1x_vec): |
| 410 | VMOVU (VEC_SIZE * 3)(%rsi, %rdx), %VMM(1) |
| 411 | VPCMP $4, (VEC_SIZE * 3)(%rdx), %VMM(1), %k1 |
| 412 | KMOV %k1, %VRAX |
| 413 | test %VRAX, %VRAX |
| 414 | jnz L(8x_return_vec_3) |
| 415 | ret |
| 416 | |
| 417 | /* Not ideally aligned (at offset +9 bytes in fetch block) but |
| 418 | not aligning keeps it in the same cache line as |
| 419 | L(8x_last_1x/2x_vec) so likely worth it. As well, saves code |
| 420 | size. */ |
| 421 | .p2align 4,, 4 |
| 422 | L(8x_return_vec_2): |
| 423 | subq $VEC_SIZE, %rdx |
| 424 | L(8x_return_vec_3): |
| 425 | bsf %VRAX, %VRAX |
| 426 | # ifdef USE_AS_WMEMCMP |
| 427 | leaq (%rdx, %rax, CHAR_SIZE), %rax |
| 428 | movl (VEC_SIZE * 3)(%rax), %ecx |
| 429 | xorl %edx, %edx |
| 430 | cmpl (VEC_SIZE * 3)(%rsi, %rax), %ecx |
| 431 | setg %dl |
| 432 | leal -1(%rdx, %rdx), %eax |
| 433 | # else |
| 434 | addq %rdx, %rax |
| 435 | movzbl (VEC_SIZE * 3)(%rsi, %rax), %ecx |
| 436 | movzbl (VEC_SIZE * 3)(%rax), %eax |
| 437 | subl %ecx, %eax |
| 438 | # endif |
| 439 | ret |
| 440 | |
| 441 | .p2align 4,, 8 |
| 442 | L(last_2x_vec): |
| 443 | /* Check second to last VEC. */ |
| 444 | VMOVU -(VEC_SIZE * 2)(%rsi, %rdx, CHAR_SIZE), %VMM(1) |
| 445 | VPCMP $4, -(VEC_SIZE * 2)(%rdi, %rdx, CHAR_SIZE), %VMM(1), %k1 |
| 446 | KMOV %k1, %VRAX |
| 447 | test %VRAX, %VRAX |
| 448 | jnz L(return_vec_1_end) |
| 449 | |
| 450 | /* Check last VEC. */ |
| 451 | .p2align 4,, 8 |
| 452 | L(last_1x_vec): |
| 453 | VMOVU -(VEC_SIZE * 1)(%rsi, %rdx, CHAR_SIZE), %VMM(1) |
| 454 | VPCMP $4, -(VEC_SIZE * 1)(%rdi, %rdx, CHAR_SIZE), %VMM(1), %k1 |
| 455 | KMOV %k1, %VRAX |
| 456 | test %VRAX, %VRAX |
| 457 | jnz L(return_vec_0_end) |
| 458 | ret |
| 459 | |
| 460 | |
| 461 | /* Don't fully align. Takes 2-fetch blocks either way and |
| 462 | aligning will cause code to spill into another cacheline. |
| 463 | */ |
| 464 | .p2align 4,, 3 |
| 465 | L(return_vec_1_end): |
| 466 | /* Use bsf to save code size. This is necessary to have |
| 467 | L(one_or_less) fit in aligning bytes between. */ |
| 468 | bsf %VRAX, %VRAX |
| 469 | addl %edx, %eax |
| 470 | # ifdef USE_AS_WMEMCMP |
| 471 | movl -(VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %ecx |
| 472 | xorl %edx, %edx |
| 473 | cmpl -(VEC_SIZE * 2)(%rsi, %rax, CHAR_SIZE), %ecx |
| 474 | setg %dl |
| 475 | leal -1(%rdx, %rdx), %eax |
| 476 | # else |
| 477 | movzbl -(VEC_SIZE * 2)(%rsi, %rax), %ecx |
| 478 | movzbl -(VEC_SIZE * 2)(%rdi, %rax), %eax |
| 479 | subl %ecx, %eax |
| 480 | # endif |
| 481 | ret |
| 482 | |
| 483 | .p2align 4,, 2 |
| 484 | /* Don't align. Takes 2-fetch blocks either way and aligning |
| 485 | will cause code to spill into another cacheline. */ |
| 486 | L(return_vec_0_end): |
| 487 | bsf %VRAX, %VRAX |
| 488 | addl %edx, %eax |
| 489 | # ifdef USE_AS_WMEMCMP |
| 490 | movl -VEC_SIZE(%rdi, %rax, CHAR_SIZE), %ecx |
| 491 | xorl %edx, %edx |
| 492 | cmpl -VEC_SIZE(%rsi, %rax, CHAR_SIZE), %ecx |
| 493 | setg %dl |
| 494 | leal -1(%rdx, %rdx), %eax |
| 495 | # else |
| 496 | movzbl -VEC_SIZE(%rsi, %rax), %ecx |
| 497 | movzbl -VEC_SIZE(%rdi, %rax), %eax |
| 498 | subl %ecx, %eax |
| 499 | # endif |
| 500 | ret |
| 501 | /* evex256: 2-byte until next cache line. evex512: 46-bytes |
| 502 | until next cache line. */ |
| 503 | END (MEMCMP) |
| 504 | #endif |
| 505 | |