| 1 | /* memchr/wmemchr optimized with 256-bit EVEX instructions. |
| 2 | Copyright (C) 2021-2023 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <isa-level.h> |
| 20 | #include <sysdep.h> |
| 21 | |
| 22 | #if ISA_SHOULD_BUILD (4) |
| 23 | |
| 24 | # ifndef VEC_SIZE |
| 25 | # include "x86-evex256-vecs.h" |
| 26 | # endif |
| 27 | |
| 28 | # ifndef MEMCHR |
| 29 | # define MEMCHR __memchr_evex |
| 30 | # endif |
| 31 | |
| 32 | # ifdef USE_AS_WMEMCHR |
| 33 | # define PC_SHIFT_GPR rcx |
| 34 | # define VPTESTN vptestnmd |
| 35 | # define VPBROADCAST vpbroadcastd |
| 36 | # define VPMINU vpminud |
| 37 | # define VPCMP vpcmpd |
| 38 | # define VPCMPEQ vpcmpeqd |
| 39 | # define CHAR_SIZE 4 |
| 40 | |
| 41 | # define USE_WIDE_CHAR |
| 42 | # else |
| 43 | # define PC_SHIFT_GPR rdi |
| 44 | # define VPTESTN vptestnmb |
| 45 | # define VPBROADCAST vpbroadcastb |
| 46 | # define VPMINU vpminub |
| 47 | # define VPCMP vpcmpb |
| 48 | # define VPCMPEQ vpcmpeqb |
| 49 | # define CHAR_SIZE 1 |
| 50 | # endif |
| 51 | |
| 52 | # include "reg-macros.h" |
| 53 | |
| 54 | |
| 55 | /* If not in an RTM and VEC_SIZE != 64 (the VEC_SIZE = 64 |
| 56 | doesn't have VEX encoding), use VEX encoding in loop so we |
| 57 | can use vpcmpeqb + vptern which is more efficient than the |
| 58 | EVEX alternative. */ |
| 59 | # if defined USE_IN_RTM || VEC_SIZE == 64 |
| 60 | # undef COND_VZEROUPPER |
| 61 | # undef VZEROUPPER_RETURN |
| 62 | # undef VZEROUPPER |
| 63 | |
| 64 | # define COND_VZEROUPPER |
| 65 | # define VZEROUPPER_RETURN ret |
| 66 | # define VZEROUPPER |
| 67 | |
| 68 | # define USE_TERN_IN_LOOP 0 |
| 69 | # else |
| 70 | # define USE_TERN_IN_LOOP 1 |
| 71 | # undef VZEROUPPER |
| 72 | # define VZEROUPPER vzeroupper |
| 73 | # endif |
| 74 | |
| 75 | # if USE_TERN_IN_LOOP |
| 76 | /* Resulting bitmask for vpmovmskb has 4-bits set for each wchar |
| 77 | so we don't want to multiply resulting index. */ |
| 78 | # define TERN_CHAR_MULT 1 |
| 79 | |
| 80 | # ifdef USE_AS_WMEMCHR |
| 81 | # define TEST_END() inc %VRCX |
| 82 | # else |
| 83 | # define TEST_END() add %rdx, %rcx |
| 84 | # endif |
| 85 | # else |
| 86 | # define TERN_CHAR_MULT CHAR_SIZE |
| 87 | # define TEST_END() KORTEST %k2, %k3 |
| 88 | # endif |
| 89 | |
| 90 | # if defined USE_AS_WMEMCHR || !USE_TERN_IN_LOOP |
| 91 | # ifndef USE_AS_WMEMCHR |
| 92 | # define GPR_X0_IS_RET 1 |
| 93 | # else |
| 94 | # define GPR_X0_IS_RET 0 |
| 95 | # endif |
| 96 | # define GPR_X0 rax |
| 97 | # else |
| 98 | # define GPR_X0_IS_RET 0 |
| 99 | # define GPR_X0 rdx |
| 100 | # endif |
| 101 | |
| 102 | # define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE) |
| 103 | |
| 104 | # if CHAR_PER_VEC == 64 |
| 105 | # define LAST_VEC_OFFSET (VEC_SIZE * 3) |
| 106 | # else |
| 107 | # define LAST_VEC_OFFSET (VEC_SIZE * 2) |
| 108 | # endif |
| 109 | # if CHAR_PER_VEC >= 32 |
| 110 | # define MASK_GPR(...) VGPR(__VA_ARGS__) |
| 111 | # elif CHAR_PER_VEC == 16 |
| 112 | # define MASK_GPR(reg) VGPR_SZ(reg, 16) |
| 113 | # else |
| 114 | # define MASK_GPR(reg) VGPR_SZ(reg, 8) |
| 115 | # endif |
| 116 | |
| 117 | # define VMATCH VMM(0) |
| 118 | # define VMATCH_LO VMM_lo(0) |
| 119 | |
| 120 | # define PAGE_SIZE 4096 |
| 121 | |
| 122 | |
| 123 | .section SECTION(.text), "ax" , @progbits |
| 124 | ENTRY_P2ALIGN (MEMCHR, 6) |
| 125 | /* Check for zero length. */ |
| 126 | test %RDX_LP, %RDX_LP |
| 127 | jz L(zero_0) |
| 128 | |
| 129 | # ifdef __ILP32__ |
| 130 | /* Clear the upper 32 bits. */ |
| 131 | movl %edx, %edx |
| 132 | # endif |
| 133 | VPBROADCAST %esi, %VMATCH |
| 134 | /* Check if we may cross page boundary with one vector load. */ |
| 135 | movl %edi, %eax |
| 136 | andl $(PAGE_SIZE - 1), %eax |
| 137 | cmpl $(PAGE_SIZE - VEC_SIZE), %eax |
| 138 | ja L(page_cross) |
| 139 | |
| 140 | VPCMPEQ (%rdi), %VMATCH, %k0 |
| 141 | KMOV %k0, %VRAX |
| 142 | # ifndef USE_AS_WMEMCHR |
| 143 | /* If rcx is zero then tzcnt -> CHAR_PER_VEC. NB: there is a |
| 144 | already a dependency between rcx and rsi so no worries about |
| 145 | false-dep here. */ |
| 146 | tzcnt %VRAX, %VRSI |
| 147 | /* If rdx <= rsi then either 1) rcx was non-zero (there was a |
| 148 | match) but it was out of bounds or 2) rcx was zero and rdx |
| 149 | was <= VEC_SIZE so we are done scanning. */ |
| 150 | cmpq %rsi, %rdx |
| 151 | /* NB: Use branch to return zero/non-zero. Common usage will |
| 152 | branch on result of function (if return is null/non-null). |
| 153 | This branch can be used to predict the ensuing one so there |
| 154 | is no reason to extend the data-dependency with cmovcc. */ |
| 155 | jbe L(zero_0) |
| 156 | |
| 157 | /* If rcx is zero then len must be > RDX, otherwise since we |
| 158 | already tested len vs lzcnt(rcx) (in rsi) we are good to |
| 159 | return this match. */ |
| 160 | test %VRAX, %VRAX |
| 161 | jz L(more_1x_vec) |
| 162 | leaq (%rdi, %rsi), %rax |
| 163 | # else |
| 164 | |
| 165 | /* We can't use the `tzcnt` trick for wmemchr because CHAR_SIZE |
| 166 | > 1 so if rcx is tzcnt != CHAR_PER_VEC. */ |
| 167 | cmpq $CHAR_PER_VEC, %rdx |
| 168 | ja L(more_1x_vec) |
| 169 | tzcnt %VRAX, %VRAX |
| 170 | cmpl %eax, %edx |
| 171 | jbe L(zero_0) |
| 172 | L(first_vec_x0_ret): |
| 173 | leaq (%rdi, %rax, CHAR_SIZE), %rax |
| 174 | # endif |
| 175 | ret |
| 176 | |
| 177 | /* Only fits in first cache line for VEC_SIZE == 32. */ |
| 178 | # if VEC_SIZE == 32 |
| 179 | .p2align 4,, 2 |
| 180 | L(zero_0): |
| 181 | xorl %eax, %eax |
| 182 | ret |
| 183 | # endif |
| 184 | |
| 185 | .p2align 4,, 9 |
| 186 | L(more_1x_vec): |
| 187 | # ifdef USE_AS_WMEMCHR |
| 188 | /* If wmemchr still need to test if there was a match in first |
| 189 | VEC. Use bsf to test here so we can reuse |
| 190 | L(first_vec_x0_ret). */ |
| 191 | bsf %VRAX, %VRAX |
| 192 | jnz L(first_vec_x0_ret) |
| 193 | # endif |
| 194 | |
| 195 | L(page_cross_continue): |
| 196 | # ifdef USE_AS_WMEMCHR |
| 197 | /* We can't use end of the buffer to re-calculate length for |
| 198 | wmemchr as len * CHAR_SIZE may overflow. */ |
| 199 | leaq -(VEC_SIZE + CHAR_SIZE)(%rdi), %rax |
| 200 | andq $(VEC_SIZE * -1), %rdi |
| 201 | subq %rdi, %rax |
| 202 | sarq $2, %rax |
| 203 | addq %rdx, %rax |
| 204 | # else |
| 205 | leaq -(VEC_SIZE + 1)(%rdx, %rdi), %rax |
| 206 | andq $(VEC_SIZE * -1), %rdi |
| 207 | subq %rdi, %rax |
| 208 | # endif |
| 209 | |
| 210 | /* rax contains remaining length - 1. -1 so we can get imm8 |
| 211 | encoding in a few additional places saving code size. */ |
| 212 | |
| 213 | /* Needed regardless of remaining length. */ |
| 214 | VPCMPEQ VEC_SIZE(%rdi), %VMATCH, %k0 |
| 215 | KMOV %k0, %VRDX |
| 216 | |
| 217 | /* We cannot fold the above `sub %rdi, %rax` with the `cmp |
| 218 | $(CHAR_PER_VEC * 2), %rax` because its possible for a very |
| 219 | large length to overflow and cause the subtract to carry |
| 220 | despite length being above CHAR_PER_VEC * 2. */ |
| 221 | cmpq $(CHAR_PER_VEC * 2 - 1), %rax |
| 222 | ja L(more_2x_vec) |
| 223 | L(last_2x_vec): |
| 224 | |
| 225 | test %VRDX, %VRDX |
| 226 | jnz L(first_vec_x1_check) |
| 227 | |
| 228 | /* Check the end of data. NB: use 8-bit operations to save code |
| 229 | size. We no longer need the full-width of eax and will |
| 230 | perform a write-only operation over eax so there will be no |
| 231 | partial-register stalls. */ |
| 232 | subb $(CHAR_PER_VEC * 1 - 1), %al |
| 233 | jle L(zero_0) |
| 234 | |
| 235 | VPCMPEQ (VEC_SIZE * 2)(%rdi), %VMATCH, %k0 |
| 236 | KMOV %k0, %VRCX |
| 237 | # ifdef USE_AS_WMEMCHR |
| 238 | /* For wmemchr against we can't take advantage of tzcnt(0) == |
| 239 | VEC_SIZE as CHAR_PER_VEC != VEC_SIZE. */ |
| 240 | test %VRCX, %VRCX |
| 241 | jz L(zero_0) |
| 242 | # endif |
| 243 | tzcnt %VRCX, %VRCX |
| 244 | cmp %cl, %al |
| 245 | |
| 246 | /* Same CFG for VEC_SIZE == 64 and VEC_SIZE == 32. We give |
| 247 | fallthrough to L(zero_0) for VEC_SIZE == 64 here as there is |
| 248 | not enough space before the next cache line to fit the `lea` |
| 249 | for return. */ |
| 250 | # if VEC_SIZE == 64 |
| 251 | ja L(first_vec_x2_ret) |
| 252 | L(zero_0): |
| 253 | xorl %eax, %eax |
| 254 | ret |
| 255 | # else |
| 256 | jbe L(zero_0) |
| 257 | leaq (VEC_SIZE * 2)(%rdi, %rcx, CHAR_SIZE), %rax |
| 258 | ret |
| 259 | # endif |
| 260 | |
| 261 | .p2align 4,, 5 |
| 262 | L(first_vec_x1_check): |
| 263 | bsf %VRDX, %VRDX |
| 264 | cmpb %dl, %al |
| 265 | jb L(zero_4) |
| 266 | leaq (VEC_SIZE * 1)(%rdi, %rdx, CHAR_SIZE), %rax |
| 267 | ret |
| 268 | |
| 269 | /* Fits at the end of the cache line here for VEC_SIZE == 32. |
| 270 | */ |
| 271 | # if VEC_SIZE == 32 |
| 272 | L(zero_4): |
| 273 | xorl %eax, %eax |
| 274 | ret |
| 275 | # endif |
| 276 | |
| 277 | |
| 278 | .p2align 4,, 4 |
| 279 | L(first_vec_x2): |
| 280 | bsf %VRCX, %VRCX |
| 281 | L(first_vec_x2_ret): |
| 282 | leaq (VEC_SIZE * 2)(%rdi, %rcx, CHAR_SIZE), %rax |
| 283 | ret |
| 284 | |
| 285 | /* Fits at the end of the cache line here for VEC_SIZE == 64. |
| 286 | */ |
| 287 | # if VEC_SIZE == 64 |
| 288 | L(zero_4): |
| 289 | xorl %eax, %eax |
| 290 | ret |
| 291 | # endif |
| 292 | |
| 293 | .p2align 4,, 4 |
| 294 | L(first_vec_x1): |
| 295 | bsf %VRDX, %VRDX |
| 296 | leaq (VEC_SIZE * 1)(%rdi, %rdx, CHAR_SIZE), %rax |
| 297 | ret |
| 298 | |
| 299 | |
| 300 | .p2align 4,, 5 |
| 301 | L(more_2x_vec): |
| 302 | /* Length > VEC_SIZE * 2 so check first 2x VEC before rechecking |
| 303 | length. */ |
| 304 | |
| 305 | |
| 306 | /* Already computed matches for first VEC in rdx. */ |
| 307 | test %VRDX, %VRDX |
| 308 | jnz L(first_vec_x1) |
| 309 | |
| 310 | |
| 311 | VPCMPEQ (VEC_SIZE * 2)(%rdi), %VMATCH, %k0 |
| 312 | KMOV %k0, %VRCX |
| 313 | test %VRCX, %VRCX |
| 314 | jnz L(first_vec_x2) |
| 315 | |
| 316 | /* Needed regardless of next length check. */ |
| 317 | VPCMPEQ (VEC_SIZE * 3)(%rdi), %VMATCH, %k0 |
| 318 | KMOV %k0, %VRCX |
| 319 | |
| 320 | /* Check if we are near the end. */ |
| 321 | cmpq $(CHAR_PER_VEC * 4 - 1), %rax |
| 322 | ja L(more_4x_vec) |
| 323 | |
| 324 | test %VRCX, %VRCX |
| 325 | jnz L(first_vec_x3_check) |
| 326 | |
| 327 | /* Use 8-bit instructions to save code size. We won't use full- |
| 328 | width eax again and will perform a write-only operation to |
| 329 | eax so no worries about partial-register stalls. */ |
| 330 | subb $(CHAR_PER_VEC * 3), %al |
| 331 | jb L(zero_2) |
| 332 | L(last_vec_check): |
| 333 | VPCMPEQ (VEC_SIZE * 4)(%rdi), %VMATCH, %k0 |
| 334 | KMOV %k0, %VRCX |
| 335 | # ifdef USE_AS_WMEMCHR |
| 336 | /* For wmemchr against we can't take advantage of tzcnt(0) == |
| 337 | VEC_SIZE as CHAR_PER_VEC != VEC_SIZE. */ |
| 338 | test %VRCX, %VRCX |
| 339 | jz L(zero_2) |
| 340 | # endif |
| 341 | tzcnt %VRCX, %VRCX |
| 342 | cmp %cl, %al |
| 343 | jae L(first_vec_x4_ret) |
| 344 | L(zero_2): |
| 345 | xorl %eax, %eax |
| 346 | ret |
| 347 | |
| 348 | /* Fits at the end of the cache line here for VEC_SIZE == 64. |
| 349 | For VEC_SIZE == 32 we put the return label at the end of |
| 350 | L(first_vec_x4). */ |
| 351 | # if VEC_SIZE == 64 |
| 352 | L(first_vec_x4_ret): |
| 353 | leaq (VEC_SIZE * 4)(%rdi, %rcx, CHAR_SIZE), %rax |
| 354 | ret |
| 355 | # endif |
| 356 | |
| 357 | .p2align 4,, 6 |
| 358 | L(first_vec_x4): |
| 359 | bsf %VRCX, %VRCX |
| 360 | # if VEC_SIZE == 32 |
| 361 | /* Place L(first_vec_x4_ret) here as we can't fit it in the same |
| 362 | cache line as where it is called from so we might as well |
| 363 | save code size by reusing return of L(first_vec_x4). */ |
| 364 | L(first_vec_x4_ret): |
| 365 | # endif |
| 366 | leaq (VEC_SIZE * 4)(%rdi, %rcx, CHAR_SIZE), %rax |
| 367 | ret |
| 368 | |
| 369 | .p2align 4,, 6 |
| 370 | L(first_vec_x3_check): |
| 371 | /* Need to adjust remaining length before checking. */ |
| 372 | addb $-(CHAR_PER_VEC * 2), %al |
| 373 | bsf %VRCX, %VRCX |
| 374 | cmpb %cl, %al |
| 375 | jb L(zero_2) |
| 376 | leaq (VEC_SIZE * 3)(%rdi, %rcx, CHAR_SIZE), %rax |
| 377 | ret |
| 378 | |
| 379 | .p2align 4,, 6 |
| 380 | L(first_vec_x3): |
| 381 | bsf %VRCX, %VRCX |
| 382 | leaq (VEC_SIZE * 3)(%rdi, %rcx, CHAR_SIZE), %rax |
| 383 | ret |
| 384 | |
| 385 | .p2align 4,, 3 |
| 386 | # if !USE_TERN_IN_LOOP |
| 387 | .p2align 4,, 10 |
| 388 | # endif |
| 389 | L(more_4x_vec): |
| 390 | test %VRCX, %VRCX |
| 391 | jnz L(first_vec_x3) |
| 392 | |
| 393 | VPCMPEQ (VEC_SIZE * 4)(%rdi), %VMATCH, %k0 |
| 394 | KMOV %k0, %VRCX |
| 395 | test %VRCX, %VRCX |
| 396 | jnz L(first_vec_x4) |
| 397 | |
| 398 | subq $-(VEC_SIZE * 5), %rdi |
| 399 | subq $(CHAR_PER_VEC * 8), %rax |
| 400 | jb L(last_4x_vec) |
| 401 | |
| 402 | # ifdef USE_AS_WMEMCHR |
| 403 | movl %edi, %ecx |
| 404 | # else |
| 405 | addq %rdi, %rax |
| 406 | # endif |
| 407 | |
| 408 | |
| 409 | # if VEC_SIZE == 64 |
| 410 | /* use xorb to do `andq $-(VEC_SIZE * 4), %rdi`. No evex |
| 411 | processor has partial register stalls (all have merging |
| 412 | uop). If that changes this can be removed. */ |
| 413 | xorb %dil, %dil |
| 414 | # else |
| 415 | andq $-(VEC_SIZE * 4), %rdi |
| 416 | # endif |
| 417 | |
| 418 | # ifdef USE_AS_WMEMCHR |
| 419 | subl %edi, %ecx |
| 420 | sarl $2, %ecx |
| 421 | addq %rcx, %rax |
| 422 | # else |
| 423 | subq %rdi, %rax |
| 424 | # endif |
| 425 | |
| 426 | |
| 427 | |
| 428 | # if USE_TERN_IN_LOOP |
| 429 | /* copy VMATCH to low ymm so we can use vpcmpeq which is not |
| 430 | encodable with EVEX registers. NB: this is VEC_SIZE == 32 |
| 431 | only as there is no way to encode vpcmpeq with zmm0-15. */ |
| 432 | vmovdqa64 %VMATCH, %VMATCH_LO |
| 433 | # endif |
| 434 | |
| 435 | .p2align 4,, 11 |
| 436 | L(loop_4x_vec): |
| 437 | /* Two versions of the loop. One that does not require |
| 438 | vzeroupper by not using ymmm0-15 and another does that |
| 439 | require vzeroupper because it uses ymmm0-15. The reason why |
| 440 | ymm0-15 is used at all is because there is no EVEX encoding |
| 441 | vpcmpeq and with vpcmpeq this loop can be performed more |
| 442 | efficiently. The non-vzeroupper version is safe for RTM |
| 443 | while the vzeroupper version should be prefered if RTM are |
| 444 | not supported. Which loop version we use is determined by |
| 445 | USE_TERN_IN_LOOP. */ |
| 446 | |
| 447 | # if USE_TERN_IN_LOOP |
| 448 | /* Since vptern can only take 3x vectors fastest to do 1 vec |
| 449 | seperately with EVEX vpcmp. */ |
| 450 | # ifdef USE_AS_WMEMCHR |
| 451 | /* vptern can only accept masks for epi32/epi64 so can only save |
| 452 | instruction using not equals mask on vptern with wmemchr. |
| 453 | */ |
| 454 | VPCMP $4, (VEC_SIZE * 0)(%rdi), %VMATCH, %k1 |
| 455 | # else |
| 456 | VPCMPEQ (VEC_SIZE * 0)(%rdi), %VMATCH, %k1 |
| 457 | # endif |
| 458 | /* Compare 3x with vpcmpeq and or them all together with vptern. |
| 459 | */ |
| 460 | VPCMPEQ (VEC_SIZE * 1)(%rdi), %VMATCH_LO, %VMM_lo(2) |
| 461 | VPCMPEQ (VEC_SIZE * 2)(%rdi), %VMATCH_LO, %VMM_lo(3) |
| 462 | VPCMPEQ (VEC_SIZE * 3)(%rdi), %VMATCH_LO, %VMM_lo(4) |
| 463 | # ifdef USE_AS_WMEMCHR |
| 464 | /* This takes the not of or between VEC_lo(2), VEC_lo(3), |
| 465 | VEC_lo(4) as well as combines result from VEC(0) with zero |
| 466 | mask. */ |
| 467 | vpternlogd $1, %VMM_lo(2), %VMM_lo(3), %VMM_lo(4){%k1}{z} |
| 468 | vpmovmskb %VMM_lo(4), %VRCX |
| 469 | # else |
| 470 | /* 254 is mask for oring VEC_lo(2), VEC_lo(3), VEC_lo(4) into |
| 471 | VEC_lo(4). */ |
| 472 | vpternlogd $254, %VMM_lo(2), %VMM_lo(3), %VMM_lo(4) |
| 473 | vpmovmskb %VMM_lo(4), %VRCX |
| 474 | KMOV %k1, %edx |
| 475 | # endif |
| 476 | |
| 477 | # else |
| 478 | /* Loop version that uses EVEX encoding. */ |
| 479 | VPCMP $4, (VEC_SIZE * 0)(%rdi), %VMATCH, %k1 |
| 480 | vpxorq (VEC_SIZE * 1)(%rdi), %VMATCH, %VMM(2) |
| 481 | vpxorq (VEC_SIZE * 2)(%rdi), %VMATCH, %VMM(3) |
| 482 | VPCMPEQ (VEC_SIZE * 3)(%rdi), %VMATCH, %k3 |
| 483 | VPMINU %VMM(2), %VMM(3), %VMM(3){%k1}{z} |
| 484 | VPTESTN %VMM(3), %VMM(3), %k2 |
| 485 | # endif |
| 486 | |
| 487 | |
| 488 | TEST_END () |
| 489 | jnz L(loop_vec_ret) |
| 490 | |
| 491 | subq $-(VEC_SIZE * 4), %rdi |
| 492 | |
| 493 | subq $(CHAR_PER_VEC * 4), %rax |
| 494 | jae L(loop_4x_vec) |
| 495 | |
| 496 | /* COND_VZEROUPPER is vzeroupper if we use the VEX encoded loop. |
| 497 | */ |
| 498 | COND_VZEROUPPER |
| 499 | |
| 500 | .p2align 4,, 10 |
| 501 | L(last_4x_vec): |
| 502 | /* For CHAR_PER_VEC == 64 we don't need to mask as we use 8-bit |
| 503 | instructions on eax from here on out. */ |
| 504 | # if CHAR_PER_VEC != 64 |
| 505 | andl $(CHAR_PER_VEC * 4 - 1), %eax |
| 506 | # endif |
| 507 | VPCMPEQ (VEC_SIZE * 0)(%rdi), %VMATCH, %k0 |
| 508 | subq $(VEC_SIZE * 1), %rdi |
| 509 | KMOV %k0, %VRDX |
| 510 | cmpb $(CHAR_PER_VEC * 2 - 1), %al |
| 511 | jbe L(last_2x_vec) |
| 512 | test %VRDX, %VRDX |
| 513 | jnz L(last_vec_x1_novzero) |
| 514 | |
| 515 | VPCMPEQ (VEC_SIZE * 2)(%rdi), %VMATCH, %k0 |
| 516 | KMOV %k0, %VRDX |
| 517 | test %VRDX, %VRDX |
| 518 | jnz L(last_vec_x2_novzero) |
| 519 | |
| 520 | VPCMPEQ (VEC_SIZE * 3)(%rdi), %VMATCH, %k0 |
| 521 | KMOV %k0, %VRCX |
| 522 | test %VRCX, %VRCX |
| 523 | jnz L(first_vec_x3_check) |
| 524 | |
| 525 | subb $(CHAR_PER_VEC * 3), %al |
| 526 | jae L(last_vec_check) |
| 527 | |
| 528 | xorl %eax, %eax |
| 529 | ret |
| 530 | |
| 531 | # if defined USE_AS_WMEMCHR && USE_TERN_IN_LOOP |
| 532 | L(last_vec_x2_novzero): |
| 533 | addq $VEC_SIZE, %rdi |
| 534 | L(last_vec_x1_novzero): |
| 535 | bsf %VRDX, %VRDX |
| 536 | leaq (VEC_SIZE * 1)(%rdi, %rdx, CHAR_SIZE), %rax |
| 537 | ret |
| 538 | # endif |
| 539 | |
| 540 | # if CHAR_PER_VEC == 64 |
| 541 | /* Since we can't combine the last 2x VEC when CHAR_PER_VEC == |
| 542 | 64 it needs a seperate return label. */ |
| 543 | .p2align 4,, 4 |
| 544 | L(last_vec_x2): |
| 545 | L(last_vec_x2_novzero): |
| 546 | bsf %VRDX, %VRDX |
| 547 | leaq (VEC_SIZE * 2)(%rdi, %rdx, TERN_CHAR_MULT), %rax |
| 548 | ret |
| 549 | # endif |
| 550 | |
| 551 | .p2align 4,, 4 |
| 552 | L(loop_vec_ret): |
| 553 | # if defined USE_AS_WMEMCHR || !USE_TERN_IN_LOOP |
| 554 | KMOV %k1, %VRAX |
| 555 | inc %MASK_GPR(rax) |
| 556 | # else |
| 557 | test %VRDX, %VRDX |
| 558 | # endif |
| 559 | jnz L(last_vec_x0) |
| 560 | |
| 561 | |
| 562 | # if USE_TERN_IN_LOOP |
| 563 | vpmovmskb %VMM_lo(2), %VRDX |
| 564 | # else |
| 565 | VPTESTN %VMM(2), %VMM(2), %k1 |
| 566 | KMOV %k1, %VRDX |
| 567 | # endif |
| 568 | test %VRDX, %VRDX |
| 569 | jnz L(last_vec_x1) |
| 570 | |
| 571 | |
| 572 | # if USE_TERN_IN_LOOP |
| 573 | vpmovmskb %VMM_lo(3), %VRDX |
| 574 | # else |
| 575 | KMOV %k2, %VRDX |
| 576 | # endif |
| 577 | |
| 578 | /* No longer need any of the lo vecs (ymm0-15) so vzeroupper |
| 579 | (only if used VEX encoded loop). */ |
| 580 | COND_VZEROUPPER |
| 581 | |
| 582 | /* Seperate logic for CHAR_PER_VEC == 64 vs the rest. For |
| 583 | CHAR_PER_VEC we test the last 2x VEC seperately, for |
| 584 | CHAR_PER_VEC <= 32 we can combine the results from the 2x |
| 585 | VEC in a single GPR. */ |
| 586 | # if CHAR_PER_VEC == 64 |
| 587 | # if USE_TERN_IN_LOOP |
| 588 | # error "Unsupported" |
| 589 | # endif |
| 590 | |
| 591 | |
| 592 | /* If CHAR_PER_VEC == 64 we can't combine the last two VEC. */ |
| 593 | test %VRDX, %VRDX |
| 594 | jnz L(last_vec_x2) |
| 595 | KMOV %k3, %VRDX |
| 596 | # else |
| 597 | /* CHAR_PER_VEC <= 32 so we can combine the results from the |
| 598 | last 2x VEC. */ |
| 599 | |
| 600 | # if !USE_TERN_IN_LOOP |
| 601 | KMOV %k3, %VRCX |
| 602 | # endif |
| 603 | salq $(VEC_SIZE / TERN_CHAR_MULT), %rcx |
| 604 | addq %rcx, %rdx |
| 605 | # if !defined USE_AS_WMEMCHR || !USE_TERN_IN_LOOP |
| 606 | L(last_vec_x2_novzero): |
| 607 | # endif |
| 608 | # endif |
| 609 | bsf %rdx, %rdx |
| 610 | leaq (LAST_VEC_OFFSET)(%rdi, %rdx, TERN_CHAR_MULT), %rax |
| 611 | ret |
| 612 | |
| 613 | .p2align 4,, 8 |
| 614 | L(last_vec_x1): |
| 615 | COND_VZEROUPPER |
| 616 | # if !defined USE_AS_WMEMCHR || !USE_TERN_IN_LOOP |
| 617 | L(last_vec_x1_novzero): |
| 618 | # endif |
| 619 | bsf %VRDX, %VRDX |
| 620 | leaq (VEC_SIZE * 1)(%rdi, %rdx, TERN_CHAR_MULT), %rax |
| 621 | ret |
| 622 | |
| 623 | |
| 624 | .p2align 4,, 4 |
| 625 | L(last_vec_x0): |
| 626 | COND_VZEROUPPER |
| 627 | bsf %VGPR(GPR_X0), %VGPR(GPR_X0) |
| 628 | # if GPR_X0_IS_RET |
| 629 | addq %rdi, %rax |
| 630 | # else |
| 631 | leaq (%rdi, %GPR_X0, CHAR_SIZE), %rax |
| 632 | # endif |
| 633 | ret |
| 634 | |
| 635 | .p2align 4,, 6 |
| 636 | L(page_cross): |
| 637 | /* Need to preserve eax to compute inbound bytes we are |
| 638 | checking. */ |
| 639 | # ifdef USE_AS_WMEMCHR |
| 640 | movl %eax, %ecx |
| 641 | # else |
| 642 | xorl %ecx, %ecx |
| 643 | subl %eax, %ecx |
| 644 | # endif |
| 645 | |
| 646 | xorq %rdi, %rax |
| 647 | VPCMPEQ (PAGE_SIZE - VEC_SIZE)(%rax), %VMATCH, %k0 |
| 648 | KMOV %k0, %VRAX |
| 649 | |
| 650 | # ifdef USE_AS_WMEMCHR |
| 651 | /* NB: Divide by CHAR_SIZE to shift out out of bounds bytes. */ |
| 652 | shrl $2, %ecx |
| 653 | andl $(CHAR_PER_VEC - 1), %ecx |
| 654 | # endif |
| 655 | |
| 656 | |
| 657 | shrx %VGPR(PC_SHIFT_GPR), %VRAX, %VRAX |
| 658 | |
| 659 | # ifdef USE_AS_WMEMCHR |
| 660 | negl %ecx |
| 661 | # endif |
| 662 | |
| 663 | /* mask lower bits from ecx (negative eax) to get bytes till |
| 664 | next VEC. */ |
| 665 | andl $(CHAR_PER_VEC - 1), %ecx |
| 666 | |
| 667 | /* Check if VEC is entirely contained in the remainder of the |
| 668 | page. */ |
| 669 | cmpq %rcx, %rdx |
| 670 | jbe L(page_cross_ret) |
| 671 | |
| 672 | /* Length crosses the page so if rax is zero (no matches) |
| 673 | continue. */ |
| 674 | test %VRAX, %VRAX |
| 675 | jz L(page_cross_continue) |
| 676 | |
| 677 | /* if rdx > rcx then any match here must be in [buf:buf + len]. |
| 678 | */ |
| 679 | tzcnt %VRAX, %VRAX |
| 680 | # ifdef USE_AS_WMEMCHR |
| 681 | leaq (%rdi, %rax, CHAR_SIZE), %rax |
| 682 | # else |
| 683 | addq %rdi, %rax |
| 684 | # endif |
| 685 | ret |
| 686 | |
| 687 | .p2align 4,, 2 |
| 688 | L(page_cross_zero): |
| 689 | xorl %eax, %eax |
| 690 | ret |
| 691 | |
| 692 | .p2align 4,, 4 |
| 693 | L(page_cross_ret): |
| 694 | /* Search is entirely contained in page cross case. */ |
| 695 | # ifdef USE_AS_WMEMCHR |
| 696 | test %VRAX, %VRAX |
| 697 | jz L(page_cross_zero) |
| 698 | # endif |
| 699 | tzcnt %VRAX, %VRAX |
| 700 | cmpl %eax, %edx |
| 701 | jbe L(page_cross_zero) |
| 702 | # ifdef USE_AS_WMEMCHR |
| 703 | leaq (%rdi, %rax, CHAR_SIZE), %rax |
| 704 | # else |
| 705 | addq %rdi, %rax |
| 706 | # endif |
| 707 | ret |
| 708 | END (MEMCHR) |
| 709 | #endif |
| 710 | |