1 | /* Machine-dependent ELF dynamic relocation inline functions. x86-64 version. |
2 | Copyright (C) 2001-2023 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #ifndef dl_machine_h |
20 | #define dl_machine_h |
21 | |
22 | #define ELF_MACHINE_NAME "x86_64" |
23 | |
24 | #include <assert.h> |
25 | #include <sys/param.h> |
26 | #include <sysdep.h> |
27 | #include <tls.h> |
28 | #include <dl-tlsdesc.h> |
29 | #include <dl-static-tls.h> |
30 | #include <dl-machine-rel.h> |
31 | #include <isa-level.h> |
32 | |
33 | /* Return nonzero iff ELF header is compatible with the running host. */ |
34 | static inline int __attribute__ ((unused)) |
35 | elf_machine_matches_host (const ElfW(Ehdr) *ehdr) |
36 | { |
37 | return ehdr->e_machine == EM_X86_64; |
38 | } |
39 | |
40 | |
41 | /* Return the run-time load address of the shared object. */ |
42 | static inline ElfW(Addr) __attribute__ ((unused)) |
43 | elf_machine_load_address (void) |
44 | { |
45 | extern const ElfW(Ehdr) __ehdr_start attribute_hidden; |
46 | return (ElfW(Addr)) &__ehdr_start; |
47 | } |
48 | |
49 | /* Return the link-time address of _DYNAMIC. */ |
50 | static inline ElfW(Addr) __attribute__ ((unused)) |
51 | elf_machine_dynamic (void) |
52 | { |
53 | extern ElfW(Dyn) _DYNAMIC[] attribute_hidden; |
54 | return (ElfW(Addr)) _DYNAMIC - elf_machine_load_address (); |
55 | } |
56 | |
57 | /* Set up the loaded object described by L so its unrelocated PLT |
58 | entries will jump to the on-demand fixup code in dl-runtime.c. */ |
59 | |
60 | static inline int __attribute__ ((unused, always_inline)) |
61 | elf_machine_runtime_setup (struct link_map *l, struct r_scope_elem *scope[], |
62 | int lazy, int profile) |
63 | { |
64 | Elf64_Addr *got; |
65 | extern void _dl_runtime_resolve_fxsave (ElfW(Word)) attribute_hidden; |
66 | extern void _dl_runtime_resolve_xsave (ElfW(Word)) attribute_hidden; |
67 | extern void _dl_runtime_resolve_xsavec (ElfW(Word)) attribute_hidden; |
68 | extern void _dl_runtime_profile_sse (ElfW(Word)) attribute_hidden; |
69 | extern void _dl_runtime_profile_avx (ElfW(Word)) attribute_hidden; |
70 | extern void _dl_runtime_profile_avx512 (ElfW(Word)) attribute_hidden; |
71 | |
72 | if (l->l_info[DT_JMPREL] && lazy) |
73 | { |
74 | /* The GOT entries for functions in the PLT have not yet been filled |
75 | in. Their initial contents will arrange when called to push an |
76 | offset into the .rel.plt section, push _GLOBAL_OFFSET_TABLE_[1], |
77 | and then jump to _GLOBAL_OFFSET_TABLE_[2]. */ |
78 | got = (Elf64_Addr *) D_PTR (l, l_info[DT_PLTGOT]); |
79 | /* If a library is prelinked but we have to relocate anyway, |
80 | we have to be able to undo the prelinking of .got.plt. |
81 | The prelinker saved us here address of .plt + 0x16. */ |
82 | if (got[1]) |
83 | { |
84 | l->l_mach.plt = got[1] + l->l_addr; |
85 | l->l_mach.gotplt = (ElfW(Addr)) &got[3]; |
86 | } |
87 | /* Identify this shared object. */ |
88 | *(ElfW(Addr) *) (got + 1) = (ElfW(Addr)) l; |
89 | |
90 | const struct cpu_features* cpu_features = __get_cpu_features (); |
91 | |
92 | /* The got[2] entry contains the address of a function which gets |
93 | called to get the address of a so far unresolved function and |
94 | jump to it. The profiling extension of the dynamic linker allows |
95 | to intercept the calls to collect information. In this case we |
96 | don't store the address in the GOT so that all future calls also |
97 | end in this function. */ |
98 | if (__glibc_unlikely (profile)) |
99 | { |
100 | if (X86_ISA_CPU_FEATURE_USABLE_P (cpu_features, AVX512F)) |
101 | *(ElfW(Addr) *) (got + 2) = (ElfW(Addr)) &_dl_runtime_profile_avx512; |
102 | else if (X86_ISA_CPU_FEATURE_USABLE_P (cpu_features, AVX)) |
103 | *(ElfW(Addr) *) (got + 2) = (ElfW(Addr)) &_dl_runtime_profile_avx; |
104 | else |
105 | *(ElfW(Addr) *) (got + 2) = (ElfW(Addr)) &_dl_runtime_profile_sse; |
106 | |
107 | if (GLRO(dl_profile) != NULL |
108 | && _dl_name_match_p (GLRO(dl_profile), l)) |
109 | /* This is the object we are looking for. Say that we really |
110 | want profiling and the timers are started. */ |
111 | GL(dl_profile_map) = l; |
112 | } |
113 | else |
114 | { |
115 | /* This function will get called to fix up the GOT entry |
116 | indicated by the offset on the stack, and then jump to |
117 | the resolved address. */ |
118 | if (MINIMUM_X86_ISA_LEVEL >= AVX_X86_ISA_LEVEL |
119 | || GLRO(dl_x86_cpu_features).xsave_state_size != 0) |
120 | *(ElfW(Addr) *) (got + 2) |
121 | = (CPU_FEATURE_USABLE_P (cpu_features, XSAVEC) |
122 | ? (ElfW(Addr)) &_dl_runtime_resolve_xsavec |
123 | : (ElfW(Addr)) &_dl_runtime_resolve_xsave); |
124 | else |
125 | *(ElfW(Addr) *) (got + 2) |
126 | = (ElfW(Addr)) &_dl_runtime_resolve_fxsave; |
127 | } |
128 | } |
129 | |
130 | return lazy; |
131 | } |
132 | |
133 | /* Initial entry point code for the dynamic linker. |
134 | The C function `_dl_start' is the real entry point; |
135 | its return value is the user program's entry point. */ |
136 | #define RTLD_START asm ("\n\ |
137 | .text\n\ |
138 | .align 16\n\ |
139 | .globl _start\n\ |
140 | .globl _dl_start_user\n\ |
141 | _start:\n\ |
142 | movq %rsp, %rdi\n\ |
143 | call _dl_start\n\ |
144 | _dl_start_user:\n\ |
145 | # Save the user entry point address in %r12.\n\ |
146 | movq %rax, %r12\n\ |
147 | # Read the original argument count.\n\ |
148 | movq (%rsp), %rdx\n\ |
149 | # Call _dl_init (struct link_map *main_map, int argc, char **argv, char **env)\n\ |
150 | # argc -> rsi\n\ |
151 | movq %rdx, %rsi\n\ |
152 | # Save %rsp value in %r13.\n\ |
153 | movq %rsp, %r13\n\ |
154 | # And align stack for the _dl_init call. \n\ |
155 | andq $-16, %rsp\n\ |
156 | # _dl_loaded -> rdi\n\ |
157 | movq _rtld_local(%rip), %rdi\n\ |
158 | # env -> rcx\n\ |
159 | leaq 16(%r13,%rdx,8), %rcx\n\ |
160 | # argv -> rdx\n\ |
161 | leaq 8(%r13), %rdx\n\ |
162 | # Clear %rbp to mark outermost frame obviously even for constructors.\n\ |
163 | xorl %ebp, %ebp\n\ |
164 | # Call the function to run the initializers.\n\ |
165 | call _dl_init\n\ |
166 | # Pass our finalizer function to the user in %rdx, as per ELF ABI.\n\ |
167 | leaq _dl_fini(%rip), %rdx\n\ |
168 | # And make sure %rsp points to argc stored on the stack.\n\ |
169 | movq %r13, %rsp\n\ |
170 | # Jump to the user's entry point.\n\ |
171 | jmp *%r12\n\ |
172 | .previous\n\ |
173 | "); |
174 | |
175 | /* ELF_RTYPE_CLASS_PLT iff TYPE describes relocation of a PLT entry or |
176 | TLS variable, so undefined references should not be allowed to |
177 | define the value. |
178 | ELF_RTYPE_CLASS_COPY iff TYPE should not be allowed to resolve to one |
179 | of the main executable's symbols, as for a COPY reloc. */ |
180 | #define elf_machine_type_class(type) \ |
181 | ((((type) == R_X86_64_JUMP_SLOT \ |
182 | || (type) == R_X86_64_DTPMOD64 \ |
183 | || (type) == R_X86_64_DTPOFF64 \ |
184 | || (type) == R_X86_64_TPOFF64 \ |
185 | || (type) == R_X86_64_TLSDESC) \ |
186 | * ELF_RTYPE_CLASS_PLT) \ |
187 | | (((type) == R_X86_64_COPY) * ELF_RTYPE_CLASS_COPY)) |
188 | |
189 | /* A reloc type used for ld.so cmdline arg lookups to reject PLT entries. */ |
190 | #define ELF_MACHINE_JMP_SLOT R_X86_64_JUMP_SLOT |
191 | |
192 | /* The relative ifunc relocation. */ |
193 | // XXX This is a work-around for a broken linker. Remove! |
194 | #define ELF_MACHINE_IRELATIVE R_X86_64_IRELATIVE |
195 | |
196 | /* We define an initialization function. This is called very early in |
197 | _dl_sysdep_start. */ |
198 | #define DL_PLATFORM_INIT dl_platform_init () |
199 | |
200 | static inline void __attribute__ ((unused)) |
201 | dl_platform_init (void) |
202 | { |
203 | #if IS_IN (rtld) |
204 | /* _dl_x86_init_cpu_features is a wrapper for init_cpu_features which |
205 | has been called early from __libc_start_main in static executable. */ |
206 | _dl_x86_init_cpu_features (); |
207 | #else |
208 | if (GLRO(dl_platform) != NULL && *GLRO(dl_platform) == '\0') |
209 | /* Avoid an empty string which would disturb us. */ |
210 | GLRO(dl_platform) = NULL; |
211 | #endif |
212 | } |
213 | |
214 | static inline ElfW(Addr) |
215 | elf_machine_fixup_plt (struct link_map *map, lookup_t t, |
216 | const ElfW(Sym) *refsym, const ElfW(Sym) *sym, |
217 | const ElfW(Rela) *reloc, |
218 | ElfW(Addr) *reloc_addr, ElfW(Addr) value) |
219 | { |
220 | return *reloc_addr = value; |
221 | } |
222 | |
223 | /* Return the final value of a PLT relocation. On x86-64 the |
224 | JUMP_SLOT relocation ignores the addend. */ |
225 | static inline ElfW(Addr) |
226 | elf_machine_plt_value (struct link_map *map, const ElfW(Rela) *reloc, |
227 | ElfW(Addr) value) |
228 | { |
229 | return value; |
230 | } |
231 | |
232 | |
233 | /* Names of the architecture-specific auditing callback functions. */ |
234 | #define ARCH_LA_PLTENTER x86_64_gnu_pltenter |
235 | #define ARCH_LA_PLTEXIT x86_64_gnu_pltexit |
236 | |
237 | #endif /* !dl_machine_h */ |
238 | |
239 | #ifdef RESOLVE_MAP |
240 | |
241 | /* Perform the relocation specified by RELOC and SYM (which is fully resolved). |
242 | MAP is the object containing the reloc. */ |
243 | |
244 | static inline void __attribute__((always_inline)) |
245 | elf_machine_rela(struct link_map *map, struct r_scope_elem *scope[], |
246 | const ElfW(Rela) *reloc, const ElfW(Sym) *sym, |
247 | const struct r_found_version *version, |
248 | void *const reloc_addr_arg, int skip_ifunc) { |
249 | ElfW(Addr) *const reloc_addr = reloc_addr_arg; |
250 | const unsigned long int r_type = ELFW(R_TYPE) (reloc->r_info); |
251 | |
252 | # if !defined RTLD_BOOTSTRAP |
253 | if (__glibc_unlikely (r_type == R_X86_64_RELATIVE)) |
254 | *reloc_addr = map->l_addr + reloc->r_addend; |
255 | else |
256 | # endif |
257 | # if !defined RTLD_BOOTSTRAP |
258 | /* l_addr + r_addend may be > 0xffffffff and R_X86_64_RELATIVE64 |
259 | relocation updates the whole 64-bit entry. */ |
260 | if (__glibc_unlikely (r_type == R_X86_64_RELATIVE64)) |
261 | *(Elf64_Addr *) reloc_addr = (Elf64_Addr) map->l_addr + reloc->r_addend; |
262 | else |
263 | # endif |
264 | if (__glibc_unlikely (r_type == R_X86_64_NONE)) |
265 | return; |
266 | else |
267 | { |
268 | # ifndef RTLD_BOOTSTRAP |
269 | const ElfW(Sym) *const refsym = sym; |
270 | # endif |
271 | struct link_map *sym_map = RESOLVE_MAP (map, scope, &sym, version, |
272 | r_type); |
273 | ElfW(Addr) value = SYMBOL_ADDRESS (sym_map, sym, true); |
274 | |
275 | if (sym != NULL |
276 | && __glibc_unlikely (ELFW(ST_TYPE) (sym->st_info) == STT_GNU_IFUNC) |
277 | && __glibc_likely (sym->st_shndx != SHN_UNDEF) |
278 | && __glibc_likely (!skip_ifunc)) |
279 | { |
280 | # ifndef RTLD_BOOTSTRAP |
281 | if (sym_map != map |
282 | && !sym_map->l_relocated) |
283 | { |
284 | const char *strtab |
285 | = (const char *) D_PTR (map, l_info[DT_STRTAB]); |
286 | if (sym_map->l_type == lt_executable) |
287 | _dl_fatal_printf ("\ |
288 | %s: IFUNC symbol '%s' referenced in '%s' is defined in the executable \ |
289 | and creates an unsatisfiable circular dependency.\n" , |
290 | RTLD_PROGNAME, strtab + refsym->st_name, |
291 | map->l_name); |
292 | else |
293 | _dl_error_printf ("\ |
294 | %s: Relink `%s' with `%s' for IFUNC symbol `%s'\n" , |
295 | RTLD_PROGNAME, map->l_name, |
296 | sym_map->l_name, |
297 | strtab + refsym->st_name); |
298 | } |
299 | # endif |
300 | value = ((ElfW(Addr) (*) (void)) value) (); |
301 | } |
302 | |
303 | switch (r_type) |
304 | { |
305 | case R_X86_64_GLOB_DAT: |
306 | case R_X86_64_JUMP_SLOT: |
307 | *reloc_addr = value; |
308 | break; |
309 | |
310 | # ifndef RTLD_BOOTSTRAP |
311 | # ifdef __ILP32__ |
312 | case R_X86_64_SIZE64: |
313 | /* Set to symbol size plus addend. */ |
314 | *(Elf64_Addr *) (uintptr_t) reloc_addr |
315 | = (Elf64_Addr) sym->st_size + reloc->r_addend; |
316 | break; |
317 | |
318 | case R_X86_64_SIZE32: |
319 | # else |
320 | case R_X86_64_SIZE64: |
321 | # endif |
322 | /* Set to symbol size plus addend. */ |
323 | value = sym->st_size; |
324 | *reloc_addr = value + reloc->r_addend; |
325 | break; |
326 | |
327 | case R_X86_64_DTPMOD64: |
328 | /* Get the information from the link map returned by the |
329 | resolve function. */ |
330 | if (sym_map != NULL) |
331 | *reloc_addr = sym_map->l_tls_modid; |
332 | break; |
333 | case R_X86_64_DTPOFF64: |
334 | /* During relocation all TLS symbols are defined and used. |
335 | Therefore the offset is already correct. */ |
336 | if (sym != NULL) |
337 | { |
338 | value = sym->st_value + reloc->r_addend; |
339 | # ifdef __ILP32__ |
340 | /* This relocation type computes a signed offset that is |
341 | usually negative. The symbol and addend values are 32 |
342 | bits but the GOT entry is 64 bits wide and the whole |
343 | 64-bit entry is used as a signed quantity, so we need |
344 | to sign-extend the computed value to 64 bits. */ |
345 | *(Elf64_Sxword *) reloc_addr = (Elf64_Sxword) (Elf32_Sword) value; |
346 | # else |
347 | *reloc_addr = value; |
348 | # endif |
349 | } |
350 | break; |
351 | case R_X86_64_TLSDESC: |
352 | { |
353 | struct tlsdesc volatile *td = |
354 | (struct tlsdesc volatile *)reloc_addr; |
355 | |
356 | if (! sym) |
357 | { |
358 | td->arg = (void*)reloc->r_addend; |
359 | td->entry = _dl_tlsdesc_undefweak; |
360 | } |
361 | else |
362 | { |
363 | # ifndef SHARED |
364 | CHECK_STATIC_TLS (map, sym_map); |
365 | # else |
366 | if (!TRY_STATIC_TLS (map, sym_map)) |
367 | { |
368 | td->arg = _dl_make_tlsdesc_dynamic |
369 | (sym_map, sym->st_value + reloc->r_addend); |
370 | td->entry = _dl_tlsdesc_dynamic; |
371 | } |
372 | else |
373 | # endif |
374 | { |
375 | td->arg = (void*)(sym->st_value - sym_map->l_tls_offset |
376 | + reloc->r_addend); |
377 | td->entry = _dl_tlsdesc_return; |
378 | } |
379 | } |
380 | break; |
381 | } |
382 | case R_X86_64_TPOFF64: |
383 | /* The offset is negative, forward from the thread pointer. */ |
384 | if (sym != NULL) |
385 | { |
386 | CHECK_STATIC_TLS (map, sym_map); |
387 | /* We know the offset of the object the symbol is contained in. |
388 | It is a negative value which will be added to the |
389 | thread pointer. */ |
390 | value = (sym->st_value + reloc->r_addend |
391 | - sym_map->l_tls_offset); |
392 | # ifdef __ILP32__ |
393 | /* The symbol and addend values are 32 bits but the GOT |
394 | entry is 64 bits wide and the whole 64-bit entry is used |
395 | as a signed quantity, so we need to sign-extend the |
396 | computed value to 64 bits. */ |
397 | *(Elf64_Sxword *) reloc_addr = (Elf64_Sxword) (Elf32_Sword) value; |
398 | # else |
399 | *reloc_addr = value; |
400 | # endif |
401 | } |
402 | break; |
403 | |
404 | case R_X86_64_64: |
405 | /* value + r_addend may be > 0xffffffff and R_X86_64_64 |
406 | relocation updates the whole 64-bit entry. */ |
407 | *(Elf64_Addr *) reloc_addr = (Elf64_Addr) value + reloc->r_addend; |
408 | break; |
409 | # ifndef __ILP32__ |
410 | case R_X86_64_SIZE32: |
411 | /* Set to symbol size plus addend. */ |
412 | value = sym->st_size; |
413 | # endif |
414 | /* Fall through. */ |
415 | case R_X86_64_32: |
416 | value += reloc->r_addend; |
417 | *(unsigned int *) reloc_addr = value; |
418 | |
419 | const char *fmt; |
420 | if (__glibc_unlikely (value > UINT_MAX)) |
421 | { |
422 | const char *strtab; |
423 | |
424 | fmt = "\ |
425 | %s: Symbol `%s' causes overflow in R_X86_64_32 relocation\n" ; |
426 | print_err: |
427 | strtab = (const char *) D_PTR (map, l_info[DT_STRTAB]); |
428 | |
429 | _dl_error_printf (fmt, RTLD_PROGNAME, strtab + refsym->st_name); |
430 | } |
431 | break; |
432 | /* Not needed for dl-conflict.c. */ |
433 | case R_X86_64_PC32: |
434 | value += reloc->r_addend - (ElfW(Addr)) reloc_addr; |
435 | *(unsigned int *) reloc_addr = value; |
436 | if (__glibc_unlikely (value != (int) value)) |
437 | { |
438 | fmt = "\ |
439 | %s: Symbol `%s' causes overflow in R_X86_64_PC32 relocation\n" ; |
440 | goto print_err; |
441 | } |
442 | break; |
443 | case R_X86_64_COPY: |
444 | if (sym == NULL) |
445 | /* This can happen in trace mode if an object could not be |
446 | found. */ |
447 | break; |
448 | memcpy (reloc_addr_arg, (void *) value, |
449 | MIN (sym->st_size, refsym->st_size)); |
450 | if (__glibc_unlikely (sym->st_size > refsym->st_size) |
451 | || (__glibc_unlikely (sym->st_size < refsym->st_size) |
452 | && GLRO(dl_verbose))) |
453 | { |
454 | fmt = "\ |
455 | %s: Symbol `%s' has different size in shared object, consider re-linking\n" ; |
456 | goto print_err; |
457 | } |
458 | break; |
459 | case R_X86_64_IRELATIVE: |
460 | value = map->l_addr + reloc->r_addend; |
461 | if (__glibc_likely (!skip_ifunc)) |
462 | value = ((ElfW(Addr) (*) (void)) value) (); |
463 | *reloc_addr = value; |
464 | break; |
465 | default: |
466 | _dl_reloc_bad_type (map, r_type, 0); |
467 | break; |
468 | # endif /* !RTLD_BOOTSTRAP */ |
469 | } |
470 | } |
471 | } |
472 | |
473 | static inline void |
474 | __attribute ((always_inline)) |
475 | elf_machine_rela_relative (ElfW(Addr) l_addr, const ElfW(Rela) *reloc, |
476 | void *const reloc_addr_arg) |
477 | { |
478 | ElfW(Addr) *const reloc_addr = reloc_addr_arg; |
479 | #if !defined RTLD_BOOTSTRAP |
480 | /* l_addr + r_addend may be > 0xffffffff and R_X86_64_RELATIVE64 |
481 | relocation updates the whole 64-bit entry. */ |
482 | if (__glibc_unlikely (ELFW(R_TYPE) (reloc->r_info) == R_X86_64_RELATIVE64)) |
483 | *(Elf64_Addr *) reloc_addr = (Elf64_Addr) l_addr + reloc->r_addend; |
484 | else |
485 | #endif |
486 | { |
487 | assert (ELFW(R_TYPE) (reloc->r_info) == R_X86_64_RELATIVE); |
488 | *reloc_addr = l_addr + reloc->r_addend; |
489 | } |
490 | } |
491 | |
492 | static inline void |
493 | __attribute ((always_inline)) |
494 | elf_machine_lazy_rel (struct link_map *map, struct r_scope_elem *scope[], |
495 | ElfW(Addr) l_addr, const ElfW(Rela) *reloc, |
496 | int skip_ifunc) |
497 | { |
498 | ElfW(Addr) *const reloc_addr = (void *) (l_addr + reloc->r_offset); |
499 | const unsigned long int r_type = ELFW(R_TYPE) (reloc->r_info); |
500 | |
501 | /* Check for unexpected PLT reloc type. */ |
502 | if (__glibc_likely (r_type == R_X86_64_JUMP_SLOT)) |
503 | { |
504 | /* Prelink has been deprecated. */ |
505 | if (__glibc_likely (map->l_mach.plt == 0)) |
506 | *reloc_addr += l_addr; |
507 | else |
508 | *reloc_addr = |
509 | map->l_mach.plt |
510 | + (((ElfW(Addr)) reloc_addr) - map->l_mach.gotplt) * 2; |
511 | } |
512 | else if (__glibc_likely (r_type == R_X86_64_TLSDESC)) |
513 | { |
514 | const Elf_Symndx symndx = ELFW (R_SYM) (reloc->r_info); |
515 | const ElfW (Sym) *symtab = (const void *)D_PTR (map, l_info[DT_SYMTAB]); |
516 | const ElfW (Sym) *sym = &symtab[symndx]; |
517 | const struct r_found_version *version = NULL; |
518 | |
519 | if (map->l_info[VERSYMIDX (DT_VERSYM)] != NULL) |
520 | { |
521 | const ElfW (Half) *vernum = |
522 | (const void *)D_PTR (map, l_info[VERSYMIDX (DT_VERSYM)]); |
523 | version = &map->l_versions[vernum[symndx] & 0x7fff]; |
524 | } |
525 | |
526 | /* Always initialize TLS descriptors completely at load time, in |
527 | case static TLS is allocated for it that requires locking. */ |
528 | elf_machine_rela (map, scope, reloc, sym, version, reloc_addr, skip_ifunc); |
529 | } |
530 | else if (__glibc_unlikely (r_type == R_X86_64_IRELATIVE)) |
531 | { |
532 | ElfW(Addr) value = map->l_addr + reloc->r_addend; |
533 | if (__glibc_likely (!skip_ifunc)) |
534 | value = ((ElfW(Addr) (*) (void)) value) (); |
535 | *reloc_addr = value; |
536 | } |
537 | else |
538 | _dl_reloc_bad_type (map, r_type, 1); |
539 | } |
540 | |
541 | #endif /* RESOLVE_MAP */ |
542 | |