1 | /* Quad-precision floating point sine on <-pi/4,pi/4>. |
2 | Copyright (C) 1999-2023 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | /* The polynomials have not been optimized for extended-precision and |
20 | may contain more terms than needed. */ |
21 | |
22 | #include <float.h> |
23 | #include <math.h> |
24 | #include <math_private.h> |
25 | #include <math-underflow.h> |
26 | |
27 | /* The polynomials have not been optimized for extended-precision and |
28 | may contain more terms than needed. */ |
29 | |
30 | static const long double c[] = { |
31 | #define ONE c[0] |
32 | 1.00000000000000000000000000000000000E+00L, |
33 | |
34 | /* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 ) |
35 | x in <0,1/256> */ |
36 | #define SCOS1 c[1] |
37 | #define SCOS2 c[2] |
38 | #define SCOS3 c[3] |
39 | #define SCOS4 c[4] |
40 | #define SCOS5 c[5] |
41 | -5.00000000000000000000000000000000000E-01L, |
42 | 4.16666666666666666666666666556146073E-02L, |
43 | -1.38888888888888888888309442601939728E-03L, |
44 | 2.48015873015862382987049502531095061E-05L, |
45 | -2.75573112601362126593516899592158083E-07L, |
46 | |
47 | /* sin x ~ ONE * x + x^3 ( SIN1 + SIN2 * x^2 + ... + SIN7 * x^12 + SIN8 * x^14 ) |
48 | x in <0,0.1484375> */ |
49 | #define SIN1 c[6] |
50 | #define SIN2 c[7] |
51 | #define SIN3 c[8] |
52 | #define SIN4 c[9] |
53 | #define SIN5 c[10] |
54 | #define SIN6 c[11] |
55 | #define SIN7 c[12] |
56 | #define SIN8 c[13] |
57 | -1.66666666666666666666666666666666538e-01L, |
58 | 8.33333333333333333333333333307532934e-03L, |
59 | -1.98412698412698412698412534478712057e-04L, |
60 | 2.75573192239858906520896496653095890e-06L, |
61 | -2.50521083854417116999224301266655662e-08L, |
62 | 1.60590438367608957516841576404938118e-10L, |
63 | -7.64716343504264506714019494041582610e-13L, |
64 | 2.81068754939739570236322404393398135e-15L, |
65 | |
66 | /* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 ) |
67 | x in <0,1/256> */ |
68 | #define SSIN1 c[14] |
69 | #define SSIN2 c[15] |
70 | #define SSIN3 c[16] |
71 | #define SSIN4 c[17] |
72 | #define SSIN5 c[18] |
73 | -1.66666666666666666666666666666666659E-01L, |
74 | 8.33333333333333333333333333146298442E-03L, |
75 | -1.98412698412698412697726277416810661E-04L, |
76 | 2.75573192239848624174178393552189149E-06L, |
77 | -2.50521016467996193495359189395805639E-08L, |
78 | }; |
79 | |
80 | #define SINCOSL_COS_HI 0 |
81 | #define SINCOSL_COS_LO 1 |
82 | #define SINCOSL_SIN_HI 2 |
83 | #define SINCOSL_SIN_LO 3 |
84 | extern const long double __sincosl_table[]; |
85 | |
86 | long double |
87 | __kernel_sinl(long double x, long double y, int iy) |
88 | { |
89 | long double absx, h, l, z, sin_l, cos_l_m1; |
90 | int index; |
91 | |
92 | absx = fabsl (x); |
93 | if (absx < 0.1484375L) |
94 | { |
95 | /* Argument is small enough to approximate it by a Chebyshev |
96 | polynomial of degree 17. */ |
97 | if (absx < 0x1p-33L) |
98 | { |
99 | math_check_force_underflow (x); |
100 | if (!((int)x)) return x; /* generate inexact */ |
101 | } |
102 | z = x * x; |
103 | return x + (x * (z*(SIN1+z*(SIN2+z*(SIN3+z*(SIN4+ |
104 | z*(SIN5+z*(SIN6+z*(SIN7+z*SIN8))))))))); |
105 | } |
106 | else |
107 | { |
108 | /* So that we don't have to use too large polynomial, we find |
109 | l and h such that x = l + h, where fabsl(l) <= 1.0/256 with 83 |
110 | possible values for h. We look up cosl(h) and sinl(h) in |
111 | pre-computed tables, compute cosl(l) and sinl(l) using a |
112 | Chebyshev polynomial of degree 10(11) and compute |
113 | sinl(h+l) = sinl(h)cosl(l) + cosl(h)sinl(l). */ |
114 | index = (int) (128 * (absx - (0.1484375L - 1.0L / 256.0L))); |
115 | h = 0.1484375L + index / 128.0; |
116 | index *= 4; |
117 | if (iy) |
118 | l = (x < 0 ? -y : y) - (h - absx); |
119 | else |
120 | l = absx - h; |
121 | z = l * l; |
122 | sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5))))); |
123 | cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5)))); |
124 | z = __sincosl_table [index + SINCOSL_SIN_HI] |
125 | + (__sincosl_table [index + SINCOSL_SIN_LO] |
126 | + (__sincosl_table [index + SINCOSL_SIN_HI] * cos_l_m1) |
127 | + (__sincosl_table [index + SINCOSL_COS_HI] * sin_l)); |
128 | return (x < 0) ? -z : z; |
129 | } |
130 | } |
131 | |