1 | /* e_asinhl.c -- long double version of e_asinh.c. |
2 | */ |
3 | |
4 | /* |
5 | * ==================================================== |
6 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
7 | * |
8 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
9 | * Permission to use, copy, modify, and distribute this |
10 | * software is freely granted, provided that this notice |
11 | * is preserved. |
12 | * ==================================================== |
13 | */ |
14 | |
15 | #if defined(LIBM_SCCS) && !defined(lint) |
16 | static char rcsid[] = "$NetBSD: $" ; |
17 | #endif |
18 | |
19 | /* __ieee754_sinhl(x) |
20 | * Method : |
21 | * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2 |
22 | * 1. Replace x by |x| (sinhl(-x) = -sinhl(x)). |
23 | * 2. |
24 | * E + E/(E+1) |
25 | * 0 <= x <= 25 : sinhl(x) := --------------, E=expm1l(x) |
26 | * 2 |
27 | * |
28 | * 25 <= x <= lnovft : sinhl(x) := expl(x)/2 |
29 | * lnovft <= x <= ln2ovft: sinhl(x) := expl(x/2)/2 * expl(x/2) |
30 | * ln2ovft < x : sinhl(x) := x*shuge (overflow) |
31 | * |
32 | * Special cases: |
33 | * sinhl(x) is |x| if x is +INF, -INF, or NaN. |
34 | * only sinhl(0)=0 is exact for finite x. |
35 | */ |
36 | |
37 | #include <float.h> |
38 | #include <math.h> |
39 | #include <math_private.h> |
40 | #include <math-underflow.h> |
41 | #include <libm-alias-finite.h> |
42 | |
43 | static const long double one = 1.0, shuge = 1.0e4931L; |
44 | |
45 | long double |
46 | __ieee754_sinhl(long double x) |
47 | { |
48 | long double t,w,h; |
49 | uint32_t jx,ix,i0,i1; |
50 | |
51 | /* Words of |x|. */ |
52 | GET_LDOUBLE_WORDS(jx,i0,i1,x); |
53 | ix = jx&0x7fff; |
54 | |
55 | /* x is INF or NaN */ |
56 | if(__builtin_expect(ix==0x7fff, 0)) return x+x; |
57 | |
58 | h = 0.5; |
59 | if (jx & 0x8000) h = -h; |
60 | /* |x| in [0,25], return sign(x)*0.5*(E+E/(E+1))) */ |
61 | if (ix < 0x4003 || (ix == 0x4003 && i0 <= 0xc8000000)) { /* |x|<25 */ |
62 | if (ix<0x3fdf) { /* |x|<2**-32 */ |
63 | math_check_force_underflow (x); |
64 | if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */ |
65 | } |
66 | t = __expm1l(fabsl(x)); |
67 | if(ix<0x3fff) return h*(2.0*t-t*t/(t+one)); |
68 | return h*(t+t/(t+one)); |
69 | } |
70 | |
71 | /* |x| in [25, log(maxdouble)] return 0.5*exp(|x|) */ |
72 | if (ix < 0x400c || (ix == 0x400c && i0 < 0xb17217f7)) |
73 | return h*__ieee754_expl(fabsl(x)); |
74 | |
75 | /* |x| in [log(maxdouble), overflowthreshold] */ |
76 | if (ix<0x400c || (ix == 0x400c && (i0 < 0xb174ddc0 |
77 | || (i0 == 0xb174ddc0 |
78 | && i1 <= 0x31aec0ea)))) { |
79 | w = __ieee754_expl(0.5*fabsl(x)); |
80 | t = h*w; |
81 | return t*w; |
82 | } |
83 | |
84 | /* |x| > overflowthreshold, sinhl(x) overflow */ |
85 | return x*shuge; |
86 | } |
87 | libm_alias_finite (__ieee754_sinhl, __sinhl) |
88 | |