1 | /* Implementation of gamma function according to ISO C. |
2 | Copyright (C) 1997-2023 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #include <math.h> |
20 | #include <math_private.h> |
21 | #include <fenv_private.h> |
22 | #include <math-underflow.h> |
23 | #include <float.h> |
24 | #include <libm-alias-finite.h> |
25 | |
26 | /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's |
27 | approximation to gamma function. */ |
28 | |
29 | static const _Float128 gamma_coeff[] = |
30 | { |
31 | L(0x1.5555555555555555555555555555p-4), |
32 | L(-0xb.60b60b60b60b60b60b60b60b60b8p-12), |
33 | L(0x3.4034034034034034034034034034p-12), |
34 | L(-0x2.7027027027027027027027027028p-12), |
35 | L(0x3.72a3c5631fe46ae1d4e700dca8f2p-12), |
36 | L(-0x7.daac36664f1f207daac36664f1f4p-12), |
37 | L(0x1.a41a41a41a41a41a41a41a41a41ap-8), |
38 | L(-0x7.90a1b2c3d4e5f708192a3b4c5d7p-8), |
39 | L(0x2.dfd2c703c0cfff430edfd2c703cp-4), |
40 | L(-0x1.6476701181f39edbdb9ce625987dp+0), |
41 | L(0xd.672219167002d3a7a9c886459cp+0), |
42 | L(-0x9.cd9292e6660d55b3f712eb9e07c8p+4), |
43 | L(0x8.911a740da740da740da740da741p+8), |
44 | L(-0x8.d0cc570e255bf59ff6eec24b49p+12), |
45 | }; |
46 | |
47 | #define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0])) |
48 | |
49 | /* Return gamma (X), for positive X less than 1775, in the form R * |
50 | 2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to |
51 | avoid overflow or underflow in intermediate calculations. */ |
52 | |
53 | static _Float128 |
54 | gammal_positive (_Float128 x, int *exp2_adj) |
55 | { |
56 | int local_signgam; |
57 | if (x < L(0.5)) |
58 | { |
59 | *exp2_adj = 0; |
60 | return __ieee754_expl (__ieee754_lgammal_r (x + 1, &local_signgam)) / x; |
61 | } |
62 | else if (x <= L(1.5)) |
63 | { |
64 | *exp2_adj = 0; |
65 | return __ieee754_expl (__ieee754_lgammal_r (x, &local_signgam)); |
66 | } |
67 | else if (x < L(12.5)) |
68 | { |
69 | /* Adjust into the range for using exp (lgamma). */ |
70 | *exp2_adj = 0; |
71 | _Float128 n = ceill (x - L(1.5)); |
72 | _Float128 x_adj = x - n; |
73 | _Float128 eps; |
74 | _Float128 prod = __gamma_productl (x_adj, 0, n, &eps); |
75 | return (__ieee754_expl (__ieee754_lgammal_r (x_adj, &local_signgam)) |
76 | * prod * (1 + eps)); |
77 | } |
78 | else |
79 | { |
80 | _Float128 eps = 0; |
81 | _Float128 x_eps = 0; |
82 | _Float128 x_adj = x; |
83 | _Float128 prod = 1; |
84 | if (x < 24) |
85 | { |
86 | /* Adjust into the range for applying Stirling's |
87 | approximation. */ |
88 | _Float128 n = ceill (24 - x); |
89 | x_adj = x + n; |
90 | x_eps = (x - (x_adj - n)); |
91 | prod = __gamma_productl (x_adj - n, x_eps, n, &eps); |
92 | } |
93 | /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)). |
94 | Compute gamma (X_ADJ + X_EPS) using Stirling's approximation, |
95 | starting by computing pow (X_ADJ, X_ADJ) with a power of 2 |
96 | factored out. */ |
97 | _Float128 exp_adj = -eps; |
98 | _Float128 x_adj_int = roundl (x_adj); |
99 | _Float128 x_adj_frac = x_adj - x_adj_int; |
100 | int x_adj_log2; |
101 | _Float128 x_adj_mant = __frexpl (x_adj, &x_adj_log2); |
102 | if (x_adj_mant < M_SQRT1_2l) |
103 | { |
104 | x_adj_log2--; |
105 | x_adj_mant *= 2; |
106 | } |
107 | *exp2_adj = x_adj_log2 * (int) x_adj_int; |
108 | _Float128 ret = (__ieee754_powl (x_adj_mant, x_adj) |
109 | * __ieee754_exp2l (x_adj_log2 * x_adj_frac) |
110 | * __ieee754_expl (-x_adj) |
111 | * sqrtl (2 * M_PIl / x_adj) |
112 | / prod); |
113 | exp_adj += x_eps * __ieee754_logl (x_adj); |
114 | _Float128 bsum = gamma_coeff[NCOEFF - 1]; |
115 | _Float128 x_adj2 = x_adj * x_adj; |
116 | for (size_t i = 1; i <= NCOEFF - 1; i++) |
117 | bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i]; |
118 | exp_adj += bsum / x_adj; |
119 | return ret + ret * __expm1l (exp_adj); |
120 | } |
121 | } |
122 | |
123 | _Float128 |
124 | __ieee754_gammal_r (_Float128 x, int *signgamp) |
125 | { |
126 | int64_t hx; |
127 | uint64_t lx; |
128 | _Float128 ret; |
129 | |
130 | GET_LDOUBLE_WORDS64 (hx, lx, x); |
131 | |
132 | if (((hx & 0x7fffffffffffffffLL) | lx) == 0) |
133 | { |
134 | /* Return value for x == 0 is Inf with divide by zero exception. */ |
135 | *signgamp = 0; |
136 | return 1.0 / x; |
137 | } |
138 | if (hx < 0 && (uint64_t) hx < 0xffff000000000000ULL && rintl (x) == x) |
139 | { |
140 | /* Return value for integer x < 0 is NaN with invalid exception. */ |
141 | *signgamp = 0; |
142 | return (x - x) / (x - x); |
143 | } |
144 | if (hx == 0xffff000000000000ULL && lx == 0) |
145 | { |
146 | /* x == -Inf. According to ISO this is NaN. */ |
147 | *signgamp = 0; |
148 | return x - x; |
149 | } |
150 | if ((hx & 0x7fff000000000000ULL) == 0x7fff000000000000ULL) |
151 | { |
152 | /* Positive infinity (return positive infinity) or NaN (return |
153 | NaN). */ |
154 | *signgamp = 0; |
155 | return x + x; |
156 | } |
157 | |
158 | if (x >= 1756) |
159 | { |
160 | /* Overflow. */ |
161 | *signgamp = 0; |
162 | return LDBL_MAX * LDBL_MAX; |
163 | } |
164 | else |
165 | { |
166 | SET_RESTORE_ROUNDL (FE_TONEAREST); |
167 | if (x > 0) |
168 | { |
169 | *signgamp = 0; |
170 | int exp2_adj; |
171 | ret = gammal_positive (x, &exp2_adj); |
172 | ret = __scalbnl (ret, exp2_adj); |
173 | } |
174 | else if (x >= -LDBL_EPSILON / 4) |
175 | { |
176 | *signgamp = 0; |
177 | ret = 1 / x; |
178 | } |
179 | else |
180 | { |
181 | _Float128 tx = truncl (x); |
182 | *signgamp = (tx == 2 * truncl (tx / 2)) ? -1 : 1; |
183 | if (x <= -1775) |
184 | /* Underflow. */ |
185 | ret = LDBL_MIN * LDBL_MIN; |
186 | else |
187 | { |
188 | _Float128 frac = tx - x; |
189 | if (frac > L(0.5)) |
190 | frac = 1 - frac; |
191 | _Float128 sinpix = (frac <= L(0.25) |
192 | ? __sinl (M_PIl * frac) |
193 | : __cosl (M_PIl * (L(0.5) - frac))); |
194 | int exp2_adj; |
195 | ret = M_PIl / (-x * sinpix |
196 | * gammal_positive (-x, &exp2_adj)); |
197 | ret = __scalbnl (ret, -exp2_adj); |
198 | math_check_force_underflow_nonneg (ret); |
199 | } |
200 | } |
201 | } |
202 | if (isinf (ret) && x != 0) |
203 | { |
204 | if (*signgamp < 0) |
205 | return -(-copysignl (LDBL_MAX, ret) * LDBL_MAX); |
206 | else |
207 | return copysignl (LDBL_MAX, ret) * LDBL_MAX; |
208 | } |
209 | else if (ret == 0) |
210 | { |
211 | if (*signgamp < 0) |
212 | return -(-copysignl (LDBL_MIN, ret) * LDBL_MIN); |
213 | else |
214 | return copysignl (LDBL_MIN, ret) * LDBL_MIN; |
215 | } |
216 | else |
217 | return ret; |
218 | } |
219 | libm_alias_finite (__ieee754_gammal_r, __gammal_r) |
220 | |