1 | /* Quad-precision floating point e^x. |
2 | Copyright (C) 1999-2023 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | /* The basic design here is from |
20 | Abraham Ziv, "Fast Evaluation of Elementary Mathematical Functions with |
21 | Correctly Rounded Last Bit", ACM Trans. Math. Soft., 17 (3), September 1991, |
22 | pp. 410-423. |
23 | |
24 | We work with number pairs where the first number is the high part and |
25 | the second one is the low part. Arithmetic with the high part numbers must |
26 | be exact, without any roundoff errors. |
27 | |
28 | The input value, X, is written as |
29 | X = n * ln(2)_0 + arg1[t1]_0 + arg2[t2]_0 + x |
30 | - n * ln(2)_1 + arg1[t1]_1 + arg2[t2]_1 + xl |
31 | |
32 | where: |
33 | - n is an integer, 16384 >= n >= -16495; |
34 | - ln(2)_0 is the first 93 bits of ln(2), and |ln(2)_0-ln(2)-ln(2)_1| < 2^-205 |
35 | - t1 is an integer, 89 >= t1 >= -89 |
36 | - t2 is an integer, 65 >= t2 >= -65 |
37 | - |arg1[t1]-t1/256.0| < 2^-53 |
38 | - |arg2[t2]-t2/32768.0| < 2^-53 |
39 | - x + xl is whatever is left, |x + xl| < 2^-16 + 2^-53 |
40 | |
41 | Then e^x is approximated as |
42 | |
43 | e^x = 2^n_1 ( 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1) |
44 | + 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1) |
45 | * p (x + xl + n * ln(2)_1)) |
46 | where: |
47 | - p(x) is a polynomial approximating e(x)-1 |
48 | - e^(arg1[t1]_0 + arg1[t1]_1) is obtained from a table |
49 | - e^(arg2[t2]_0 + arg2[t2]_1) likewise |
50 | - n_1 + n_0 = n, so that |n_0| < -LDBL_MIN_EXP-1. |
51 | |
52 | If it happens that n_1 == 0 (this is the usual case), that multiplication |
53 | is omitted. |
54 | */ |
55 | |
56 | #ifndef _GNU_SOURCE |
57 | #define _GNU_SOURCE |
58 | #endif |
59 | #include <float.h> |
60 | #include <ieee754.h> |
61 | #include <math.h> |
62 | #include <fenv.h> |
63 | #include <inttypes.h> |
64 | #include <math-barriers.h> |
65 | #include <math_private.h> |
66 | #include <math-underflow.h> |
67 | #include <stdlib.h> |
68 | #include "t_expl.h" |
69 | #include <libm-alias-finite.h> |
70 | |
71 | static const _Float128 C[] = { |
72 | /* Smallest integer x for which e^x overflows. */ |
73 | #define himark C[0] |
74 | L(11356.523406294143949491931077970765), |
75 | |
76 | /* Largest integer x for which e^x underflows. */ |
77 | #define lomark C[1] |
78 | L(-11433.4627433362978788372438434526231), |
79 | |
80 | /* 3x2^96 */ |
81 | #define THREEp96 C[2] |
82 | L(59421121885698253195157962752.0), |
83 | |
84 | /* 3x2^103 */ |
85 | #define THREEp103 C[3] |
86 | L(30423614405477505635920876929024.0), |
87 | |
88 | /* 3x2^111 */ |
89 | #define THREEp111 C[4] |
90 | L(7788445287802241442795744493830144.0), |
91 | |
92 | /* 1/ln(2) */ |
93 | #define M_1_LN2 C[5] |
94 | L(1.44269504088896340735992468100189204), |
95 | |
96 | /* first 93 bits of ln(2) */ |
97 | #define M_LN2_0 C[6] |
98 | L(0.693147180559945309417232121457981864), |
99 | |
100 | /* ln2_0 - ln(2) */ |
101 | #define M_LN2_1 C[7] |
102 | L(-1.94704509238074995158795957333327386E-31), |
103 | |
104 | /* very small number */ |
105 | #define TINY C[8] |
106 | L(1.0e-4900), |
107 | |
108 | /* 2^16383 */ |
109 | #define TWO16383 C[9] |
110 | L(5.94865747678615882542879663314003565E+4931), |
111 | |
112 | /* 256 */ |
113 | #define TWO8 C[10] |
114 | 256, |
115 | |
116 | /* 32768 */ |
117 | #define TWO15 C[11] |
118 | 32768, |
119 | |
120 | /* Chebyshev polynom coefficients for (exp(x)-1)/x */ |
121 | #define P1 C[12] |
122 | #define P2 C[13] |
123 | #define P3 C[14] |
124 | #define P4 C[15] |
125 | #define P5 C[16] |
126 | #define P6 C[17] |
127 | L(0.5), |
128 | L(1.66666666666666666666666666666666683E-01), |
129 | L(4.16666666666666666666654902320001674E-02), |
130 | L(8.33333333333333333333314659767198461E-03), |
131 | L(1.38888888889899438565058018857254025E-03), |
132 | L(1.98412698413981650382436541785404286E-04), |
133 | }; |
134 | |
135 | _Float128 |
136 | __ieee754_expl (_Float128 x) |
137 | { |
138 | /* Check for usual case. */ |
139 | if (isless (x, himark) && isgreater (x, lomark)) |
140 | { |
141 | int tval1, tval2, unsafe, n_i; |
142 | _Float128 x22, n, t, result, xl; |
143 | union ieee854_long_double ex2_u, scale_u; |
144 | fenv_t oldenv; |
145 | |
146 | feholdexcept (&oldenv); |
147 | #ifdef FE_TONEAREST |
148 | fesetround (FE_TONEAREST); |
149 | #endif |
150 | |
151 | /* Calculate n. */ |
152 | n = x * M_1_LN2 + THREEp111; |
153 | n -= THREEp111; |
154 | x = x - n * M_LN2_0; |
155 | xl = n * M_LN2_1; |
156 | |
157 | /* Calculate t/256. */ |
158 | t = x + THREEp103; |
159 | t -= THREEp103; |
160 | |
161 | /* Compute tval1 = t. */ |
162 | tval1 = (int) (t * TWO8); |
163 | |
164 | x -= __expl_table[T_EXPL_ARG1+2*tval1]; |
165 | xl -= __expl_table[T_EXPL_ARG1+2*tval1+1]; |
166 | |
167 | /* Calculate t/32768. */ |
168 | t = x + THREEp96; |
169 | t -= THREEp96; |
170 | |
171 | /* Compute tval2 = t. */ |
172 | tval2 = (int) (t * TWO15); |
173 | |
174 | x -= __expl_table[T_EXPL_ARG2+2*tval2]; |
175 | xl -= __expl_table[T_EXPL_ARG2+2*tval2+1]; |
176 | |
177 | x = x + xl; |
178 | |
179 | /* Compute ex2 = 2^n_0 e^(argtable[tval1]) e^(argtable[tval2]). */ |
180 | ex2_u.d = __expl_table[T_EXPL_RES1 + tval1] |
181 | * __expl_table[T_EXPL_RES2 + tval2]; |
182 | n_i = (int)n; |
183 | /* 'unsafe' is 1 iff n_1 != 0. */ |
184 | unsafe = abs(n_i) >= 15000; |
185 | ex2_u.ieee.exponent += n_i >> unsafe; |
186 | |
187 | /* Compute scale = 2^n_1. */ |
188 | scale_u.d = 1; |
189 | scale_u.ieee.exponent += n_i - (n_i >> unsafe); |
190 | |
191 | /* Approximate e^x2 - 1, using a seventh-degree polynomial, |
192 | with maximum error in [-2^-16-2^-53,2^-16+2^-53] |
193 | less than 4.8e-39. */ |
194 | x22 = x + x*x*(P1+x*(P2+x*(P3+x*(P4+x*(P5+x*P6))))); |
195 | math_force_eval (x22); |
196 | |
197 | /* Return result. */ |
198 | fesetenv (&oldenv); |
199 | |
200 | result = x22 * ex2_u.d + ex2_u.d; |
201 | |
202 | /* Now we can test whether the result is ultimate or if we are unsure. |
203 | In the later case we should probably call a mpn based routine to give |
204 | the ultimate result. |
205 | Empirically, this routine is already ultimate in about 99.9986% of |
206 | cases, the test below for the round to nearest case will be false |
207 | in ~ 99.9963% of cases. |
208 | Without proc2 routine maximum error which has been seen is |
209 | 0.5000262 ulp. |
210 | |
211 | union ieee854_long_double ex3_u; |
212 | |
213 | #ifdef FE_TONEAREST |
214 | fesetround (FE_TONEAREST); |
215 | #endif |
216 | ex3_u.d = (result - ex2_u.d) - x22 * ex2_u.d; |
217 | ex2_u.d = result; |
218 | ex3_u.ieee.exponent += LDBL_MANT_DIG + 15 + IEEE854_LONG_DOUBLE_BIAS |
219 | - ex2_u.ieee.exponent; |
220 | n_i = abs (ex3_u.d); |
221 | n_i = (n_i + 1) / 2; |
222 | fesetenv (&oldenv); |
223 | #ifdef FE_TONEAREST |
224 | if (fegetround () == FE_TONEAREST) |
225 | n_i -= 0x4000; |
226 | #endif |
227 | if (!n_i) { |
228 | return __ieee754_expl_proc2 (origx); |
229 | } |
230 | */ |
231 | if (!unsafe) |
232 | return result; |
233 | else |
234 | { |
235 | result *= scale_u.d; |
236 | math_check_force_underflow_nonneg (result); |
237 | return result; |
238 | } |
239 | } |
240 | /* Exceptional cases: */ |
241 | else if (isless (x, himark)) |
242 | { |
243 | if (isinf (x)) |
244 | /* e^-inf == 0, with no error. */ |
245 | return 0; |
246 | else |
247 | /* Underflow */ |
248 | return TINY * TINY; |
249 | } |
250 | else |
251 | /* Return x, if x is a NaN or Inf; or overflow, otherwise. */ |
252 | return TWO16383*x; |
253 | } |
254 | libm_alias_finite (__ieee754_expl, __expl) |
255 | |