1 | /* Single-precision log function. |
2 | Copyright (C) 2017-2023 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #include <math.h> |
20 | #include <stdint.h> |
21 | #include <libm-alias-finite.h> |
22 | #include <libm-alias-float.h> |
23 | #include "math_config.h" |
24 | |
25 | /* |
26 | LOGF_TABLE_BITS = 4 |
27 | LOGF_POLY_ORDER = 4 |
28 | |
29 | ULP error: 0.818 (nearest rounding.) |
30 | Relative error: 1.957 * 2^-26 (before rounding.) |
31 | */ |
32 | |
33 | #define T __logf_data.tab |
34 | #define A __logf_data.poly |
35 | #define Ln2 __logf_data.ln2 |
36 | #define N (1 << LOGF_TABLE_BITS) |
37 | #define OFF 0x3f330000 |
38 | |
39 | float |
40 | __logf (float x) |
41 | { |
42 | /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ |
43 | double_t z, r, r2, y, y0, invc, logc; |
44 | uint32_t ix, iz, tmp; |
45 | int k, i; |
46 | |
47 | ix = asuint (x); |
48 | #if WANT_ROUNDING |
49 | /* Fix sign of zero with downward rounding when x==1. */ |
50 | if (__glibc_unlikely (ix == 0x3f800000)) |
51 | return 0; |
52 | #endif |
53 | if (__glibc_unlikely (ix - 0x00800000 >= 0x7f800000 - 0x00800000)) |
54 | { |
55 | /* x < 0x1p-126 or inf or nan. */ |
56 | if (ix * 2 == 0) |
57 | return __math_divzerof (1); |
58 | if (ix == 0x7f800000) /* log(inf) == inf. */ |
59 | return x; |
60 | if ((ix & 0x80000000) || ix * 2 >= 0xff000000) |
61 | return __math_invalidf (x); |
62 | /* x is subnormal, normalize it. */ |
63 | ix = asuint (x * 0x1p23f); |
64 | ix -= 23 << 23; |
65 | } |
66 | |
67 | /* x = 2^k z; where z is in range [OFF,2*OFF] and exact. |
68 | The range is split into N subintervals. |
69 | The ith subinterval contains z and c is near its center. */ |
70 | tmp = ix - OFF; |
71 | i = (tmp >> (23 - LOGF_TABLE_BITS)) % N; |
72 | k = (int32_t) tmp >> 23; /* arithmetic shift */ |
73 | iz = ix - (tmp & 0x1ff << 23); |
74 | invc = T[i].invc; |
75 | logc = T[i].logc; |
76 | z = (double_t) asfloat (iz); |
77 | |
78 | /* log(x) = log1p(z/c-1) + log(c) + k*Ln2 */ |
79 | r = z * invc - 1; |
80 | y0 = logc + (double_t) k * Ln2; |
81 | |
82 | /* Pipelined polynomial evaluation to approximate log1p(r). */ |
83 | r2 = r * r; |
84 | y = A[1] * r + A[2]; |
85 | y = A[0] * r2 + y; |
86 | y = y * r2 + (y0 + r); |
87 | return (float) y; |
88 | } |
89 | #ifndef __logf |
90 | strong_alias (__logf, __ieee754_logf) |
91 | libm_alias_finite (__ieee754_logf, __logf) |
92 | versioned_symbol (libm, __logf, logf, GLIBC_2_27); |
93 | libm_alias_float_other (__log, log) |
94 | #endif |
95 | |