1 | /* Single-precision log2 function. |
2 | Copyright (C) 2017-2023 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #include <math.h> |
20 | #include <stdint.h> |
21 | #include <libm-alias-finite.h> |
22 | #include <libm-alias-float.h> |
23 | #include "math_config.h" |
24 | |
25 | /* |
26 | LOG2F_TABLE_BITS = 4 |
27 | LOG2F_POLY_ORDER = 4 |
28 | |
29 | ULP error: 0.752 (nearest rounding.) |
30 | Relative error: 1.9 * 2^-26 (before rounding.) |
31 | */ |
32 | |
33 | #define N (1 << LOG2F_TABLE_BITS) |
34 | #define T __log2f_data.tab |
35 | #define A __log2f_data.poly |
36 | #define OFF 0x3f330000 |
37 | |
38 | float |
39 | __log2f (float x) |
40 | { |
41 | /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ |
42 | double_t z, r, r2, p, y, y0, invc, logc; |
43 | uint32_t ix, iz, top, tmp; |
44 | int k, i; |
45 | |
46 | ix = asuint (x); |
47 | #if WANT_ROUNDING |
48 | /* Fix sign of zero with downward rounding when x==1. */ |
49 | if (__glibc_unlikely (ix == 0x3f800000)) |
50 | return 0; |
51 | #endif |
52 | if (__glibc_unlikely (ix - 0x00800000 >= 0x7f800000 - 0x00800000)) |
53 | { |
54 | /* x < 0x1p-126 or inf or nan. */ |
55 | if (ix * 2 == 0) |
56 | return __math_divzerof (1); |
57 | if (ix == 0x7f800000) /* log2(inf) == inf. */ |
58 | return x; |
59 | if ((ix & 0x80000000) || ix * 2 >= 0xff000000) |
60 | return __math_invalidf (x); |
61 | /* x is subnormal, normalize it. */ |
62 | ix = asuint (x * 0x1p23f); |
63 | ix -= 23 << 23; |
64 | } |
65 | |
66 | /* x = 2^k z; where z is in range [OFF,2*OFF] and exact. |
67 | The range is split into N subintervals. |
68 | The ith subinterval contains z and c is near its center. */ |
69 | tmp = ix - OFF; |
70 | i = (tmp >> (23 - LOG2F_TABLE_BITS)) % N; |
71 | top = tmp & 0xff800000; |
72 | iz = ix - top; |
73 | k = (int32_t) tmp >> 23; /* arithmetic shift */ |
74 | invc = T[i].invc; |
75 | logc = T[i].logc; |
76 | z = (double_t) asfloat (iz); |
77 | |
78 | /* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */ |
79 | r = z * invc - 1; |
80 | y0 = logc + (double_t) k; |
81 | |
82 | /* Pipelined polynomial evaluation to approximate log1p(r)/ln2. */ |
83 | r2 = r * r; |
84 | y = A[1] * r + A[2]; |
85 | y = A[0] * r2 + y; |
86 | p = A[3] * r + y0; |
87 | y = y * r2 + p; |
88 | return (float) y; |
89 | } |
90 | #ifndef __log2f |
91 | strong_alias (__log2f, __ieee754_log2f) |
92 | libm_alias_finite (__ieee754_log2f, __log2f) |
93 | versioned_symbol (libm, __log2f, log2f, GLIBC_2_27); |
94 | libm_alias_float_other (__log2, log2) |
95 | #endif |
96 | |