| 1 | /* e_asinf.c -- float version of e_asin.c. |
| 2 | */ |
| 3 | |
| 4 | /* |
| 5 | * ==================================================== |
| 6 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 7 | * |
| 8 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 9 | * Permission to use, copy, modify, and distribute this |
| 10 | * software is freely granted, provided that this notice |
| 11 | * is preserved. |
| 12 | * ==================================================== |
| 13 | */ |
| 14 | |
| 15 | /* |
| 16 | Modifications for single precision expansion are |
| 17 | Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> |
| 18 | and are incorporated herein by permission of the author. The author |
| 19 | reserves the right to distribute this material elsewhere under different |
| 20 | copying permissions. These modifications are distributed here under |
| 21 | the following terms: |
| 22 | |
| 23 | This library is free software; you can redistribute it and/or |
| 24 | modify it under the terms of the GNU Lesser General Public |
| 25 | License as published by the Free Software Foundation; either |
| 26 | version 2.1 of the License, or (at your option) any later version. |
| 27 | |
| 28 | This library is distributed in the hope that it will be useful, |
| 29 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 30 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 31 | Lesser General Public License for more details. |
| 32 | |
| 33 | You should have received a copy of the GNU Lesser General Public |
| 34 | License along with this library; if not, see |
| 35 | <https://www.gnu.org/licenses/>. */ |
| 36 | |
| 37 | #if defined(LIBM_SCCS) && !defined(lint) |
| 38 | static char rcsid[] = "$NetBSD: e_asinf.c,v 1.5 1995/05/12 04:57:25 jtc Exp $" ; |
| 39 | #endif |
| 40 | |
| 41 | #include <float.h> |
| 42 | #include <math.h> |
| 43 | #include <math_private.h> |
| 44 | #include <math-underflow.h> |
| 45 | #include <libm-alias-finite.h> |
| 46 | |
| 47 | static const float |
| 48 | one = 1.0000000000e+00, /* 0x3F800000 */ |
| 49 | huge = 1.000e+30, |
| 50 | |
| 51 | pio2_hi = 1.57079637050628662109375f, |
| 52 | pio2_lo = -4.37113900018624283e-8f, |
| 53 | pio4_hi = 0.785398185253143310546875f, |
| 54 | |
| 55 | /* asin x = x + x^3 p(x^2) |
| 56 | -0.5 <= x <= 0.5; |
| 57 | Peak relative error 4.8e-9 */ |
| 58 | p0 = 1.666675248e-1f, |
| 59 | p1 = 7.495297643e-2f, |
| 60 | p2 = 4.547037598e-2f, |
| 61 | p3 = 2.417951451e-2f, |
| 62 | p4 = 4.216630880e-2f; |
| 63 | |
| 64 | float __ieee754_asinf(float x) |
| 65 | { |
| 66 | float t,w,p,q,c,r,s; |
| 67 | int32_t hx,ix; |
| 68 | GET_FLOAT_WORD(hx,x); |
| 69 | ix = hx&0x7fffffff; |
| 70 | if(ix==0x3f800000) { |
| 71 | /* asin(1)=+-pi/2 with inexact */ |
| 72 | return x*pio2_hi+x*pio2_lo; |
| 73 | } else if(ix> 0x3f800000) { /* |x|>= 1 */ |
| 74 | return (x-x)/(x-x); /* asin(|x|>1) is NaN */ |
| 75 | } else if (ix<0x3f000000) { /* |x|<0.5 */ |
| 76 | if(ix<0x32000000) { /* if |x| < 2**-27 */ |
| 77 | math_check_force_underflow (x); |
| 78 | if(huge+x>one) return x;/* return x with inexact if x!=0*/ |
| 79 | } else { |
| 80 | t = x*x; |
| 81 | w = t * (p0 + t * (p1 + t * (p2 + t * (p3 + t * p4)))); |
| 82 | return x+x*w; |
| 83 | } |
| 84 | } |
| 85 | /* 1> |x|>= 0.5 */ |
| 86 | w = one-fabsf(x); |
| 87 | t = w*0.5f; |
| 88 | p = t * (p0 + t * (p1 + t * (p2 + t * (p3 + t * p4)))); |
| 89 | s = sqrtf(t); |
| 90 | if(ix>=0x3F79999A) { /* if |x| > 0.975 */ |
| 91 | t = pio2_hi-(2.0f*(s+s*p)-pio2_lo); |
| 92 | } else { |
| 93 | int32_t iw; |
| 94 | w = s; |
| 95 | GET_FLOAT_WORD(iw,w); |
| 96 | SET_FLOAT_WORD(w,iw&0xfffff000); |
| 97 | c = (t-w*w)/(s+w); |
| 98 | r = p; |
| 99 | p = 2.0f*s*r-(pio2_lo-2.0f*c); |
| 100 | q = pio4_hi-2.0f*w; |
| 101 | t = pio4_hi-(p-q); |
| 102 | } |
| 103 | if(hx>0) return t; else return -t; |
| 104 | } |
| 105 | libm_alias_finite (__ieee754_asinf, __asinf) |
| 106 | |