1 | /* lgamma expanding around zeros. |
2 | Copyright (C) 2015-2023 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #include <float.h> |
20 | #include <math.h> |
21 | #include <math-narrow-eval.h> |
22 | #include <math_private.h> |
23 | #include <fenv_private.h> |
24 | |
25 | static const double lgamma_zeros[][2] = |
26 | { |
27 | { -0x2.74ff92c01f0d8p+0, -0x2.abec9f315f1ap-56 }, |
28 | { -0x2.bf6821437b202p+0, 0x6.866a5b4b9be14p-56 }, |
29 | { -0x3.24c1b793cb35ep+0, -0xf.b8be699ad3d98p-56 }, |
30 | { -0x3.f48e2a8f85fcap+0, -0x1.70d4561291237p-56 }, |
31 | { -0x4.0a139e1665604p+0, 0xf.3c60f4f21e7fp-56 }, |
32 | { -0x4.fdd5de9bbabf4p+0, 0xa.ef2f55bf89678p-56 }, |
33 | { -0x5.021a95fc2db64p+0, -0x3.2a4c56e595394p-56 }, |
34 | { -0x5.ffa4bd647d034p+0, -0x1.7dd4ed62cbd32p-52 }, |
35 | { -0x6.005ac9625f234p+0, 0x4.9f83d2692e9c8p-56 }, |
36 | { -0x6.fff2fddae1bcp+0, 0xc.29d949a3dc03p-60 }, |
37 | { -0x7.000cff7b7f87cp+0, 0x1.20bb7d2324678p-52 }, |
38 | { -0x7.fffe5fe05673cp+0, -0x3.ca9e82b522b0cp-56 }, |
39 | { -0x8.0001a01459fc8p+0, -0x1.f60cb3cec1cedp-52 }, |
40 | { -0x8.ffffd1c425e8p+0, -0xf.fc864e9574928p-56 }, |
41 | { -0x9.00002e3bb47d8p+0, -0x6.d6d843fedc35p-56 }, |
42 | { -0x9.fffffb606bep+0, 0x2.32f9d51885afap-52 }, |
43 | { -0xa.0000049f93bb8p+0, -0x1.927b45d95e154p-52 }, |
44 | { -0xa.ffffff9466eap+0, 0xe.4c92532d5243p-56 }, |
45 | { -0xb.0000006b9915p+0, -0x3.15d965a6ffea4p-52 }, |
46 | { -0xb.fffffff708938p+0, -0x7.387de41acc3d4p-56 }, |
47 | { -0xc.00000008f76c8p+0, 0x8.cea983f0fdafp-56 }, |
48 | { -0xc.ffffffff4f6ep+0, 0x3.09e80685a0038p-52 }, |
49 | { -0xd.00000000b092p+0, -0x3.09c06683dd1bap-52 }, |
50 | { -0xd.fffffffff3638p+0, 0x3.a5461e7b5c1f6p-52 }, |
51 | { -0xe.000000000c9c8p+0, -0x3.a545e94e75ec6p-52 }, |
52 | { -0xe.ffffffffff29p+0, 0x3.f9f399fb10cfcp-52 }, |
53 | { -0xf.0000000000d7p+0, -0x3.f9f399bd0e42p-52 }, |
54 | { -0xf.fffffffffff28p+0, -0xc.060c6621f513p-56 }, |
55 | { -0x1.000000000000dp+4, -0x7.3f9f399da1424p-52 }, |
56 | { -0x1.0ffffffffffffp+4, -0x3.569c47e7a93e2p-52 }, |
57 | { -0x1.1000000000001p+4, 0x3.569c47e7a9778p-52 }, |
58 | { -0x1.2p+4, 0xb.413c31dcbecdp-56 }, |
59 | { -0x1.2p+4, -0xb.413c31dcbeca8p-56 }, |
60 | { -0x1.3p+4, 0x9.7a4da340a0ab8p-60 }, |
61 | { -0x1.3p+4, -0x9.7a4da340a0ab8p-60 }, |
62 | { -0x1.4p+4, 0x7.950ae90080894p-64 }, |
63 | { -0x1.4p+4, -0x7.950ae90080894p-64 }, |
64 | { -0x1.5p+4, 0x5.c6e3bdb73d5c8p-68 }, |
65 | { -0x1.5p+4, -0x5.c6e3bdb73d5c8p-68 }, |
66 | { -0x1.6p+4, 0x4.338e5b6dfe14cp-72 }, |
67 | { -0x1.6p+4, -0x4.338e5b6dfe14cp-72 }, |
68 | { -0x1.7p+4, 0x2.ec368262c7034p-76 }, |
69 | { -0x1.7p+4, -0x2.ec368262c7034p-76 }, |
70 | { -0x1.8p+4, 0x1.f2cf01972f578p-80 }, |
71 | { -0x1.8p+4, -0x1.f2cf01972f578p-80 }, |
72 | { -0x1.9p+4, 0x1.3f3ccdd165fa9p-84 }, |
73 | { -0x1.9p+4, -0x1.3f3ccdd165fa9p-84 }, |
74 | { -0x1.ap+4, 0xc.4742fe35272dp-92 }, |
75 | { -0x1.ap+4, -0xc.4742fe35272dp-92 }, |
76 | { -0x1.bp+4, 0x7.46ac70b733a8cp-96 }, |
77 | { -0x1.bp+4, -0x7.46ac70b733a8cp-96 }, |
78 | { -0x1.cp+4, 0x4.2862898d42174p-100 }, |
79 | }; |
80 | |
81 | static const double e_hi = 0x2.b7e151628aed2p+0, e_lo = 0xa.6abf7158809dp-56; |
82 | |
83 | /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) in Stirling's |
84 | approximation to lgamma function. */ |
85 | |
86 | static const double lgamma_coeff[] = |
87 | { |
88 | 0x1.5555555555555p-4, |
89 | -0xb.60b60b60b60b8p-12, |
90 | 0x3.4034034034034p-12, |
91 | -0x2.7027027027028p-12, |
92 | 0x3.72a3c5631fe46p-12, |
93 | -0x7.daac36664f1f4p-12, |
94 | 0x1.a41a41a41a41ap-8, |
95 | -0x7.90a1b2c3d4e6p-8, |
96 | 0x2.dfd2c703c0dp-4, |
97 | -0x1.6476701181f3ap+0, |
98 | 0xd.672219167003p+0, |
99 | -0x9.cd9292e6660d8p+4, |
100 | }; |
101 | |
102 | #define NCOEFF (sizeof (lgamma_coeff) / sizeof (lgamma_coeff[0])) |
103 | |
104 | /* Polynomial approximations to (|gamma(x)|-1)(x-n)/(x-x0), where n is |
105 | the integer end-point of the half-integer interval containing x and |
106 | x0 is the zero of lgamma in that half-integer interval. Each |
107 | polynomial is expressed in terms of x-xm, where xm is the midpoint |
108 | of the interval for which the polynomial applies. */ |
109 | |
110 | static const double poly_coeff[] = |
111 | { |
112 | /* Interval [-2.125, -2] (polynomial degree 10). */ |
113 | -0x1.0b71c5c54d42fp+0, |
114 | -0xc.73a1dc05f3758p-4, |
115 | -0x1.ec84140851911p-4, |
116 | -0xe.37c9da23847e8p-4, |
117 | -0x1.03cd87cdc0ac6p-4, |
118 | -0xe.ae9aedce12eep-4, |
119 | 0x9.b11a1780cfd48p-8, |
120 | -0xe.f25fc460bdebp-4, |
121 | 0x2.6e984c61ca912p-4, |
122 | -0xf.83fea1c6d35p-4, |
123 | 0x4.760c8c8909758p-4, |
124 | /* Interval [-2.25, -2.125] (polynomial degree 11). */ |
125 | -0xf.2930890d7d678p-4, |
126 | -0xc.a5cfde054eaa8p-4, |
127 | 0x3.9c9e0fdebd99cp-4, |
128 | -0x1.02a5ad35619d9p+0, |
129 | 0x9.6e9b1167c164p-4, |
130 | -0x1.4d8332eba090ap+0, |
131 | 0x1.1c0c94b1b2b6p+0, |
132 | -0x1.c9a70d138c74ep+0, |
133 | 0x1.d7d9cf1d4c196p+0, |
134 | -0x2.91fbf4cd6abacp+0, |
135 | 0x2.f6751f74b8ff8p+0, |
136 | -0x3.e1bb7b09e3e76p+0, |
137 | /* Interval [-2.375, -2.25] (polynomial degree 12). */ |
138 | -0xd.7d28d505d618p-4, |
139 | -0xe.69649a3040958p-4, |
140 | 0xb.0d74a2827cd6p-4, |
141 | -0x1.924b09228a86ep+0, |
142 | 0x1.d49b12bcf6175p+0, |
143 | -0x3.0898bb530d314p+0, |
144 | 0x4.207a6be8fda4cp+0, |
145 | -0x6.39eef56d4e9p+0, |
146 | 0x8.e2e42acbccec8p+0, |
147 | -0xd.0d91c1e596a68p+0, |
148 | 0x1.2e20d7099c585p+4, |
149 | -0x1.c4eb6691b4ca9p+4, |
150 | 0x2.96a1a11fd85fep+4, |
151 | /* Interval [-2.5, -2.375] (polynomial degree 13). */ |
152 | -0xb.74ea1bcfff948p-4, |
153 | -0x1.2a82bd590c376p+0, |
154 | 0x1.88020f828b81p+0, |
155 | -0x3.32279f040d7aep+0, |
156 | 0x5.57ac8252ce868p+0, |
157 | -0x9.c2aedd093125p+0, |
158 | 0x1.12c132716e94cp+4, |
159 | -0x1.ea94dfa5c0a6dp+4, |
160 | 0x3.66b61abfe858cp+4, |
161 | -0x6.0cfceb62a26e4p+4, |
162 | 0xa.beeba09403bd8p+4, |
163 | -0x1.3188d9b1b288cp+8, |
164 | 0x2.37f774dd14c44p+8, |
165 | -0x3.fdf0a64cd7136p+8, |
166 | /* Interval [-2.625, -2.5] (polynomial degree 13). */ |
167 | -0x3.d10108c27ebbp-4, |
168 | 0x1.cd557caff7d2fp+0, |
169 | 0x3.819b4856d36cep+0, |
170 | 0x6.8505cbacfc42p+0, |
171 | 0xb.c1b2e6567a4dp+0, |
172 | 0x1.50a53a3ce6c73p+4, |
173 | 0x2.57adffbb1ec0cp+4, |
174 | 0x4.2b15549cf400cp+4, |
175 | 0x7.698cfd82b3e18p+4, |
176 | 0xd.2decde217755p+4, |
177 | 0x1.7699a624d07b9p+8, |
178 | 0x2.98ecf617abbfcp+8, |
179 | 0x4.d5244d44d60b4p+8, |
180 | 0x8.e962bf7395988p+8, |
181 | /* Interval [-2.75, -2.625] (polynomial degree 12). */ |
182 | -0x6.b5d252a56e8a8p-4, |
183 | 0x1.28d60383da3a6p+0, |
184 | 0x1.db6513ada89bep+0, |
185 | 0x2.e217118fa8c02p+0, |
186 | 0x4.450112c651348p+0, |
187 | 0x6.4af990f589b8cp+0, |
188 | 0x9.2db5963d7a238p+0, |
189 | 0xd.62c03647da19p+0, |
190 | 0x1.379f81f6416afp+4, |
191 | 0x1.c5618b4fdb96p+4, |
192 | 0x2.9342d0af2ac4ep+4, |
193 | 0x3.d9cdf56d2b186p+4, |
194 | 0x5.ab9f91d5a27a4p+4, |
195 | /* Interval [-2.875, -2.75] (polynomial degree 11). */ |
196 | -0x8.a41b1e4f36ff8p-4, |
197 | 0xc.da87d3b69dbe8p-4, |
198 | 0x1.1474ad5c36709p+0, |
199 | 0x1.761ecb90c8c5cp+0, |
200 | 0x1.d279bff588826p+0, |
201 | 0x2.4e5d003fb36a8p+0, |
202 | 0x2.d575575566842p+0, |
203 | 0x3.85152b0d17756p+0, |
204 | 0x4.5213d921ca13p+0, |
205 | 0x5.55da7dfcf69c4p+0, |
206 | 0x6.acef729b9404p+0, |
207 | 0x8.483cc21dd0668p+0, |
208 | /* Interval [-3, -2.875] (polynomial degree 11). */ |
209 | -0xa.046d667e468f8p-4, |
210 | 0x9.70b88dcc006cp-4, |
211 | 0xa.a8a39421c94dp-4, |
212 | 0xd.2f4d1363f98ep-4, |
213 | 0xd.ca9aa19975b7p-4, |
214 | 0xf.cf09c2f54404p-4, |
215 | 0x1.04b1365a9adfcp+0, |
216 | 0x1.22b54ef213798p+0, |
217 | 0x1.2c52c25206bf5p+0, |
218 | 0x1.4aa3d798aace4p+0, |
219 | 0x1.5c3f278b504e3p+0, |
220 | 0x1.7e08292cc347bp+0, |
221 | }; |
222 | |
223 | static const size_t poly_deg[] = |
224 | { |
225 | 10, |
226 | 11, |
227 | 12, |
228 | 13, |
229 | 13, |
230 | 12, |
231 | 11, |
232 | 11, |
233 | }; |
234 | |
235 | static const size_t poly_end[] = |
236 | { |
237 | 10, |
238 | 22, |
239 | 35, |
240 | 49, |
241 | 63, |
242 | 76, |
243 | 88, |
244 | 100, |
245 | }; |
246 | |
247 | /* Compute sin (pi * X) for -0.25 <= X <= 0.5. */ |
248 | |
249 | static double |
250 | lg_sinpi (double x) |
251 | { |
252 | if (x <= 0.25) |
253 | return __sin (M_PI * x); |
254 | else |
255 | return __cos (M_PI * (0.5 - x)); |
256 | } |
257 | |
258 | /* Compute cos (pi * X) for -0.25 <= X <= 0.5. */ |
259 | |
260 | static double |
261 | lg_cospi (double x) |
262 | { |
263 | if (x <= 0.25) |
264 | return __cos (M_PI * x); |
265 | else |
266 | return __sin (M_PI * (0.5 - x)); |
267 | } |
268 | |
269 | /* Compute cot (pi * X) for -0.25 <= X <= 0.5. */ |
270 | |
271 | static double |
272 | lg_cotpi (double x) |
273 | { |
274 | return lg_cospi (x) / lg_sinpi (x); |
275 | } |
276 | |
277 | /* Compute lgamma of a negative argument -28 < X < -2, setting |
278 | *SIGNGAMP accordingly. */ |
279 | |
280 | double |
281 | __lgamma_neg (double x, int *signgamp) |
282 | { |
283 | /* Determine the half-integer region X lies in, handle exact |
284 | integers and determine the sign of the result. */ |
285 | int i = floor (-2 * x); |
286 | if ((i & 1) == 0 && i == -2 * x) |
287 | return 1.0 / 0.0; |
288 | double xn = ((i & 1) == 0 ? -i / 2 : (-i - 1) / 2); |
289 | i -= 4; |
290 | *signgamp = ((i & 2) == 0 ? -1 : 1); |
291 | |
292 | SET_RESTORE_ROUND (FE_TONEAREST); |
293 | |
294 | /* Expand around the zero X0 = X0_HI + X0_LO. */ |
295 | double x0_hi = lgamma_zeros[i][0], x0_lo = lgamma_zeros[i][1]; |
296 | double xdiff = x - x0_hi - x0_lo; |
297 | |
298 | /* For arguments in the range -3 to -2, use polynomial |
299 | approximations to an adjusted version of the gamma function. */ |
300 | if (i < 2) |
301 | { |
302 | int j = floor (-8 * x) - 16; |
303 | double xm = (-33 - 2 * j) * 0.0625; |
304 | double x_adj = x - xm; |
305 | size_t deg = poly_deg[j]; |
306 | size_t end = poly_end[j]; |
307 | double g = poly_coeff[end]; |
308 | for (size_t j = 1; j <= deg; j++) |
309 | g = g * x_adj + poly_coeff[end - j]; |
310 | return __log1p (g * xdiff / (x - xn)); |
311 | } |
312 | |
313 | /* The result we want is log (sinpi (X0) / sinpi (X)) |
314 | + log (gamma (1 - X0) / gamma (1 - X)). */ |
315 | double x_idiff = fabs (xn - x), x0_idiff = fabs (xn - x0_hi - x0_lo); |
316 | double log_sinpi_ratio; |
317 | if (x0_idiff < x_idiff * 0.5) |
318 | /* Use log not log1p to avoid inaccuracy from log1p of arguments |
319 | close to -1. */ |
320 | log_sinpi_ratio = __ieee754_log (lg_sinpi (x0_idiff) |
321 | / lg_sinpi (x_idiff)); |
322 | else |
323 | { |
324 | /* Use log1p not log to avoid inaccuracy from log of arguments |
325 | close to 1. X0DIFF2 has positive sign if X0 is further from |
326 | XN than X is from XN, negative sign otherwise. */ |
327 | double x0diff2 = ((i & 1) == 0 ? xdiff : -xdiff) * 0.5; |
328 | double sx0d2 = lg_sinpi (x0diff2); |
329 | double cx0d2 = lg_cospi (x0diff2); |
330 | log_sinpi_ratio = __log1p (2 * sx0d2 |
331 | * (-sx0d2 + cx0d2 * lg_cotpi (x_idiff))); |
332 | } |
333 | |
334 | double log_gamma_ratio; |
335 | double y0 = math_narrow_eval (1 - x0_hi); |
336 | double y0_eps = -x0_hi + (1 - y0) - x0_lo; |
337 | double y = math_narrow_eval (1 - x); |
338 | double y_eps = -x + (1 - y); |
339 | /* We now wish to compute LOG_GAMMA_RATIO |
340 | = log (gamma (Y0 + Y0_EPS) / gamma (Y + Y_EPS)). XDIFF |
341 | accurately approximates the difference Y0 + Y0_EPS - Y - |
342 | Y_EPS. Use Stirling's approximation. First, we may need to |
343 | adjust into the range where Stirling's approximation is |
344 | sufficiently accurate. */ |
345 | double log_gamma_adj = 0; |
346 | if (i < 6) |
347 | { |
348 | int n_up = (7 - i) / 2; |
349 | double ny0, ny0_eps, ny, ny_eps; |
350 | ny0 = math_narrow_eval (y0 + n_up); |
351 | ny0_eps = y0 - (ny0 - n_up) + y0_eps; |
352 | y0 = ny0; |
353 | y0_eps = ny0_eps; |
354 | ny = math_narrow_eval (y + n_up); |
355 | ny_eps = y - (ny - n_up) + y_eps; |
356 | y = ny; |
357 | y_eps = ny_eps; |
358 | double prodm1 = __lgamma_product (xdiff, y - n_up, y_eps, n_up); |
359 | log_gamma_adj = -__log1p (prodm1); |
360 | } |
361 | double log_gamma_high |
362 | = (xdiff * __log1p ((y0 - e_hi - e_lo + y0_eps) / e_hi) |
363 | + (y - 0.5 + y_eps) * __log1p (xdiff / y) + log_gamma_adj); |
364 | /* Compute the sum of (B_2k / 2k(2k-1))(Y0^-(2k-1) - Y^-(2k-1)). */ |
365 | double y0r = 1 / y0, yr = 1 / y; |
366 | double y0r2 = y0r * y0r, yr2 = yr * yr; |
367 | double rdiff = -xdiff / (y * y0); |
368 | double bterm[NCOEFF]; |
369 | double dlast = rdiff, elast = rdiff * yr * (yr + y0r); |
370 | bterm[0] = dlast * lgamma_coeff[0]; |
371 | for (size_t j = 1; j < NCOEFF; j++) |
372 | { |
373 | double dnext = dlast * y0r2 + elast; |
374 | double enext = elast * yr2; |
375 | bterm[j] = dnext * lgamma_coeff[j]; |
376 | dlast = dnext; |
377 | elast = enext; |
378 | } |
379 | double log_gamma_low = 0; |
380 | for (size_t j = 0; j < NCOEFF; j++) |
381 | log_gamma_low += bterm[NCOEFF - 1 - j]; |
382 | log_gamma_ratio = log_gamma_high + log_gamma_low; |
383 | |
384 | return log_sinpi_ratio + log_gamma_ratio; |
385 | } |
386 | |