1 | /* mpn_divmod_1(quot_ptr, dividend_ptr, dividend_size, divisor_limb) -- |
2 | Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB. |
3 | Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR. |
4 | Return the single-limb remainder. |
5 | There are no constraints on the value of the divisor. |
6 | |
7 | QUOT_PTR and DIVIDEND_PTR might point to the same limb. |
8 | |
9 | Copyright (C) 1991-2023 Free Software Foundation, Inc. |
10 | |
11 | This file is part of the GNU MP Library. |
12 | |
13 | The GNU MP Library is free software; you can redistribute it and/or modify |
14 | it under the terms of the GNU Lesser General Public License as published by |
15 | the Free Software Foundation; either version 2.1 of the License, or (at your |
16 | option) any later version. |
17 | |
18 | The GNU MP Library is distributed in the hope that it will be useful, but |
19 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
20 | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public |
21 | License for more details. |
22 | |
23 | You should have received a copy of the GNU Lesser General Public License |
24 | along with the GNU MP Library; see the file COPYING.LIB. If not, see |
25 | <https://www.gnu.org/licenses/>. */ |
26 | |
27 | #include <gmp.h> |
28 | #include "gmp-impl.h" |
29 | #include "longlong.h" |
30 | |
31 | #ifndef UMUL_TIME |
32 | #define UMUL_TIME 1 |
33 | #endif |
34 | |
35 | #ifndef UDIV_TIME |
36 | #define UDIV_TIME UMUL_TIME |
37 | #endif |
38 | |
39 | /* FIXME: We should be using invert_limb (or invert_normalized_limb) |
40 | here (not udiv_qrnnd). */ |
41 | |
42 | mp_limb_t |
43 | mpn_divmod_1 (mp_ptr quot_ptr, |
44 | mp_srcptr dividend_ptr, mp_size_t dividend_size, |
45 | mp_limb_t divisor_limb) |
46 | { |
47 | mp_size_t i; |
48 | mp_limb_t n1, n0, r; |
49 | mp_limb_t dummy __attribute__ ((unused)); |
50 | |
51 | /* ??? Should this be handled at all? Rely on callers? */ |
52 | if (dividend_size == 0) |
53 | return 0; |
54 | |
55 | /* If multiplication is much faster than division, and the |
56 | dividend is large, pre-invert the divisor, and use |
57 | only multiplications in the inner loop. */ |
58 | |
59 | /* This test should be read: |
60 | Does it ever help to use udiv_qrnnd_preinv? |
61 | && Does what we save compensate for the inversion overhead? */ |
62 | if (UDIV_TIME > (2 * UMUL_TIME + 6) |
63 | && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) |
64 | { |
65 | int normalization_steps; |
66 | |
67 | count_leading_zeros (normalization_steps, divisor_limb); |
68 | if (normalization_steps != 0) |
69 | { |
70 | mp_limb_t divisor_limb_inverted; |
71 | |
72 | divisor_limb <<= normalization_steps; |
73 | |
74 | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The |
75 | result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the |
76 | most significant bit (with weight 2**N) implicit. */ |
77 | |
78 | /* Special case for DIVISOR_LIMB == 100...000. */ |
79 | if (divisor_limb << 1 == 0) |
80 | divisor_limb_inverted = ~(mp_limb_t) 0; |
81 | else |
82 | udiv_qrnnd (divisor_limb_inverted, dummy, |
83 | -divisor_limb, 0, divisor_limb); |
84 | |
85 | n1 = dividend_ptr[dividend_size - 1]; |
86 | r = n1 >> (BITS_PER_MP_LIMB - normalization_steps); |
87 | |
88 | /* Possible optimization: |
89 | if (r == 0 |
90 | && divisor_limb > ((n1 << normalization_steps) |
91 | | (dividend_ptr[dividend_size - 2] >> ...))) |
92 | ...one division less... */ |
93 | |
94 | for (i = dividend_size - 2; i >= 0; i--) |
95 | { |
96 | n0 = dividend_ptr[i]; |
97 | udiv_qrnnd_preinv (quot_ptr[i + 1], r, r, |
98 | ((n1 << normalization_steps) |
99 | | (n0 >> (BITS_PER_MP_LIMB - normalization_steps))), |
100 | divisor_limb, divisor_limb_inverted); |
101 | n1 = n0; |
102 | } |
103 | udiv_qrnnd_preinv (quot_ptr[0], r, r, |
104 | n1 << normalization_steps, |
105 | divisor_limb, divisor_limb_inverted); |
106 | return r >> normalization_steps; |
107 | } |
108 | else |
109 | { |
110 | mp_limb_t divisor_limb_inverted; |
111 | |
112 | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The |
113 | result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the |
114 | most significant bit (with weight 2**N) implicit. */ |
115 | |
116 | /* Special case for DIVISOR_LIMB == 100...000. */ |
117 | if (divisor_limb << 1 == 0) |
118 | divisor_limb_inverted = ~(mp_limb_t) 0; |
119 | else |
120 | udiv_qrnnd (divisor_limb_inverted, dummy, |
121 | -divisor_limb, 0, divisor_limb); |
122 | |
123 | i = dividend_size - 1; |
124 | r = dividend_ptr[i]; |
125 | |
126 | if (r >= divisor_limb) |
127 | r = 0; |
128 | else |
129 | { |
130 | quot_ptr[i] = 0; |
131 | i--; |
132 | } |
133 | |
134 | for (; i >= 0; i--) |
135 | { |
136 | n0 = dividend_ptr[i]; |
137 | udiv_qrnnd_preinv (quot_ptr[i], r, r, |
138 | n0, divisor_limb, divisor_limb_inverted); |
139 | } |
140 | return r; |
141 | } |
142 | } |
143 | else |
144 | { |
145 | if (UDIV_NEEDS_NORMALIZATION) |
146 | { |
147 | int normalization_steps; |
148 | |
149 | count_leading_zeros (normalization_steps, divisor_limb); |
150 | if (normalization_steps != 0) |
151 | { |
152 | divisor_limb <<= normalization_steps; |
153 | |
154 | n1 = dividend_ptr[dividend_size - 1]; |
155 | r = n1 >> (BITS_PER_MP_LIMB - normalization_steps); |
156 | |
157 | /* Possible optimization: |
158 | if (r == 0 |
159 | && divisor_limb > ((n1 << normalization_steps) |
160 | | (dividend_ptr[dividend_size - 2] >> ...))) |
161 | ...one division less... */ |
162 | |
163 | for (i = dividend_size - 2; i >= 0; i--) |
164 | { |
165 | n0 = dividend_ptr[i]; |
166 | udiv_qrnnd (quot_ptr[i + 1], r, r, |
167 | ((n1 << normalization_steps) |
168 | | (n0 >> (BITS_PER_MP_LIMB - normalization_steps))), |
169 | divisor_limb); |
170 | n1 = n0; |
171 | } |
172 | udiv_qrnnd (quot_ptr[0], r, r, |
173 | n1 << normalization_steps, |
174 | divisor_limb); |
175 | return r >> normalization_steps; |
176 | } |
177 | } |
178 | /* No normalization needed, either because udiv_qrnnd doesn't require |
179 | it, or because DIVISOR_LIMB is already normalized. */ |
180 | |
181 | i = dividend_size - 1; |
182 | r = dividend_ptr[i]; |
183 | |
184 | if (r >= divisor_limb) |
185 | r = 0; |
186 | else |
187 | { |
188 | quot_ptr[i] = 0; |
189 | i--; |
190 | } |
191 | |
192 | for (; i >= 0; i--) |
193 | { |
194 | n0 = dividend_ptr[i]; |
195 | udiv_qrnnd (quot_ptr[i], r, r, n0, divisor_limb); |
196 | } |
197 | return r; |
198 | } |
199 | } |
200 | |