1 | /* Print floating point number in hexadecimal notation according to ISO C99. |
2 | Copyright (C) 1997-2023 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #include <array_length.h> |
20 | #include <assert.h> |
21 | #include <ctype.h> |
22 | #include <ieee754.h> |
23 | #include <math.h> |
24 | #include <printf.h> |
25 | #include <libioP.h> |
26 | #include <stdlib.h> |
27 | #include <stdio.h> |
28 | #include <string.h> |
29 | #include <wchar.h> |
30 | #include <_itoa.h> |
31 | #include <_itowa.h> |
32 | #include <locale/localeinfo.h> |
33 | #include <stdbool.h> |
34 | #include <rounding-mode.h> |
35 | #include <sys/param.h> |
36 | #include <printf_buffer.h> |
37 | #include <errno.h> |
38 | |
39 | #if __HAVE_DISTINCT_FLOAT128 |
40 | # include "ieee754_float128.h" |
41 | # include <ldbl-128/printf_fphex_macros.h> |
42 | # define PRINT_FPHEX_FLOAT128 \ |
43 | PRINT_FPHEX (_Float128, fpnum.flt128, ieee854_float128, \ |
44 | IEEE854_FLOAT128_BIAS) |
45 | #endif |
46 | |
47 | static void |
48 | __printf_fphex_buffer (struct __printf_buffer *buf, |
49 | const char *decimal, |
50 | const struct printf_info *info, |
51 | const void *const *args) |
52 | { |
53 | /* The floating-point value to output. */ |
54 | union |
55 | { |
56 | union ieee754_double dbl; |
57 | long double ldbl; |
58 | #if __HAVE_DISTINCT_FLOAT128 |
59 | _Float128 flt128; |
60 | #endif |
61 | } |
62 | fpnum; |
63 | |
64 | /* This function always uses LC_NUMERIC. */ |
65 | assert (info->extra == 0); |
66 | |
67 | /* "NaN" or "Inf" for the special cases. */ |
68 | const char *special = NULL; |
69 | |
70 | /* Buffer for the generated number string for the mantissa. The |
71 | maximal size for the mantissa is 128 bits. */ |
72 | char numbuf[32]; |
73 | char *numstr; |
74 | char *numend; |
75 | int negative; |
76 | |
77 | /* The maximal exponent of two in decimal notation has 5 digits. */ |
78 | char expbuf[5]; |
79 | char *expstr; |
80 | int expnegative; |
81 | int exponent; |
82 | |
83 | /* Non-zero is mantissa is zero. */ |
84 | int zero_mantissa; |
85 | |
86 | /* The leading digit before the decimal point. */ |
87 | char leading; |
88 | |
89 | /* Precision. */ |
90 | int precision = info->prec; |
91 | |
92 | /* Width. */ |
93 | int width = info->width; |
94 | |
95 | #define PRINTF_FPHEX_FETCH(FLOAT, VAR) \ |
96 | { \ |
97 | (VAR) = *(const FLOAT *) args[0]; \ |
98 | \ |
99 | /* Check for special values: not a number or infinity. */ \ |
100 | if (isnan (VAR)) \ |
101 | { \ |
102 | if (isupper (info->spec)) \ |
103 | special = "NAN"; \ |
104 | else \ |
105 | special = "nan"; \ |
106 | } \ |
107 | else \ |
108 | { \ |
109 | if (isinf (VAR)) \ |
110 | { \ |
111 | if (isupper (info->spec)) \ |
112 | special = "INF"; \ |
113 | else \ |
114 | special = "inf"; \ |
115 | } \ |
116 | } \ |
117 | negative = signbit (VAR); \ |
118 | } |
119 | |
120 | /* Fetch the argument value. */ |
121 | #if __HAVE_DISTINCT_FLOAT128 |
122 | if (info->is_binary128) |
123 | PRINTF_FPHEX_FETCH (_Float128, fpnum.flt128) |
124 | else |
125 | #endif |
126 | #ifndef __NO_LONG_DOUBLE_MATH |
127 | if (info->is_long_double && sizeof (long double) > sizeof (double)) |
128 | PRINTF_FPHEX_FETCH (long double, fpnum.ldbl) |
129 | else |
130 | #endif |
131 | PRINTF_FPHEX_FETCH (double, fpnum.dbl.d) |
132 | |
133 | #undef PRINTF_FPHEX_FETCH |
134 | |
135 | if (special) |
136 | { |
137 | int width = info->width; |
138 | |
139 | if (negative || info->showsign || info->space) |
140 | --width; |
141 | width -= 3; |
142 | |
143 | if (!info->left) |
144 | __printf_buffer_pad (buf, ' ', width); |
145 | |
146 | if (negative) |
147 | __printf_buffer_putc (buf, '-'); |
148 | else if (info->showsign) |
149 | __printf_buffer_putc (buf, '+'); |
150 | else if (info->space) |
151 | __printf_buffer_putc (buf, ' '); |
152 | |
153 | __printf_buffer_puts (buf, special); |
154 | |
155 | if (info->left) |
156 | __printf_buffer_pad (buf, ' ', width); |
157 | |
158 | return; |
159 | } |
160 | |
161 | #if __HAVE_DISTINCT_FLOAT128 |
162 | if (info->is_binary128) |
163 | PRINT_FPHEX_FLOAT128; |
164 | else |
165 | #endif |
166 | if (info->is_long_double == 0 || sizeof (double) == sizeof (long double)) |
167 | { |
168 | /* We have 52 bits of mantissa plus one implicit digit. Since |
169 | 52 bits are representable without rest using hexadecimal |
170 | digits we use only the implicit digits for the number before |
171 | the decimal point. */ |
172 | unsigned long long int num; |
173 | |
174 | num = (((unsigned long long int) fpnum.dbl.ieee.mantissa0) << 32 |
175 | | fpnum.dbl.ieee.mantissa1); |
176 | |
177 | zero_mantissa = num == 0; |
178 | |
179 | if (sizeof (unsigned long int) > 6) |
180 | numstr = _itoa_word (num, numbuf + sizeof numbuf, 16, |
181 | info->spec == 'A'); |
182 | else |
183 | numstr = _itoa (num, numbuf + sizeof numbuf, 16, |
184 | info->spec == 'A'); |
185 | |
186 | /* Fill with zeroes. */ |
187 | while (numstr > numbuf + (sizeof numbuf - 13)) |
188 | *--numstr = '0'; |
189 | |
190 | leading = fpnum.dbl.ieee.exponent == 0 ? '0' : '1'; |
191 | |
192 | exponent = fpnum.dbl.ieee.exponent; |
193 | |
194 | if (exponent == 0) |
195 | { |
196 | if (zero_mantissa) |
197 | expnegative = 0; |
198 | else |
199 | { |
200 | /* This is a denormalized number. */ |
201 | expnegative = 1; |
202 | exponent = IEEE754_DOUBLE_BIAS - 1; |
203 | } |
204 | } |
205 | else if (exponent >= IEEE754_DOUBLE_BIAS) |
206 | { |
207 | expnegative = 0; |
208 | exponent -= IEEE754_DOUBLE_BIAS; |
209 | } |
210 | else |
211 | { |
212 | expnegative = 1; |
213 | exponent = -(exponent - IEEE754_DOUBLE_BIAS); |
214 | } |
215 | } |
216 | #ifdef PRINT_FPHEX_LONG_DOUBLE |
217 | else |
218 | PRINT_FPHEX_LONG_DOUBLE; |
219 | #endif |
220 | |
221 | /* Look for trailing zeroes. */ |
222 | if (! zero_mantissa) |
223 | { |
224 | numend = array_end (numbuf); |
225 | while (numend[-1] == '0') |
226 | --numend; |
227 | |
228 | bool do_round_away = false; |
229 | |
230 | if (precision != -1 && precision < numend - numstr) |
231 | { |
232 | char last_digit = precision > 0 ? numstr[precision - 1] : leading; |
233 | char next_digit = numstr[precision]; |
234 | int last_digit_value = (last_digit >= 'A' && last_digit <= 'F' |
235 | ? last_digit - 'A' + 10 |
236 | : (last_digit >= 'a' && last_digit <= 'f' |
237 | ? last_digit - 'a' + 10 |
238 | : last_digit - '0')); |
239 | int next_digit_value = (next_digit >= 'A' && next_digit <= 'F' |
240 | ? next_digit - 'A' + 10 |
241 | : (next_digit >= 'a' && next_digit <= 'f' |
242 | ? next_digit - 'a' + 10 |
243 | : next_digit - '0')); |
244 | bool more_bits = ((next_digit_value & 7) != 0 |
245 | || precision + 1 < numend - numstr); |
246 | int rounding_mode = get_rounding_mode (); |
247 | do_round_away = round_away (negative, last_digit_value & 1, |
248 | next_digit_value >= 8, more_bits, |
249 | rounding_mode); |
250 | } |
251 | |
252 | if (precision == -1) |
253 | precision = numend - numstr; |
254 | else if (do_round_away) |
255 | { |
256 | /* Round up. */ |
257 | int cnt = precision; |
258 | while (--cnt >= 0) |
259 | { |
260 | char ch = numstr[cnt]; |
261 | /* We assume that the digits and the letters are ordered |
262 | like in ASCII. This is true for the rest of GNU, too. */ |
263 | if (ch == '9') |
264 | { |
265 | numstr[cnt] = info->spec; /* This is tricky, |
266 | think about it! */ |
267 | break; |
268 | } |
269 | else if (tolower (ch) < 'f') |
270 | { |
271 | ++numstr[cnt]; |
272 | break; |
273 | } |
274 | else |
275 | numstr[cnt] = '0'; |
276 | } |
277 | if (cnt < 0) |
278 | { |
279 | /* The mantissa so far was fff...f Now increment the |
280 | leading digit. Here it is again possible that we |
281 | get an overflow. */ |
282 | if (leading == '9') |
283 | leading = info->spec; |
284 | else if (tolower (leading) < 'f') |
285 | ++leading; |
286 | else |
287 | { |
288 | leading = '1'; |
289 | if (expnegative) |
290 | { |
291 | exponent -= 4; |
292 | if (exponent <= 0) |
293 | { |
294 | exponent = -exponent; |
295 | expnegative = 0; |
296 | } |
297 | } |
298 | else |
299 | exponent += 4; |
300 | } |
301 | } |
302 | } |
303 | } |
304 | else |
305 | { |
306 | if (precision == -1) |
307 | precision = 0; |
308 | numend = numstr; |
309 | } |
310 | |
311 | /* Now we can compute the exponent string. */ |
312 | expstr = _itoa_word (exponent, expbuf + sizeof expbuf, 10, 0); |
313 | |
314 | /* Now we have all information to compute the size. */ |
315 | width -= ((negative || info->showsign || info->space) |
316 | /* Sign. */ |
317 | + 2 + 1 + 0 + precision + 1 + 1 |
318 | /* 0x h . hhh P ExpoSign. */ |
319 | + ((expbuf + sizeof expbuf) - expstr)); |
320 | /* Exponent. */ |
321 | |
322 | /* Count the decimal point. |
323 | A special case when the mantissa or the precision is zero and the `#' |
324 | is not given. In this case we must not print the decimal point. */ |
325 | if (precision > 0 || info->alt) |
326 | --width; |
327 | |
328 | if (!info->left && info->pad != '0') |
329 | __printf_buffer_pad (buf, ' ', width); |
330 | |
331 | if (negative) |
332 | __printf_buffer_putc (buf, '-'); |
333 | else if (info->showsign) |
334 | __printf_buffer_putc (buf, '+'); |
335 | else if (info->space) |
336 | __printf_buffer_putc (buf, ' '); |
337 | |
338 | __printf_buffer_putc (buf, '0'); |
339 | if ('X' - 'A' == 'x' - 'a') |
340 | __printf_buffer_putc (buf, info->spec + ('x' - 'a')); |
341 | else |
342 | __printf_buffer_putc (buf, info->spec == 'A' ? 'X' : 'x'); |
343 | |
344 | if (!info->left && info->pad == '0') |
345 | __printf_buffer_pad (buf, '0', width); |
346 | |
347 | __printf_buffer_putc (buf, leading); |
348 | |
349 | if (precision > 0 || info->alt) |
350 | __printf_buffer_puts (buf, decimal); |
351 | |
352 | if (precision > 0) |
353 | { |
354 | ssize_t tofill = precision - (numend - numstr); |
355 | __printf_buffer_write (buf, numstr, MIN (numend - numstr, precision)); |
356 | __printf_buffer_pad (buf, '0', tofill); |
357 | } |
358 | |
359 | if ('P' - 'A' == 'p' - 'a') |
360 | __printf_buffer_putc (buf, info->spec + ('p' - 'a')); |
361 | else |
362 | __printf_buffer_putc (buf, info->spec == 'A' ? 'P' : 'p'); |
363 | |
364 | __printf_buffer_putc (buf, expnegative ? '-' : '+'); |
365 | |
366 | __printf_buffer_write (buf, expstr, (expbuf + sizeof expbuf) - expstr); |
367 | |
368 | if (info->left && info->pad != '0') |
369 | __printf_buffer_pad (buf, info->pad, width); |
370 | } |
371 | |
372 | void |
373 | __printf_fphex_l_buffer (struct __printf_buffer *buf, locale_t loc, |
374 | const struct printf_info *info, |
375 | const void *const *args) |
376 | { |
377 | __printf_fphex_buffer (buf, _nl_lookup (loc, LC_NUMERIC, DECIMAL_POINT), |
378 | info, args); |
379 | } |
380 | |
381 | |
382 | /* The wide buffer version is implemented by translating the output of |
383 | the multibyte verison. */ |
384 | |
385 | struct __printf_buffer_fphex_to_wide |
386 | { |
387 | struct __printf_buffer base; |
388 | wchar_t decimalwc; |
389 | struct __wprintf_buffer *next; |
390 | char untranslated[PRINTF_BUFFER_SIZE_DIGITS]; |
391 | }; |
392 | |
393 | /* Translate to wide characters, rewriting "." to the actual decimal |
394 | point. */ |
395 | void |
396 | __printf_buffer_flush_fphex_to_wide (struct __printf_buffer_fphex_to_wide *buf) |
397 | { |
398 | /* No need to adjust buf->base.written, only buf->next->written matters. */ |
399 | for (char *p = buf->untranslated; p < buf->base.write_ptr; ++p) |
400 | { |
401 | /* wchar_t overlaps with char in the ASCII range. */ |
402 | wchar_t ch = *p; |
403 | if (ch == L'.') |
404 | ch = buf->decimalwc; |
405 | __wprintf_buffer_putc (buf->next, ch); |
406 | } |
407 | |
408 | if (!__wprintf_buffer_has_failed (buf->next)) |
409 | buf->base.write_ptr = buf->untranslated; |
410 | else |
411 | __printf_buffer_mark_failed (&buf->base); |
412 | } |
413 | |
414 | void |
415 | __wprintf_fphex_l_buffer (struct __wprintf_buffer *next, locale_t loc, |
416 | const struct printf_info *info, |
417 | const void *const *args) |
418 | { |
419 | struct __printf_buffer_fphex_to_wide buf; |
420 | __printf_buffer_init (&buf.base, buf.untranslated, sizeof (buf.untranslated), |
421 | __printf_buffer_mode_fphex_to_wide); |
422 | buf.decimalwc = _nl_lookup_word (loc, LC_NUMERIC, |
423 | _NL_NUMERIC_DECIMAL_POINT_WC); |
424 | buf.next = next; |
425 | __printf_fphex_buffer (&buf.base, "." , info, args); |
426 | if (__printf_buffer_has_failed (&buf.base)) |
427 | { |
428 | __wprintf_buffer_mark_failed (buf.next); |
429 | return; |
430 | } |
431 | __printf_buffer_flush_fphex_to_wide (&buf); |
432 | } |
433 | |