1 | /* Floating point output for `printf'. |
2 | Copyright (C) 1995-2023 Free Software Foundation, Inc. |
3 | |
4 | This file is part of the GNU C Library. |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, see |
18 | <https://www.gnu.org/licenses/>. */ |
19 | |
20 | /* The gmp headers need some configuration frobs. */ |
21 | #define HAVE_ALLOCA 1 |
22 | |
23 | #include <array_length.h> |
24 | #include <libioP.h> |
25 | #include <alloca.h> |
26 | #include <ctype.h> |
27 | #include <float.h> |
28 | #include <gmp-mparam.h> |
29 | #include <gmp.h> |
30 | #include <ieee754.h> |
31 | #include <stdlib/gmp-impl.h> |
32 | #include <stdlib/longlong.h> |
33 | #include <stdlib/fpioconst.h> |
34 | #include <locale/localeinfo.h> |
35 | #include <limits.h> |
36 | #include <math.h> |
37 | #include <printf.h> |
38 | #include <string.h> |
39 | #include <unistd.h> |
40 | #include <stdlib.h> |
41 | #include <wchar.h> |
42 | #include <stdbool.h> |
43 | #include <rounding-mode.h> |
44 | #include <printf_buffer.h> |
45 | #include <printf_buffer_to_file.h> |
46 | #include <grouping_iterator.h> |
47 | |
48 | #include <assert.h> |
49 | |
50 | /* We use the GNU MP library to handle large numbers. |
51 | |
52 | An MP variable occupies a varying number of entries in its array. We keep |
53 | track of this number for efficiency reasons. Otherwise we would always |
54 | have to process the whole array. */ |
55 | #define MPN_VAR(name) mp_limb_t *name; mp_size_t name##size |
56 | |
57 | #define MPN_ASSIGN(dst,src) \ |
58 | memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t)) |
59 | #define MPN_GE(u,v) \ |
60 | (u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0)) |
61 | |
62 | extern mp_size_t (mp_ptr res_ptr, mp_size_t size, |
63 | int *expt, int *is_neg, |
64 | double value); |
65 | extern mp_size_t (mp_ptr res_ptr, mp_size_t size, |
66 | int *expt, int *is_neg, |
67 | long double value); |
68 | |
69 | |
70 | struct hack_digit_param |
71 | { |
72 | /* Sign of the exponent. */ |
73 | int expsign; |
74 | /* The type of output format that will be used: 'e'/'E' or 'f'. */ |
75 | int type; |
76 | /* and the exponent. */ |
77 | int exponent; |
78 | /* The fraction of the floting-point value in question */ |
79 | MPN_VAR(frac); |
80 | /* Scaling factor. */ |
81 | MPN_VAR(scale); |
82 | /* Temporary bignum value. */ |
83 | MPN_VAR(tmp); |
84 | }; |
85 | |
86 | static char |
87 | hack_digit (struct hack_digit_param *p) |
88 | { |
89 | mp_limb_t hi; |
90 | |
91 | if (p->expsign != 0 && p->type == 'f' && p->exponent-- > 0) |
92 | hi = 0; |
93 | else if (p->scalesize == 0) |
94 | { |
95 | hi = p->frac[p->fracsize - 1]; |
96 | p->frac[p->fracsize - 1] = __mpn_mul_1 (p->frac, p->frac, |
97 | p->fracsize - 1, 10); |
98 | } |
99 | else |
100 | { |
101 | if (p->fracsize < p->scalesize) |
102 | hi = 0; |
103 | else |
104 | { |
105 | hi = mpn_divmod (p->tmp, p->frac, p->fracsize, |
106 | p->scale, p->scalesize); |
107 | p->tmp[p->fracsize - p->scalesize] = hi; |
108 | hi = p->tmp[0]; |
109 | |
110 | p->fracsize = p->scalesize; |
111 | while (p->fracsize != 0 && p->frac[p->fracsize - 1] == 0) |
112 | --p->fracsize; |
113 | if (p->fracsize == 0) |
114 | { |
115 | /* We're not prepared for an mpn variable with zero |
116 | limbs. */ |
117 | p->fracsize = 1; |
118 | return '0' + hi; |
119 | } |
120 | } |
121 | |
122 | mp_limb_t _cy = __mpn_mul_1 (p->frac, p->frac, p->fracsize, 10); |
123 | if (_cy != 0) |
124 | p->frac[p->fracsize++] = _cy; |
125 | } |
126 | |
127 | return '0' + hi; |
128 | } |
129 | |
130 | /* Version that performs grouping (if INFO->group && THOUSANDS_SEP != 0), |
131 | but not i18n digit translation. |
132 | |
133 | The output buffer is always multibyte (not wide) at this stage. |
134 | Wide conversion and i18n digit translation happen later, with a |
135 | temporary buffer. To prepare for that, THOUSANDS_SEP_LENGTH is the |
136 | final length of the thousands separator. */ |
137 | static void |
138 | __printf_fp_buffer_1 (struct __printf_buffer *buf, locale_t loc, |
139 | char thousands_sep, char decimal, |
140 | unsigned int thousands_sep_length, |
141 | const struct printf_info *info, |
142 | const void *const *args) |
143 | { |
144 | /* The floating-point value to output. */ |
145 | union |
146 | { |
147 | double dbl; |
148 | long double ldbl; |
149 | #if __HAVE_DISTINCT_FLOAT128 |
150 | _Float128 f128; |
151 | #endif |
152 | } |
153 | fpnum; |
154 | |
155 | /* "NaN" or "Inf" for the special cases. */ |
156 | const char *special = NULL; |
157 | |
158 | /* Used to determine grouping rules. */ |
159 | int lc_category = info->extra ? LC_MONETARY : LC_NUMERIC; |
160 | |
161 | /* When _Float128 is enabled in the library and ABI-distinct from long |
162 | double, we need mp_limbs enough for any of them. */ |
163 | #if __HAVE_DISTINCT_FLOAT128 |
164 | # define GREATER_MANT_DIG FLT128_MANT_DIG |
165 | #else |
166 | # define GREATER_MANT_DIG LDBL_MANT_DIG |
167 | #endif |
168 | /* We need just a few limbs for the input before shifting to the right |
169 | position. */ |
170 | mp_limb_t fp_input[(GREATER_MANT_DIG + BITS_PER_MP_LIMB - 1) |
171 | / BITS_PER_MP_LIMB]; |
172 | /* We need to shift the contents of fp_input by this amount of bits. */ |
173 | int to_shift = 0; |
174 | |
175 | struct hack_digit_param p; |
176 | /* Sign of float number. */ |
177 | int is_neg = 0; |
178 | |
179 | /* General helper (carry limb). */ |
180 | mp_limb_t cy; |
181 | |
182 | /* Buffer in which we produce the output. */ |
183 | char *wbuffer = NULL; |
184 | /* Flag whether wbuffer and buffer are malloc'ed or not. */ |
185 | int buffer_malloced = 0; |
186 | |
187 | p.expsign = 0; |
188 | |
189 | #define PRINTF_FP_FETCH(FLOAT, VAR, SUFFIX, MANT_DIG) \ |
190 | { \ |
191 | (VAR) = *(const FLOAT *) args[0]; \ |
192 | \ |
193 | /* Check for special values: not a number or infinity. */ \ |
194 | if (isnan (VAR)) \ |
195 | { \ |
196 | is_neg = signbit (VAR); \ |
197 | if (isupper (info->spec)) \ |
198 | special = "NAN"; \ |
199 | else \ |
200 | special = "nan"; \ |
201 | } \ |
202 | else if (isinf (VAR)) \ |
203 | { \ |
204 | is_neg = signbit (VAR); \ |
205 | if (isupper (info->spec)) \ |
206 | special = "INF"; \ |
207 | else \ |
208 | special = "inf"; \ |
209 | } \ |
210 | else \ |
211 | { \ |
212 | p.fracsize = __mpn_extract_##SUFFIX \ |
213 | (fp_input, array_length (fp_input), \ |
214 | &p.exponent, &is_neg, VAR); \ |
215 | to_shift = 1 + p.fracsize * BITS_PER_MP_LIMB - MANT_DIG; \ |
216 | } \ |
217 | } |
218 | |
219 | /* Fetch the argument value. */ |
220 | #if __HAVE_DISTINCT_FLOAT128 |
221 | if (info->is_binary128) |
222 | PRINTF_FP_FETCH (_Float128, fpnum.f128, float128, FLT128_MANT_DIG) |
223 | else |
224 | #endif |
225 | #ifndef __NO_LONG_DOUBLE_MATH |
226 | if (info->is_long_double && sizeof (long double) > sizeof (double)) |
227 | PRINTF_FP_FETCH (long double, fpnum.ldbl, long_double, LDBL_MANT_DIG) |
228 | else |
229 | #endif |
230 | PRINTF_FP_FETCH (double, fpnum.dbl, double, DBL_MANT_DIG) |
231 | |
232 | #undef PRINTF_FP_FETCH |
233 | |
234 | if (special) |
235 | { |
236 | int width = info->width; |
237 | |
238 | if (is_neg || info->showsign || info->space) |
239 | --width; |
240 | width -= 3; |
241 | |
242 | if (!info->left) |
243 | __printf_buffer_pad (buf, ' ', width); |
244 | |
245 | if (is_neg) |
246 | __printf_buffer_putc (buf, '-'); |
247 | else if (info->showsign) |
248 | __printf_buffer_putc (buf, '+'); |
249 | else if (info->space) |
250 | __printf_buffer_putc (buf, ' '); |
251 | |
252 | __printf_buffer_puts (buf, special); |
253 | |
254 | if (info->left) |
255 | __printf_buffer_pad (buf, ' ', width); |
256 | |
257 | return; |
258 | } |
259 | |
260 | |
261 | /* We need three multiprecision variables. Now that we have the p.exponent |
262 | of the number we can allocate the needed memory. It would be more |
263 | efficient to use variables of the fixed maximum size but because this |
264 | would be really big it could lead to memory problems. */ |
265 | { |
266 | mp_size_t bignum_size = ((abs (p.exponent) + BITS_PER_MP_LIMB - 1) |
267 | / BITS_PER_MP_LIMB |
268 | + (GREATER_MANT_DIG / BITS_PER_MP_LIMB > 2 |
269 | ? 8 : 4)) |
270 | * sizeof (mp_limb_t); |
271 | p.frac = (mp_limb_t *) alloca (bignum_size); |
272 | p.tmp = (mp_limb_t *) alloca (bignum_size); |
273 | p.scale = (mp_limb_t *) alloca (bignum_size); |
274 | } |
275 | |
276 | /* We now have to distinguish between numbers with positive and negative |
277 | exponents because the method used for the one is not applicable/efficient |
278 | for the other. */ |
279 | p.scalesize = 0; |
280 | if (p.exponent > 2) |
281 | { |
282 | /* |FP| >= 8.0. */ |
283 | int scaleexpo = 0; |
284 | int explog; |
285 | #if __HAVE_DISTINCT_FLOAT128 |
286 | if (info->is_binary128) |
287 | explog = FLT128_MAX_10_EXP_LOG; |
288 | else |
289 | explog = LDBL_MAX_10_EXP_LOG; |
290 | #else |
291 | explog = LDBL_MAX_10_EXP_LOG; |
292 | #endif |
293 | int exp10 = 0; |
294 | const struct mp_power *powers = &_fpioconst_pow10[explog + 1]; |
295 | int cnt_h, cnt_l, i; |
296 | |
297 | if ((p.exponent + to_shift) % BITS_PER_MP_LIMB == 0) |
298 | { |
299 | MPN_COPY_DECR (p.frac + (p.exponent + to_shift) / BITS_PER_MP_LIMB, |
300 | fp_input, p.fracsize); |
301 | p.fracsize += (p.exponent + to_shift) / BITS_PER_MP_LIMB; |
302 | } |
303 | else |
304 | { |
305 | cy = __mpn_lshift (p.frac |
306 | + (p.exponent + to_shift) / BITS_PER_MP_LIMB, |
307 | fp_input, p.fracsize, |
308 | (p.exponent + to_shift) % BITS_PER_MP_LIMB); |
309 | p.fracsize += (p.exponent + to_shift) / BITS_PER_MP_LIMB; |
310 | if (cy) |
311 | p.frac[p.fracsize++] = cy; |
312 | } |
313 | MPN_ZERO (p.frac, (p.exponent + to_shift) / BITS_PER_MP_LIMB); |
314 | |
315 | assert (powers > &_fpioconst_pow10[0]); |
316 | do |
317 | { |
318 | --powers; |
319 | |
320 | /* The number of the product of two binary numbers with n and m |
321 | bits respectively has m+n or m+n-1 bits. */ |
322 | if (p.exponent >= scaleexpo + powers->p_expo - 1) |
323 | { |
324 | if (p.scalesize == 0) |
325 | { |
326 | #if __HAVE_DISTINCT_FLOAT128 |
327 | if ((FLT128_MANT_DIG |
328 | > _FPIO_CONST_OFFSET * BITS_PER_MP_LIMB) |
329 | && info->is_binary128) |
330 | { |
331 | #define _FLT128_FPIO_CONST_SHIFT \ |
332 | (((FLT128_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB) \ |
333 | - _FPIO_CONST_OFFSET) |
334 | /* 64bit const offset is not enough for |
335 | IEEE 854 quad long double (_Float128). */ |
336 | p.tmpsize = powers->arraysize + _FLT128_FPIO_CONST_SHIFT; |
337 | memcpy (p.tmp + _FLT128_FPIO_CONST_SHIFT, |
338 | &__tens[powers->arrayoff], |
339 | p.tmpsize * sizeof (mp_limb_t)); |
340 | MPN_ZERO (p.tmp, _FLT128_FPIO_CONST_SHIFT); |
341 | /* Adjust p.exponent, as scaleexpo will be this much |
342 | bigger too. */ |
343 | p.exponent += _FLT128_FPIO_CONST_SHIFT * BITS_PER_MP_LIMB; |
344 | } |
345 | else |
346 | #endif /* __HAVE_DISTINCT_FLOAT128 */ |
347 | #ifndef __NO_LONG_DOUBLE_MATH |
348 | if (LDBL_MANT_DIG > _FPIO_CONST_OFFSET * BITS_PER_MP_LIMB |
349 | && info->is_long_double) |
350 | { |
351 | #define _FPIO_CONST_SHIFT \ |
352 | (((LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB) \ |
353 | - _FPIO_CONST_OFFSET) |
354 | /* 64bit const offset is not enough for |
355 | IEEE quad long double. */ |
356 | p.tmpsize = powers->arraysize + _FPIO_CONST_SHIFT; |
357 | memcpy (p.tmp + _FPIO_CONST_SHIFT, |
358 | &__tens[powers->arrayoff], |
359 | p.tmpsize * sizeof (mp_limb_t)); |
360 | MPN_ZERO (p.tmp, _FPIO_CONST_SHIFT); |
361 | /* Adjust p.exponent, as scaleexpo will be this much |
362 | bigger too. */ |
363 | p.exponent += _FPIO_CONST_SHIFT * BITS_PER_MP_LIMB; |
364 | } |
365 | else |
366 | #endif |
367 | { |
368 | p.tmpsize = powers->arraysize; |
369 | memcpy (p.tmp, &__tens[powers->arrayoff], |
370 | p.tmpsize * sizeof (mp_limb_t)); |
371 | } |
372 | } |
373 | else |
374 | { |
375 | cy = __mpn_mul (p.tmp, p.scale, p.scalesize, |
376 | &__tens[powers->arrayoff |
377 | + _FPIO_CONST_OFFSET], |
378 | powers->arraysize - _FPIO_CONST_OFFSET); |
379 | p.tmpsize = p.scalesize |
380 | + powers->arraysize - _FPIO_CONST_OFFSET; |
381 | if (cy == 0) |
382 | --p.tmpsize; |
383 | } |
384 | |
385 | if (MPN_GE (p.frac, p.tmp)) |
386 | { |
387 | int cnt; |
388 | MPN_ASSIGN (p.scale, p.tmp); |
389 | count_leading_zeros (cnt, p.scale[p.scalesize - 1]); |
390 | scaleexpo = (p.scalesize - 2) * BITS_PER_MP_LIMB - cnt - 1; |
391 | exp10 |= 1 << explog; |
392 | } |
393 | } |
394 | --explog; |
395 | } |
396 | while (powers > &_fpioconst_pow10[0]); |
397 | p.exponent = exp10; |
398 | |
399 | /* Optimize number representations. We want to represent the numbers |
400 | with the lowest number of bytes possible without losing any |
401 | bytes. Also the highest bit in the scaling factor has to be set |
402 | (this is a requirement of the MPN division routines). */ |
403 | if (p.scalesize > 0) |
404 | { |
405 | /* Determine minimum number of zero bits at the end of |
406 | both numbers. */ |
407 | for (i = 0; p.scale[i] == 0 && p.frac[i] == 0; i++) |
408 | ; |
409 | |
410 | /* Determine number of bits the scaling factor is misplaced. */ |
411 | count_leading_zeros (cnt_h, p.scale[p.scalesize - 1]); |
412 | |
413 | if (cnt_h == 0) |
414 | { |
415 | /* The highest bit of the scaling factor is already set. So |
416 | we only have to remove the trailing empty limbs. */ |
417 | if (i > 0) |
418 | { |
419 | MPN_COPY_INCR (p.scale, p.scale + i, p.scalesize - i); |
420 | p.scalesize -= i; |
421 | MPN_COPY_INCR (p.frac, p.frac + i, p.fracsize - i); |
422 | p.fracsize -= i; |
423 | } |
424 | } |
425 | else |
426 | { |
427 | if (p.scale[i] != 0) |
428 | { |
429 | count_trailing_zeros (cnt_l, p.scale[i]); |
430 | if (p.frac[i] != 0) |
431 | { |
432 | int cnt_l2; |
433 | count_trailing_zeros (cnt_l2, p.frac[i]); |
434 | if (cnt_l2 < cnt_l) |
435 | cnt_l = cnt_l2; |
436 | } |
437 | } |
438 | else |
439 | count_trailing_zeros (cnt_l, p.frac[i]); |
440 | |
441 | /* Now shift the numbers to their optimal position. */ |
442 | if (i == 0 && BITS_PER_MP_LIMB - cnt_h > cnt_l) |
443 | { |
444 | /* We cannot save any memory. So just roll both numbers |
445 | so that the scaling factor has its highest bit set. */ |
446 | |
447 | (void) __mpn_lshift (p.scale, p.scale, p.scalesize, cnt_h); |
448 | cy = __mpn_lshift (p.frac, p.frac, p.fracsize, cnt_h); |
449 | if (cy != 0) |
450 | p.frac[p.fracsize++] = cy; |
451 | } |
452 | else if (BITS_PER_MP_LIMB - cnt_h <= cnt_l) |
453 | { |
454 | /* We can save memory by removing the trailing zero limbs |
455 | and by packing the non-zero limbs which gain another |
456 | free one. */ |
457 | |
458 | (void) __mpn_rshift (p.scale, p.scale + i, p.scalesize - i, |
459 | BITS_PER_MP_LIMB - cnt_h); |
460 | p.scalesize -= i + 1; |
461 | (void) __mpn_rshift (p.frac, p.frac + i, p.fracsize - i, |
462 | BITS_PER_MP_LIMB - cnt_h); |
463 | p.fracsize -= p.frac[p.fracsize - i - 1] == 0 ? i + 1 : i; |
464 | } |
465 | else |
466 | { |
467 | /* We can only save the memory of the limbs which are zero. |
468 | The non-zero parts occupy the same number of limbs. */ |
469 | |
470 | (void) __mpn_rshift (p.scale, p.scale + (i - 1), |
471 | p.scalesize - (i - 1), |
472 | BITS_PER_MP_LIMB - cnt_h); |
473 | p.scalesize -= i; |
474 | (void) __mpn_rshift (p.frac, p.frac + (i - 1), |
475 | p.fracsize - (i - 1), |
476 | BITS_PER_MP_LIMB - cnt_h); |
477 | p.fracsize -= |
478 | p.frac[p.fracsize - (i - 1) - 1] == 0 ? i : i - 1; |
479 | } |
480 | } |
481 | } |
482 | } |
483 | else if (p.exponent < 0) |
484 | { |
485 | /* |FP| < 1.0. */ |
486 | int exp10 = 0; |
487 | int explog; |
488 | #if __HAVE_DISTINCT_FLOAT128 |
489 | if (info->is_binary128) |
490 | explog = FLT128_MAX_10_EXP_LOG; |
491 | else |
492 | explog = LDBL_MAX_10_EXP_LOG; |
493 | #else |
494 | explog = LDBL_MAX_10_EXP_LOG; |
495 | #endif |
496 | const struct mp_power *powers = &_fpioconst_pow10[explog + 1]; |
497 | |
498 | /* Now shift the input value to its right place. */ |
499 | cy = __mpn_lshift (p.frac, fp_input, p.fracsize, to_shift); |
500 | p.frac[p.fracsize++] = cy; |
501 | assert (cy == 1 || (p.frac[p.fracsize - 2] == 0 && p.frac[0] == 0)); |
502 | |
503 | p.expsign = 1; |
504 | p.exponent = -p.exponent; |
505 | |
506 | assert (powers != &_fpioconst_pow10[0]); |
507 | do |
508 | { |
509 | --powers; |
510 | |
511 | if (p.exponent >= powers->m_expo) |
512 | { |
513 | int i, incr, cnt_h, cnt_l; |
514 | mp_limb_t topval[2]; |
515 | |
516 | /* The __mpn_mul function expects the first argument to be |
517 | bigger than the second. */ |
518 | if (p.fracsize < powers->arraysize - _FPIO_CONST_OFFSET) |
519 | cy = __mpn_mul (p.tmp, &__tens[powers->arrayoff |
520 | + _FPIO_CONST_OFFSET], |
521 | powers->arraysize - _FPIO_CONST_OFFSET, |
522 | p.frac, p.fracsize); |
523 | else |
524 | cy = __mpn_mul (p.tmp, p.frac, p.fracsize, |
525 | &__tens[powers->arrayoff + _FPIO_CONST_OFFSET], |
526 | powers->arraysize - _FPIO_CONST_OFFSET); |
527 | p.tmpsize = p.fracsize + powers->arraysize - _FPIO_CONST_OFFSET; |
528 | if (cy == 0) |
529 | --p.tmpsize; |
530 | |
531 | count_leading_zeros (cnt_h, p.tmp[p.tmpsize - 1]); |
532 | incr = (p.tmpsize - p.fracsize) * BITS_PER_MP_LIMB |
533 | + BITS_PER_MP_LIMB - 1 - cnt_h; |
534 | |
535 | assert (incr <= powers->p_expo); |
536 | |
537 | /* If we increased the p.exponent by exactly 3 we have to test |
538 | for overflow. This is done by comparing with 10 shifted |
539 | to the right position. */ |
540 | if (incr == p.exponent + 3) |
541 | { |
542 | if (cnt_h <= BITS_PER_MP_LIMB - 4) |
543 | { |
544 | topval[0] = 0; |
545 | topval[1] |
546 | = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4 - cnt_h); |
547 | } |
548 | else |
549 | { |
550 | topval[0] = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4); |
551 | topval[1] = 0; |
552 | (void) __mpn_lshift (topval, topval, 2, |
553 | BITS_PER_MP_LIMB - cnt_h); |
554 | } |
555 | } |
556 | |
557 | /* We have to be careful when multiplying the last factor. |
558 | If the result is greater than 1.0 be have to test it |
559 | against 10.0. If it is greater or equal to 10.0 the |
560 | multiplication was not valid. This is because we cannot |
561 | determine the number of bits in the result in advance. */ |
562 | if (incr < p.exponent + 3 |
563 | || (incr == p.exponent + 3 |
564 | && (p.tmp[p.tmpsize - 1] < topval[1] |
565 | || (p.tmp[p.tmpsize - 1] == topval[1] |
566 | && p.tmp[p.tmpsize - 2] < topval[0])))) |
567 | { |
568 | /* The factor is right. Adapt binary and decimal |
569 | exponents. */ |
570 | p.exponent -= incr; |
571 | exp10 |= 1 << explog; |
572 | |
573 | /* If this factor yields a number greater or equal to |
574 | 1.0, we must not shift the non-fractional digits down. */ |
575 | if (p.exponent < 0) |
576 | cnt_h += -p.exponent; |
577 | |
578 | /* Now we optimize the number representation. */ |
579 | for (i = 0; p.tmp[i] == 0; ++i); |
580 | if (cnt_h == BITS_PER_MP_LIMB - 1) |
581 | { |
582 | MPN_COPY (p.frac, p.tmp + i, p.tmpsize - i); |
583 | p.fracsize = p.tmpsize - i; |
584 | } |
585 | else |
586 | { |
587 | count_trailing_zeros (cnt_l, p.tmp[i]); |
588 | |
589 | /* Now shift the numbers to their optimal position. */ |
590 | if (i == 0 && BITS_PER_MP_LIMB - 1 - cnt_h > cnt_l) |
591 | { |
592 | /* We cannot save any memory. Just roll the |
593 | number so that the leading digit is in a |
594 | separate limb. */ |
595 | |
596 | cy = __mpn_lshift (p.frac, p.tmp, p.tmpsize, |
597 | cnt_h + 1); |
598 | p.fracsize = p.tmpsize + 1; |
599 | p.frac[p.fracsize - 1] = cy; |
600 | } |
601 | else if (BITS_PER_MP_LIMB - 1 - cnt_h <= cnt_l) |
602 | { |
603 | (void) __mpn_rshift (p.frac, p.tmp + i, p.tmpsize - i, |
604 | BITS_PER_MP_LIMB - 1 - cnt_h); |
605 | p.fracsize = p.tmpsize - i; |
606 | } |
607 | else |
608 | { |
609 | /* We can only save the memory of the limbs which |
610 | are zero. The non-zero parts occupy the same |
611 | number of limbs. */ |
612 | |
613 | (void) __mpn_rshift (p.frac, p.tmp + (i - 1), |
614 | p.tmpsize - (i - 1), |
615 | BITS_PER_MP_LIMB - 1 - cnt_h); |
616 | p.fracsize = p.tmpsize - (i - 1); |
617 | } |
618 | } |
619 | } |
620 | } |
621 | --explog; |
622 | } |
623 | while (powers != &_fpioconst_pow10[1] && p.exponent > 0); |
624 | /* All factors but 10^-1 are tested now. */ |
625 | if (p.exponent > 0) |
626 | { |
627 | int cnt_l; |
628 | |
629 | cy = __mpn_mul_1 (p.tmp, p.frac, p.fracsize, 10); |
630 | p.tmpsize = p.fracsize; |
631 | assert (cy == 0 || p.tmp[p.tmpsize - 1] < 20); |
632 | |
633 | count_trailing_zeros (cnt_l, p.tmp[0]); |
634 | if (cnt_l < MIN (4, p.exponent)) |
635 | { |
636 | cy = __mpn_lshift (p.frac, p.tmp, p.tmpsize, |
637 | BITS_PER_MP_LIMB - MIN (4, p.exponent)); |
638 | if (cy != 0) |
639 | p.frac[p.tmpsize++] = cy; |
640 | } |
641 | else |
642 | (void) __mpn_rshift (p.frac, p.tmp, p.tmpsize, MIN (4, p.exponent)); |
643 | p.fracsize = p.tmpsize; |
644 | exp10 |= 1; |
645 | assert (p.frac[p.fracsize - 1] < 10); |
646 | } |
647 | p.exponent = exp10; |
648 | } |
649 | else |
650 | { |
651 | /* This is a special case. We don't need a factor because the |
652 | numbers are in the range of 1.0 <= |fp| < 8.0. We simply |
653 | shift it to the right place and divide it by 1.0 to get the |
654 | leading digit. (Of course this division is not really made.) */ |
655 | assert (0 <= p.exponent && p.exponent < 3 |
656 | && p.exponent + to_shift < BITS_PER_MP_LIMB); |
657 | |
658 | /* Now shift the input value to its right place. */ |
659 | cy = __mpn_lshift (p.frac, fp_input, p.fracsize, (p.exponent + to_shift)); |
660 | p.frac[p.fracsize++] = cy; |
661 | p.exponent = 0; |
662 | } |
663 | |
664 | { |
665 | int width = info->width; |
666 | char *wstartp, *wcp; |
667 | size_t chars_needed; |
668 | int expscale; |
669 | int intdig_max, intdig_no = 0; |
670 | int fracdig_min; |
671 | int fracdig_max; |
672 | int dig_max; |
673 | int significant; |
674 | char spec = _tolower (info->spec); |
675 | |
676 | if (spec == 'e') |
677 | { |
678 | p.type = info->spec; |
679 | intdig_max = 1; |
680 | fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec; |
681 | chars_needed = 1 + 1 + (size_t) fracdig_max + 1 + 1 + 4; |
682 | /* d . ddd e +- ddd */ |
683 | dig_max = INT_MAX; /* Unlimited. */ |
684 | significant = 1; /* Does not matter here. */ |
685 | } |
686 | else if (spec == 'f') |
687 | { |
688 | p.type = 'f'; |
689 | fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec; |
690 | dig_max = INT_MAX; /* Unlimited. */ |
691 | significant = 1; /* Does not matter here. */ |
692 | if (p.expsign == 0) |
693 | { |
694 | intdig_max = p.exponent + 1; |
695 | /* This can be really big! */ /* XXX Maybe malloc if too big? */ |
696 | chars_needed = (size_t) p.exponent + 1 + 1 + (size_t) fracdig_max; |
697 | } |
698 | else |
699 | { |
700 | intdig_max = 1; |
701 | chars_needed = 1 + 1 + (size_t) fracdig_max; |
702 | } |
703 | } |
704 | else |
705 | { |
706 | dig_max = info->prec < 0 ? 6 : (info->prec == 0 ? 1 : info->prec); |
707 | if ((p.expsign == 0 && p.exponent >= dig_max) |
708 | || (p.expsign != 0 && p.exponent > 4)) |
709 | { |
710 | if ('g' - 'G' == 'e' - 'E') |
711 | p.type = 'E' + (info->spec - 'G'); |
712 | else |
713 | p.type = isupper (info->spec) ? 'E' : 'e'; |
714 | fracdig_max = dig_max - 1; |
715 | intdig_max = 1; |
716 | chars_needed = 1 + 1 + (size_t) fracdig_max + 1 + 1 + 4; |
717 | } |
718 | else |
719 | { |
720 | p.type = 'f'; |
721 | intdig_max = p.expsign == 0 ? p.exponent + 1 : 0; |
722 | fracdig_max = dig_max - intdig_max; |
723 | /* We need space for the significant digits and perhaps |
724 | for leading zeros when < 1.0. The number of leading |
725 | zeros can be as many as would be required for |
726 | exponential notation with a negative two-digit |
727 | p.exponent, which is 4. */ |
728 | chars_needed = (size_t) dig_max + 1 + 4; |
729 | } |
730 | fracdig_min = info->alt ? fracdig_max : 0; |
731 | significant = 0; /* We count significant digits. */ |
732 | } |
733 | |
734 | /* Allocate buffer for output. We need two more because while rounding |
735 | it is possible that we need two more characters in front of all the |
736 | other output. If the amount of memory we have to allocate is too |
737 | large use `malloc' instead of `alloca'. */ |
738 | if (__glibc_unlikely (chars_needed >= (size_t) -1 - 2 |
739 | || chars_needed < fracdig_max)) |
740 | { |
741 | /* Some overflow occurred. */ |
742 | __set_errno (ERANGE); |
743 | __printf_buffer_mark_failed (buf); |
744 | return; |
745 | } |
746 | size_t wbuffer_to_alloc = 2 + chars_needed; |
747 | buffer_malloced = ! __libc_use_alloca (wbuffer_to_alloc); |
748 | if (__builtin_expect (buffer_malloced, 0)) |
749 | { |
750 | wbuffer = malloc (wbuffer_to_alloc); |
751 | if (wbuffer == NULL) |
752 | { |
753 | /* Signal an error to the caller. */ |
754 | __printf_buffer_mark_failed (buf); |
755 | return; |
756 | } |
757 | } |
758 | else |
759 | wbuffer = alloca (wbuffer_to_alloc); |
760 | wcp = wstartp = wbuffer + 2; /* Let room for rounding. */ |
761 | |
762 | /* Do the real work: put digits in allocated buffer. */ |
763 | if (p.expsign == 0 || p.type != 'f') |
764 | { |
765 | assert (p.expsign == 0 || intdig_max == 1); |
766 | while (intdig_no < intdig_max) |
767 | { |
768 | ++intdig_no; |
769 | *wcp++ = hack_digit (&p); |
770 | } |
771 | significant = 1; |
772 | if (info->alt |
773 | || fracdig_min > 0 |
774 | || (fracdig_max > 0 && (p.fracsize > 1 || p.frac[0] != 0))) |
775 | *wcp++ = decimal; |
776 | } |
777 | else |
778 | { |
779 | /* |fp| < 1.0 and the selected p.type is 'f', so put "0." |
780 | in the buffer. */ |
781 | *wcp++ = '0'; |
782 | --p.exponent; |
783 | *wcp++ = decimal; |
784 | } |
785 | |
786 | /* Generate the needed number of fractional digits. */ |
787 | int fracdig_no = 0; |
788 | int added_zeros = 0; |
789 | while (fracdig_no < fracdig_min + added_zeros |
790 | || (fracdig_no < fracdig_max && (p.fracsize > 1 || p.frac[0] != 0))) |
791 | { |
792 | ++fracdig_no; |
793 | *wcp = hack_digit (&p); |
794 | if (*wcp++ != '0') |
795 | significant = 1; |
796 | else if (significant == 0) |
797 | { |
798 | ++fracdig_max; |
799 | if (fracdig_min > 0) |
800 | ++added_zeros; |
801 | } |
802 | } |
803 | |
804 | /* Do rounding. */ |
805 | char last_digit = wcp[-1] != decimal ? wcp[-1] : wcp[-2]; |
806 | char next_digit = hack_digit (&p); |
807 | bool more_bits; |
808 | if (next_digit != '0' && next_digit != '5') |
809 | more_bits = true; |
810 | else if (p.fracsize == 1 && p.frac[0] == 0) |
811 | /* Rest of the number is zero. */ |
812 | more_bits = false; |
813 | else if (p.scalesize == 0) |
814 | { |
815 | /* Here we have to see whether all limbs are zero since no |
816 | normalization happened. */ |
817 | size_t lcnt = p.fracsize; |
818 | while (lcnt >= 1 && p.frac[lcnt - 1] == 0) |
819 | --lcnt; |
820 | more_bits = lcnt > 0; |
821 | } |
822 | else |
823 | more_bits = true; |
824 | int rounding_mode = get_rounding_mode (); |
825 | if (round_away (is_neg, (last_digit - '0') & 1, next_digit >= '5', |
826 | more_bits, rounding_mode)) |
827 | { |
828 | char *wtp = wcp; |
829 | |
830 | if (fracdig_no > 0) |
831 | { |
832 | /* Process fractional digits. Terminate if not rounded or |
833 | radix character is reached. */ |
834 | int removed = 0; |
835 | while (*--wtp != decimal && *wtp == '9') |
836 | { |
837 | *wtp = '0'; |
838 | ++removed; |
839 | } |
840 | if (removed == fracdig_min && added_zeros > 0) |
841 | --added_zeros; |
842 | if (*wtp != decimal) |
843 | /* Round up. */ |
844 | (*wtp)++; |
845 | else if (__builtin_expect (spec == 'g' && p.type == 'f' && info->alt |
846 | && wtp == wstartp + 1 |
847 | && wstartp[0] == '0', |
848 | 0)) |
849 | /* This is a special case: the rounded number is 1.0, |
850 | the format is 'g' or 'G', and the alternative format |
851 | is selected. This means the result must be "1.". */ |
852 | --added_zeros; |
853 | } |
854 | |
855 | if (fracdig_no == 0 || *wtp == decimal) |
856 | { |
857 | /* Round the integer digits. */ |
858 | if (*(wtp - 1) == decimal) |
859 | --wtp; |
860 | |
861 | while (--wtp >= wstartp && *wtp == '9') |
862 | *wtp = '0'; |
863 | |
864 | if (wtp >= wstartp) |
865 | /* Round up. */ |
866 | (*wtp)++; |
867 | else |
868 | /* It is more critical. All digits were 9's. */ |
869 | { |
870 | if (p.type != 'f') |
871 | { |
872 | *wstartp = '1'; |
873 | p.exponent += p.expsign == 0 ? 1 : -1; |
874 | |
875 | /* The above p.exponent adjustment could lead to 1.0e-00, |
876 | e.g. for 0.999999999. Make sure p.exponent 0 always |
877 | uses + sign. */ |
878 | if (p.exponent == 0) |
879 | p.expsign = 0; |
880 | } |
881 | else if (intdig_no == dig_max) |
882 | { |
883 | /* This is the case where for p.type %g the number fits |
884 | really in the range for %f output but after rounding |
885 | the number of digits is too big. */ |
886 | *--wstartp = decimal; |
887 | *--wstartp = '1'; |
888 | |
889 | if (info->alt || fracdig_no > 0) |
890 | { |
891 | /* Overwrite the old radix character. */ |
892 | wstartp[intdig_no + 2] = '0'; |
893 | ++fracdig_no; |
894 | } |
895 | |
896 | fracdig_no += intdig_no; |
897 | intdig_no = 1; |
898 | fracdig_max = intdig_max - intdig_no; |
899 | ++p.exponent; |
900 | /* Now we must print the p.exponent. */ |
901 | p.type = isupper (info->spec) ? 'E' : 'e'; |
902 | } |
903 | else |
904 | { |
905 | /* We can simply add another another digit before the |
906 | radix. */ |
907 | *--wstartp = '1'; |
908 | ++intdig_no; |
909 | } |
910 | |
911 | /* While rounding the number of digits can change. |
912 | If the number now exceeds the limits remove some |
913 | fractional digits. */ |
914 | if (intdig_no + fracdig_no > dig_max) |
915 | { |
916 | wcp -= intdig_no + fracdig_no - dig_max; |
917 | fracdig_no -= intdig_no + fracdig_no - dig_max; |
918 | } |
919 | } |
920 | } |
921 | } |
922 | |
923 | /* Now remove unnecessary '0' at the end of the string. */ |
924 | while (fracdig_no > fracdig_min + added_zeros && *(wcp - 1) == '0') |
925 | { |
926 | --wcp; |
927 | --fracdig_no; |
928 | } |
929 | /* If we eliminate all fractional digits we perhaps also can remove |
930 | the radix character. */ |
931 | if (fracdig_no == 0 && !info->alt && *(wcp - 1) == decimal) |
932 | --wcp; |
933 | |
934 | /* Write the p.exponent if it is needed. */ |
935 | if (p.type != 'f') |
936 | { |
937 | if (__glibc_unlikely (p.expsign != 0 && p.exponent == 4 && spec == 'g')) |
938 | { |
939 | /* This is another special case. The p.exponent of the number is |
940 | really smaller than -4, which requires the 'e'/'E' format. |
941 | But after rounding the number has an p.exponent of -4. */ |
942 | assert (wcp >= wstartp + 1); |
943 | assert (wstartp[0] == '1'); |
944 | memcpy (wstartp, "0.0001" , 6); |
945 | wstartp[1] = decimal; |
946 | if (wcp >= wstartp + 2) |
947 | { |
948 | memset (wstartp + 6, '0', wcp - (wstartp + 2)); |
949 | wcp += 4; |
950 | } |
951 | else |
952 | wcp += 5; |
953 | } |
954 | else |
955 | { |
956 | *wcp++ = p.type; |
957 | *wcp++ = p.expsign ? '-' : '+'; |
958 | |
959 | /* Find the magnitude of the p.exponent. */ |
960 | expscale = 10; |
961 | while (expscale <= p.exponent) |
962 | expscale *= 10; |
963 | |
964 | if (p.exponent < 10) |
965 | /* Exponent always has at least two digits. */ |
966 | *wcp++ = '0'; |
967 | else |
968 | do |
969 | { |
970 | expscale /= 10; |
971 | *wcp++ = '0' + (p.exponent / expscale); |
972 | p.exponent %= expscale; |
973 | } |
974 | while (expscale > 10); |
975 | *wcp++ = '0' + p.exponent; |
976 | } |
977 | } |
978 | |
979 | struct grouping_iterator iter; |
980 | if (thousands_sep != '\0' && info->group) |
981 | __grouping_iterator_init (&iter, lc_category, loc, intdig_no); |
982 | else |
983 | iter.separators = 0; |
984 | |
985 | /* Compute number of characters which must be filled with the padding |
986 | character. */ |
987 | if (is_neg || info->showsign || info->space) |
988 | --width; |
989 | /* To count bytes, we would have to use __translated_number_width |
990 | for info->i18n && !info->wide. See bug 28943. */ |
991 | width -= wcp - wstartp; |
992 | /* For counting bytes, we would have to multiply by |
993 | thousands_sep_length. */ |
994 | width -= iter.separators; |
995 | |
996 | if (!info->left && info->pad != '0') |
997 | __printf_buffer_pad (buf, info->pad, width); |
998 | |
999 | if (is_neg) |
1000 | __printf_buffer_putc (buf, '-'); |
1001 | else if (info->showsign) |
1002 | __printf_buffer_putc (buf, '+'); |
1003 | else if (info->space) |
1004 | __printf_buffer_putc (buf, ' '); |
1005 | |
1006 | if (!info->left && info->pad == '0') |
1007 | __printf_buffer_pad (buf, '0', width); |
1008 | |
1009 | if (iter.separators > 0) |
1010 | { |
1011 | char *cp = wstartp; |
1012 | for (int i = 0; i < intdig_no; ++i) |
1013 | { |
1014 | if (__grouping_iterator_next (&iter)) |
1015 | __printf_buffer_putc (buf, thousands_sep); |
1016 | __printf_buffer_putc (buf, *cp); |
1017 | ++cp; |
1018 | } |
1019 | __printf_buffer_write (buf, cp, wcp - cp); |
1020 | } |
1021 | else |
1022 | __printf_buffer_write (buf, wstartp, wcp - wstartp); |
1023 | |
1024 | if (info->left) |
1025 | __printf_buffer_pad (buf, info->pad, width); |
1026 | } |
1027 | |
1028 | if (buffer_malloced) |
1029 | free (wbuffer); |
1030 | } |
1031 | |
1032 | /* ASCII to localization translation. Multibyte version. */ |
1033 | struct __printf_buffer_fp |
1034 | { |
1035 | struct __printf_buffer base; |
1036 | |
1037 | /* Replacement for ',' and '.'. */ |
1038 | const char *thousands_sep; |
1039 | const char *decimal; |
1040 | unsigned char decimal_point_bytes; |
1041 | unsigned char thousands_sep_length; |
1042 | |
1043 | /* Buffer to write to. */ |
1044 | struct __printf_buffer *next; |
1045 | |
1046 | /* Activates outdigit translation if not NULL. */ |
1047 | struct __locale_data *ctype; |
1048 | |
1049 | /* Buffer to which the untranslated ASCII digits are written. */ |
1050 | char untranslated[PRINTF_BUFFER_SIZE_DIGITS]; |
1051 | }; |
1052 | |
1053 | /* Multibyte buffer-to-buffer flush function with full translation. */ |
1054 | void |
1055 | __printf_buffer_flush_fp (struct __printf_buffer_fp *buf) |
1056 | { |
1057 | /* No need to update buf->base.written; the actual count is |
1058 | maintained in buf->next->written. */ |
1059 | for (char *p = buf->untranslated; p < buf->base.write_ptr; ++p) |
1060 | { |
1061 | char ch = *p; |
1062 | const char *replacement = NULL; |
1063 | unsigned int replacement_bytes; |
1064 | if (ch == ',') |
1065 | { |
1066 | replacement = buf->thousands_sep; |
1067 | replacement_bytes = buf->thousands_sep_length; |
1068 | } |
1069 | else if (ch == '.') |
1070 | { |
1071 | replacement = buf->decimal; |
1072 | replacement_bytes = buf->decimal_point_bytes; |
1073 | } |
1074 | else if (buf->ctype != NULL && '0' <= ch && ch <= '9') |
1075 | { |
1076 | int digit = ch - '0'; |
1077 | replacement |
1078 | = buf->ctype->values[_NL_ITEM_INDEX (_NL_CTYPE_OUTDIGIT0_MB) |
1079 | + digit].string; |
1080 | struct lc_ctype_data *ctype = buf->ctype->private; |
1081 | replacement_bytes = ctype->outdigit_bytes[digit]; |
1082 | } |
1083 | if (replacement == NULL) |
1084 | __printf_buffer_putc (buf->next, ch); |
1085 | else |
1086 | __printf_buffer_write (buf->next, replacement, replacement_bytes); |
1087 | } |
1088 | |
1089 | if (!__printf_buffer_has_failed (buf->next)) |
1090 | buf->base.write_ptr = buf->untranslated; |
1091 | else |
1092 | __printf_buffer_mark_failed (&buf->base); |
1093 | } |
1094 | |
1095 | void |
1096 | __printf_fp_l_buffer (struct __printf_buffer *buf, locale_t loc, |
1097 | const struct printf_info *info, |
1098 | const void *const *args) |
1099 | { |
1100 | struct __printf_buffer_fp tmp; |
1101 | |
1102 | if (info->extra) |
1103 | { |
1104 | tmp.thousands_sep = _nl_lookup (loc, LC_MONETARY, MON_THOUSANDS_SEP); |
1105 | tmp.decimal = _nl_lookup (loc, LC_MONETARY, MON_DECIMAL_POINT); |
1106 | if (tmp.decimal[0] == '\0') |
1107 | tmp.decimal = _nl_lookup (loc, LC_NUMERIC, DECIMAL_POINT); |
1108 | } |
1109 | else |
1110 | { |
1111 | tmp.thousands_sep = _nl_lookup (loc, LC_NUMERIC, THOUSANDS_SEP); |
1112 | tmp.decimal = _nl_lookup (loc, LC_NUMERIC, DECIMAL_POINT); |
1113 | } |
1114 | |
1115 | tmp.thousands_sep_length = strlen (tmp.thousands_sep); |
1116 | if (tmp.decimal[1] == '\0' && tmp.thousands_sep_length <= 1 |
1117 | && !info->i18n) |
1118 | { |
1119 | /* Emit the the characters directly. This is only possible if the |
1120 | separators have length 1 (or 0 in case of thousands_sep). i18n |
1121 | digit translation still needs the full conversion. */ |
1122 | __printf_fp_buffer_1 (buf, loc, |
1123 | tmp.thousands_sep[0], tmp.decimal[0], |
1124 | tmp.thousands_sep_length, |
1125 | info, args); |
1126 | return; |
1127 | } |
1128 | |
1129 | tmp.decimal_point_bytes = strlen (tmp.decimal); |
1130 | |
1131 | if (info->i18n) |
1132 | tmp.ctype = loc->__locales[LC_CTYPE]; |
1133 | else |
1134 | tmp.ctype = NULL; |
1135 | tmp.next = buf; |
1136 | |
1137 | __printf_buffer_init (&tmp.base, tmp.untranslated, sizeof (tmp.untranslated), |
1138 | __printf_buffer_mode_fp); |
1139 | __printf_fp_buffer_1 (&tmp.base, loc, ',', '.', |
1140 | tmp.thousands_sep_length, info, args); |
1141 | if (__printf_buffer_has_failed (&tmp.base)) |
1142 | { |
1143 | __printf_buffer_mark_failed (tmp.next); |
1144 | return; |
1145 | } |
1146 | __printf_buffer_flush_fp (&tmp); |
1147 | } |
1148 | |
1149 | /* The wide version is implemented on top of the multibyte version using |
1150 | translation. */ |
1151 | |
1152 | struct __printf_buffer_fp_to_wide |
1153 | { |
1154 | struct __printf_buffer base; |
1155 | wchar_t thousands_sep_wc; |
1156 | wchar_t decimalwc; |
1157 | struct __wprintf_buffer *next; |
1158 | |
1159 | /* Activates outdigit translation if not NULL. */ |
1160 | struct __locale_data *ctype; |
1161 | |
1162 | char untranslated[PRINTF_BUFFER_SIZE_DIGITS]; |
1163 | }; |
1164 | |
1165 | void |
1166 | __printf_buffer_flush_fp_to_wide (struct __printf_buffer_fp_to_wide *buf) |
1167 | { |
1168 | /* No need to update buf->base.written; the actual count is |
1169 | maintained in buf->next->written. */ |
1170 | for (char *p = buf->untranslated; p < buf->base.write_ptr; ++p) |
1171 | { |
1172 | /* wchar_t overlaps with char in the ASCII range. */ |
1173 | wchar_t ch = *p; |
1174 | if (ch == L',') |
1175 | { |
1176 | ch = buf->thousands_sep_wc; |
1177 | if (ch == 0) |
1178 | continue; |
1179 | } |
1180 | else if (ch == L'.') |
1181 | ch = buf->decimalwc; |
1182 | else if (buf->ctype != NULL && L'0' <= ch && ch <= L'9') |
1183 | ch = buf->ctype->values[_NL_ITEM_INDEX (_NL_CTYPE_OUTDIGIT0_WC) |
1184 | + ch - L'0'].word; |
1185 | __wprintf_buffer_putc (buf->next, ch); |
1186 | } |
1187 | |
1188 | if (!__wprintf_buffer_has_failed (buf->next)) |
1189 | buf->base.write_ptr = buf->untranslated; |
1190 | else |
1191 | __printf_buffer_mark_failed (&buf->base); |
1192 | } |
1193 | |
1194 | void |
1195 | __wprintf_fp_l_buffer (struct __wprintf_buffer *buf, locale_t loc, |
1196 | const struct printf_info *info, |
1197 | const void *const *args) |
1198 | { |
1199 | struct __printf_buffer_fp_to_wide tmp; |
1200 | if (info->extra) |
1201 | { |
1202 | tmp.decimalwc = _nl_lookup_word (loc, LC_MONETARY, |
1203 | _NL_MONETARY_DECIMAL_POINT_WC); |
1204 | tmp.thousands_sep_wc = _nl_lookup_word (loc, LC_MONETARY, |
1205 | _NL_MONETARY_THOUSANDS_SEP_WC); |
1206 | if (tmp.decimalwc == 0) |
1207 | tmp.decimalwc = _nl_lookup_word (loc, LC_NUMERIC, |
1208 | _NL_NUMERIC_DECIMAL_POINT_WC); |
1209 | } |
1210 | else |
1211 | { |
1212 | tmp.decimalwc = _nl_lookup_word (loc, LC_NUMERIC, |
1213 | _NL_NUMERIC_DECIMAL_POINT_WC); |
1214 | tmp.thousands_sep_wc = _nl_lookup_word (loc, LC_NUMERIC, |
1215 | _NL_NUMERIC_THOUSANDS_SEP_WC); |
1216 | } |
1217 | |
1218 | if (info->i18n) |
1219 | tmp.ctype = loc->__locales[LC_CTYPE]; |
1220 | else |
1221 | tmp.ctype = NULL; |
1222 | tmp.next = buf; |
1223 | |
1224 | __printf_buffer_init (&tmp.base, tmp.untranslated, sizeof (tmp.untranslated), |
1225 | __printf_buffer_mode_fp_to_wide); |
1226 | __printf_fp_buffer_1 (&tmp.base, loc, ',', '.', 1, info, args); |
1227 | if (__printf_buffer_has_failed (&tmp.base)) |
1228 | { |
1229 | __wprintf_buffer_mark_failed (tmp.next); |
1230 | return; |
1231 | } |
1232 | __printf_buffer_flush (&tmp.base); |
1233 | } |
1234 | |
1235 | int |
1236 | ___printf_fp (FILE *fp, const struct printf_info *info, |
1237 | const void *const *args) |
1238 | { |
1239 | if (info->wide) |
1240 | { |
1241 | struct __wprintf_buffer_to_file buf; |
1242 | __wprintf_buffer_to_file_init (&buf, fp); |
1243 | __wprintf_fp_l_buffer (&buf.base, _NL_CURRENT_LOCALE, info, args); |
1244 | return __wprintf_buffer_to_file_done (&buf); |
1245 | } |
1246 | else |
1247 | { |
1248 | struct __printf_buffer_to_file buf; |
1249 | __printf_buffer_to_file_init (&buf, fp); |
1250 | __printf_fp_l_buffer (&buf.base, _NL_CURRENT_LOCALE, info, args); |
1251 | return __printf_buffer_to_file_done (&buf); |
1252 | } |
1253 | } |
1254 | ldbl_hidden_def (___printf_fp, __printf_fp) |
1255 | ldbl_strong_alias (___printf_fp, __printf_fp) |
1256 | |