1 | /* Software floating-point emulation. |
2 | Basic two-word fraction declaration and manipulation. |
3 | Copyright (C) 1997-2023 Free Software Foundation, Inc. |
4 | This file is part of the GNU C Library. |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | In addition to the permissions in the GNU Lesser General Public |
12 | License, the Free Software Foundation gives you unlimited |
13 | permission to link the compiled version of this file into |
14 | combinations with other programs, and to distribute those |
15 | combinations without any restriction coming from the use of this |
16 | file. (The Lesser General Public License restrictions do apply in |
17 | other respects; for example, they cover modification of the file, |
18 | and distribution when not linked into a combine executable.) |
19 | |
20 | The GNU C Library is distributed in the hope that it will be useful, |
21 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
22 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
23 | Lesser General Public License for more details. |
24 | |
25 | You should have received a copy of the GNU Lesser General Public |
26 | License along with the GNU C Library; if not, see |
27 | <https://www.gnu.org/licenses/>. */ |
28 | |
29 | #ifndef SOFT_FP_OP_2_H |
30 | #define SOFT_FP_OP_2_H 1 |
31 | |
32 | #define _FP_FRAC_DECL_2(X) \ |
33 | _FP_W_TYPE X##_f0 _FP_ZERO_INIT, X##_f1 _FP_ZERO_INIT |
34 | #define _FP_FRAC_COPY_2(D, S) (D##_f0 = S##_f0, D##_f1 = S##_f1) |
35 | #define _FP_FRAC_SET_2(X, I) __FP_FRAC_SET_2 (X, I) |
36 | #define _FP_FRAC_HIGH_2(X) (X##_f1) |
37 | #define _FP_FRAC_LOW_2(X) (X##_f0) |
38 | #define _FP_FRAC_WORD_2(X, w) (X##_f##w) |
39 | |
40 | #define _FP_FRAC_SLL_2(X, N) \ |
41 | (void) (((N) < _FP_W_TYPE_SIZE) \ |
42 | ? ({ \ |
43 | if (__builtin_constant_p (N) && (N) == 1) \ |
44 | { \ |
45 | X##_f1 = X##_f1 + X##_f1 + (((_FP_WS_TYPE) (X##_f0)) < 0); \ |
46 | X##_f0 += X##_f0; \ |
47 | } \ |
48 | else \ |
49 | { \ |
50 | X##_f1 = X##_f1 << (N) | X##_f0 >> (_FP_W_TYPE_SIZE - (N)); \ |
51 | X##_f0 <<= (N); \ |
52 | } \ |
53 | 0; \ |
54 | }) \ |
55 | : ({ \ |
56 | X##_f1 = X##_f0 << ((N) - _FP_W_TYPE_SIZE); \ |
57 | X##_f0 = 0; \ |
58 | })) |
59 | |
60 | |
61 | #define _FP_FRAC_SRL_2(X, N) \ |
62 | (void) (((N) < _FP_W_TYPE_SIZE) \ |
63 | ? ({ \ |
64 | X##_f0 = X##_f0 >> (N) | X##_f1 << (_FP_W_TYPE_SIZE - (N)); \ |
65 | X##_f1 >>= (N); \ |
66 | }) \ |
67 | : ({ \ |
68 | X##_f0 = X##_f1 >> ((N) - _FP_W_TYPE_SIZE); \ |
69 | X##_f1 = 0; \ |
70 | })) |
71 | |
72 | /* Right shift with sticky-lsb. */ |
73 | #define _FP_FRAC_SRST_2(X, S, N, sz) \ |
74 | (void) (((N) < _FP_W_TYPE_SIZE) \ |
75 | ? ({ \ |
76 | S = (__builtin_constant_p (N) && (N) == 1 \ |
77 | ? X##_f0 & 1 \ |
78 | : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0); \ |
79 | X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N)); \ |
80 | X##_f1 >>= (N); \ |
81 | }) \ |
82 | : ({ \ |
83 | S = ((((N) == _FP_W_TYPE_SIZE \ |
84 | ? 0 \ |
85 | : (X##_f1 << (2*_FP_W_TYPE_SIZE - (N)))) \ |
86 | | X##_f0) != 0); \ |
87 | X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE)); \ |
88 | X##_f1 = 0; \ |
89 | })) |
90 | |
91 | #define _FP_FRAC_SRS_2(X, N, sz) \ |
92 | (void) (((N) < _FP_W_TYPE_SIZE) \ |
93 | ? ({ \ |
94 | X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) \ |
95 | | (__builtin_constant_p (N) && (N) == 1 \ |
96 | ? X##_f0 & 1 \ |
97 | : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0)); \ |
98 | X##_f1 >>= (N); \ |
99 | }) \ |
100 | : ({ \ |
101 | X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE) \ |
102 | | ((((N) == _FP_W_TYPE_SIZE \ |
103 | ? 0 \ |
104 | : (X##_f1 << (2*_FP_W_TYPE_SIZE - (N)))) \ |
105 | | X##_f0) != 0)); \ |
106 | X##_f1 = 0; \ |
107 | })) |
108 | |
109 | #define _FP_FRAC_ADDI_2(X, I) \ |
110 | __FP_FRAC_ADDI_2 (X##_f1, X##_f0, I) |
111 | |
112 | #define _FP_FRAC_ADD_2(R, X, Y) \ |
113 | __FP_FRAC_ADD_2 (R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) |
114 | |
115 | #define _FP_FRAC_SUB_2(R, X, Y) \ |
116 | __FP_FRAC_SUB_2 (R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) |
117 | |
118 | #define _FP_FRAC_DEC_2(X, Y) \ |
119 | __FP_FRAC_DEC_2 (X##_f1, X##_f0, Y##_f1, Y##_f0) |
120 | |
121 | #define _FP_FRAC_CLZ_2(R, X) \ |
122 | do \ |
123 | { \ |
124 | if (X##_f1) \ |
125 | __FP_CLZ ((R), X##_f1); \ |
126 | else \ |
127 | { \ |
128 | __FP_CLZ ((R), X##_f0); \ |
129 | (R) += _FP_W_TYPE_SIZE; \ |
130 | } \ |
131 | } \ |
132 | while (0) |
133 | |
134 | /* Predicates. */ |
135 | #define _FP_FRAC_NEGP_2(X) ((_FP_WS_TYPE) X##_f1 < 0) |
136 | #define _FP_FRAC_ZEROP_2(X) ((X##_f1 | X##_f0) == 0) |
137 | #define _FP_FRAC_OVERP_2(fs, X) (_FP_FRAC_HIGH_##fs (X) & _FP_OVERFLOW_##fs) |
138 | #define _FP_FRAC_CLEAR_OVERP_2(fs, X) (_FP_FRAC_HIGH_##fs (X) &= ~_FP_OVERFLOW_##fs) |
139 | #define _FP_FRAC_HIGHBIT_DW_2(fs, X) \ |
140 | (_FP_FRAC_HIGH_DW_##fs (X) & _FP_HIGHBIT_DW_##fs) |
141 | #define _FP_FRAC_EQ_2(X, Y) (X##_f1 == Y##_f1 && X##_f0 == Y##_f0) |
142 | #define _FP_FRAC_GT_2(X, Y) \ |
143 | (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 > Y##_f0)) |
144 | #define _FP_FRAC_GE_2(X, Y) \ |
145 | (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 >= Y##_f0)) |
146 | |
147 | #define _FP_ZEROFRAC_2 0, 0 |
148 | #define _FP_MINFRAC_2 0, 1 |
149 | #define _FP_MAXFRAC_2 (~(_FP_WS_TYPE) 0), (~(_FP_WS_TYPE) 0) |
150 | |
151 | /* Internals. */ |
152 | |
153 | #define __FP_FRAC_SET_2(X, I1, I0) (X##_f0 = I0, X##_f1 = I1) |
154 | |
155 | #define __FP_CLZ_2(R, xh, xl) \ |
156 | do \ |
157 | { \ |
158 | if (xh) \ |
159 | __FP_CLZ ((R), xh); \ |
160 | else \ |
161 | { \ |
162 | __FP_CLZ ((R), xl); \ |
163 | (R) += _FP_W_TYPE_SIZE; \ |
164 | } \ |
165 | } \ |
166 | while (0) |
167 | |
168 | #if 0 |
169 | |
170 | # ifndef __FP_FRAC_ADDI_2 |
171 | # define __FP_FRAC_ADDI_2(xh, xl, i) \ |
172 | (xh += ((xl += i) < i)) |
173 | # endif |
174 | # ifndef __FP_FRAC_ADD_2 |
175 | # define __FP_FRAC_ADD_2(rh, rl, xh, xl, yh, yl) \ |
176 | (rh = xh + yh + ((rl = xl + yl) < xl)) |
177 | # endif |
178 | # ifndef __FP_FRAC_SUB_2 |
179 | # define __FP_FRAC_SUB_2(rh, rl, xh, xl, yh, yl) \ |
180 | (rh = xh - yh - ((rl = xl - yl) > xl)) |
181 | # endif |
182 | # ifndef __FP_FRAC_DEC_2 |
183 | # define __FP_FRAC_DEC_2(xh, xl, yh, yl) \ |
184 | do \ |
185 | { \ |
186 | UWtype __FP_FRAC_DEC_2_t = xl; \ |
187 | xh -= yh + ((xl -= yl) > __FP_FRAC_DEC_2_t); \ |
188 | } \ |
189 | while (0) |
190 | # endif |
191 | |
192 | #else |
193 | |
194 | # undef __FP_FRAC_ADDI_2 |
195 | # define __FP_FRAC_ADDI_2(xh, xl, i) add_ssaaaa (xh, xl, xh, xl, 0, i) |
196 | # undef __FP_FRAC_ADD_2 |
197 | # define __FP_FRAC_ADD_2 add_ssaaaa |
198 | # undef __FP_FRAC_SUB_2 |
199 | # define __FP_FRAC_SUB_2 sub_ddmmss |
200 | # undef __FP_FRAC_DEC_2 |
201 | # define __FP_FRAC_DEC_2(xh, xl, yh, yl) \ |
202 | sub_ddmmss (xh, xl, xh, xl, yh, yl) |
203 | |
204 | #endif |
205 | |
206 | /* Unpack the raw bits of a native fp value. Do not classify or |
207 | normalize the data. */ |
208 | |
209 | #define _FP_UNPACK_RAW_2(fs, X, val) \ |
210 | do \ |
211 | { \ |
212 | union _FP_UNION_##fs _FP_UNPACK_RAW_2_flo; \ |
213 | _FP_UNPACK_RAW_2_flo.flt = (val); \ |
214 | \ |
215 | X##_f0 = _FP_UNPACK_RAW_2_flo.bits.frac0; \ |
216 | X##_f1 = _FP_UNPACK_RAW_2_flo.bits.frac1; \ |
217 | X##_e = _FP_UNPACK_RAW_2_flo.bits.exp; \ |
218 | X##_s = _FP_UNPACK_RAW_2_flo.bits.sign; \ |
219 | } \ |
220 | while (0) |
221 | |
222 | #define _FP_UNPACK_RAW_2_P(fs, X, val) \ |
223 | do \ |
224 | { \ |
225 | union _FP_UNION_##fs *_FP_UNPACK_RAW_2_P_flo \ |
226 | = (union _FP_UNION_##fs *) (val); \ |
227 | \ |
228 | X##_f0 = _FP_UNPACK_RAW_2_P_flo->bits.frac0; \ |
229 | X##_f1 = _FP_UNPACK_RAW_2_P_flo->bits.frac1; \ |
230 | X##_e = _FP_UNPACK_RAW_2_P_flo->bits.exp; \ |
231 | X##_s = _FP_UNPACK_RAW_2_P_flo->bits.sign; \ |
232 | } \ |
233 | while (0) |
234 | |
235 | |
236 | /* Repack the raw bits of a native fp value. */ |
237 | |
238 | #define _FP_PACK_RAW_2(fs, val, X) \ |
239 | do \ |
240 | { \ |
241 | union _FP_UNION_##fs _FP_PACK_RAW_2_flo; \ |
242 | \ |
243 | _FP_PACK_RAW_2_flo.bits.frac0 = X##_f0; \ |
244 | _FP_PACK_RAW_2_flo.bits.frac1 = X##_f1; \ |
245 | _FP_PACK_RAW_2_flo.bits.exp = X##_e; \ |
246 | _FP_PACK_RAW_2_flo.bits.sign = X##_s; \ |
247 | \ |
248 | (val) = _FP_PACK_RAW_2_flo.flt; \ |
249 | } \ |
250 | while (0) |
251 | |
252 | #define _FP_PACK_RAW_2_P(fs, val, X) \ |
253 | do \ |
254 | { \ |
255 | union _FP_UNION_##fs *_FP_PACK_RAW_2_P_flo \ |
256 | = (union _FP_UNION_##fs *) (val); \ |
257 | \ |
258 | _FP_PACK_RAW_2_P_flo->bits.frac0 = X##_f0; \ |
259 | _FP_PACK_RAW_2_P_flo->bits.frac1 = X##_f1; \ |
260 | _FP_PACK_RAW_2_P_flo->bits.exp = X##_e; \ |
261 | _FP_PACK_RAW_2_P_flo->bits.sign = X##_s; \ |
262 | } \ |
263 | while (0) |
264 | |
265 | |
266 | /* Multiplication algorithms: */ |
267 | |
268 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */ |
269 | |
270 | #define _FP_MUL_MEAT_DW_2_wide(wfracbits, R, X, Y, doit) \ |
271 | do \ |
272 | { \ |
273 | _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_b); \ |
274 | _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_c); \ |
275 | \ |
276 | doit (_FP_FRAC_WORD_4 (R, 1), _FP_FRAC_WORD_4 (R, 0), \ |
277 | X##_f0, Y##_f0); \ |
278 | doit (_FP_MUL_MEAT_DW_2_wide_b_f1, _FP_MUL_MEAT_DW_2_wide_b_f0, \ |
279 | X##_f0, Y##_f1); \ |
280 | doit (_FP_MUL_MEAT_DW_2_wide_c_f1, _FP_MUL_MEAT_DW_2_wide_c_f0, \ |
281 | X##_f1, Y##_f0); \ |
282 | doit (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
283 | X##_f1, Y##_f1); \ |
284 | \ |
285 | __FP_FRAC_ADD_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
286 | _FP_FRAC_WORD_4 (R, 1), 0, \ |
287 | _FP_MUL_MEAT_DW_2_wide_b_f1, \ |
288 | _FP_MUL_MEAT_DW_2_wide_b_f0, \ |
289 | _FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
290 | _FP_FRAC_WORD_4 (R, 1)); \ |
291 | __FP_FRAC_ADD_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
292 | _FP_FRAC_WORD_4 (R, 1), 0, \ |
293 | _FP_MUL_MEAT_DW_2_wide_c_f1, \ |
294 | _FP_MUL_MEAT_DW_2_wide_c_f0, \ |
295 | _FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
296 | _FP_FRAC_WORD_4 (R, 1)); \ |
297 | } \ |
298 | while (0) |
299 | |
300 | #define _FP_MUL_MEAT_2_wide(wfracbits, R, X, Y, doit) \ |
301 | do \ |
302 | { \ |
303 | _FP_FRAC_DECL_4 (_FP_MUL_MEAT_2_wide_z); \ |
304 | \ |
305 | _FP_MUL_MEAT_DW_2_wide ((wfracbits), _FP_MUL_MEAT_2_wide_z, \ |
306 | X, Y, doit); \ |
307 | \ |
308 | /* Normalize since we know where the msb of the multiplicands \ |
309 | were (bit B), we know that the msb of the of the product is \ |
310 | at either 2B or 2B-1. */ \ |
311 | _FP_FRAC_SRS_4 (_FP_MUL_MEAT_2_wide_z, (wfracbits)-1, \ |
312 | 2*(wfracbits)); \ |
313 | R##_f0 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_z, 0); \ |
314 | R##_f1 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_z, 1); \ |
315 | } \ |
316 | while (0) |
317 | |
318 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication. |
319 | Do only 3 multiplications instead of four. This one is for machines |
320 | where multiplication is much more expensive than subtraction. */ |
321 | |
322 | #define _FP_MUL_MEAT_DW_2_wide_3mul(wfracbits, R, X, Y, doit) \ |
323 | do \ |
324 | { \ |
325 | _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_3mul_b); \ |
326 | _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_2_wide_3mul_c); \ |
327 | _FP_W_TYPE _FP_MUL_MEAT_DW_2_wide_3mul_d; \ |
328 | int _FP_MUL_MEAT_DW_2_wide_3mul_c1; \ |
329 | int _FP_MUL_MEAT_DW_2_wide_3mul_c2; \ |
330 | \ |
331 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f0 = X##_f0 + X##_f1; \ |
332 | _FP_MUL_MEAT_DW_2_wide_3mul_c1 \ |
333 | = _FP_MUL_MEAT_DW_2_wide_3mul_b_f0 < X##_f0; \ |
334 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f1 = Y##_f0 + Y##_f1; \ |
335 | _FP_MUL_MEAT_DW_2_wide_3mul_c2 \ |
336 | = _FP_MUL_MEAT_DW_2_wide_3mul_b_f1 < Y##_f0; \ |
337 | doit (_FP_MUL_MEAT_DW_2_wide_3mul_d, _FP_FRAC_WORD_4 (R, 0), \ |
338 | X##_f0, Y##_f0); \ |
339 | doit (_FP_FRAC_WORD_4 (R, 2), _FP_FRAC_WORD_4 (R, 1), \ |
340 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f0, \ |
341 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f1); \ |
342 | doit (_FP_MUL_MEAT_DW_2_wide_3mul_c_f1, \ |
343 | _FP_MUL_MEAT_DW_2_wide_3mul_c_f0, X##_f1, Y##_f1); \ |
344 | \ |
345 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f0 \ |
346 | &= -_FP_MUL_MEAT_DW_2_wide_3mul_c2; \ |
347 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f1 \ |
348 | &= -_FP_MUL_MEAT_DW_2_wide_3mul_c1; \ |
349 | __FP_FRAC_ADD_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
350 | _FP_FRAC_WORD_4 (R, 1), \ |
351 | (_FP_MUL_MEAT_DW_2_wide_3mul_c1 \ |
352 | & _FP_MUL_MEAT_DW_2_wide_3mul_c2), 0, \ |
353 | _FP_MUL_MEAT_DW_2_wide_3mul_d, \ |
354 | 0, _FP_FRAC_WORD_4 (R, 2), _FP_FRAC_WORD_4 (R, 1)); \ |
355 | __FP_FRAC_ADDI_2 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
356 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f0); \ |
357 | __FP_FRAC_ADDI_2 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
358 | _FP_MUL_MEAT_DW_2_wide_3mul_b_f1); \ |
359 | __FP_FRAC_DEC_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
360 | _FP_FRAC_WORD_4 (R, 1), \ |
361 | 0, _FP_MUL_MEAT_DW_2_wide_3mul_d, \ |
362 | _FP_FRAC_WORD_4 (R, 0)); \ |
363 | __FP_FRAC_DEC_3 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
364 | _FP_FRAC_WORD_4 (R, 1), 0, \ |
365 | _FP_MUL_MEAT_DW_2_wide_3mul_c_f1, \ |
366 | _FP_MUL_MEAT_DW_2_wide_3mul_c_f0); \ |
367 | __FP_FRAC_ADD_2 (_FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2), \ |
368 | _FP_MUL_MEAT_DW_2_wide_3mul_c_f1, \ |
369 | _FP_MUL_MEAT_DW_2_wide_3mul_c_f0, \ |
370 | _FP_FRAC_WORD_4 (R, 3), _FP_FRAC_WORD_4 (R, 2)); \ |
371 | } \ |
372 | while (0) |
373 | |
374 | #define _FP_MUL_MEAT_2_wide_3mul(wfracbits, R, X, Y, doit) \ |
375 | do \ |
376 | { \ |
377 | _FP_FRAC_DECL_4 (_FP_MUL_MEAT_2_wide_3mul_z); \ |
378 | \ |
379 | _FP_MUL_MEAT_DW_2_wide_3mul ((wfracbits), \ |
380 | _FP_MUL_MEAT_2_wide_3mul_z, \ |
381 | X, Y, doit); \ |
382 | \ |
383 | /* Normalize since we know where the msb of the multiplicands \ |
384 | were (bit B), we know that the msb of the of the product is \ |
385 | at either 2B or 2B-1. */ \ |
386 | _FP_FRAC_SRS_4 (_FP_MUL_MEAT_2_wide_3mul_z, \ |
387 | (wfracbits)-1, 2*(wfracbits)); \ |
388 | R##_f0 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_3mul_z, 0); \ |
389 | R##_f1 = _FP_FRAC_WORD_4 (_FP_MUL_MEAT_2_wide_3mul_z, 1); \ |
390 | } \ |
391 | while (0) |
392 | |
393 | #define _FP_MUL_MEAT_DW_2_gmp(wfracbits, R, X, Y) \ |
394 | do \ |
395 | { \ |
396 | _FP_W_TYPE _FP_MUL_MEAT_DW_2_gmp_x[2]; \ |
397 | _FP_W_TYPE _FP_MUL_MEAT_DW_2_gmp_y[2]; \ |
398 | _FP_MUL_MEAT_DW_2_gmp_x[0] = X##_f0; \ |
399 | _FP_MUL_MEAT_DW_2_gmp_x[1] = X##_f1; \ |
400 | _FP_MUL_MEAT_DW_2_gmp_y[0] = Y##_f0; \ |
401 | _FP_MUL_MEAT_DW_2_gmp_y[1] = Y##_f1; \ |
402 | \ |
403 | mpn_mul_n (R##_f, _FP_MUL_MEAT_DW_2_gmp_x, \ |
404 | _FP_MUL_MEAT_DW_2_gmp_y, 2); \ |
405 | } \ |
406 | while (0) |
407 | |
408 | #define _FP_MUL_MEAT_2_gmp(wfracbits, R, X, Y) \ |
409 | do \ |
410 | { \ |
411 | _FP_FRAC_DECL_4 (_FP_MUL_MEAT_2_gmp_z); \ |
412 | \ |
413 | _FP_MUL_MEAT_DW_2_gmp ((wfracbits), _FP_MUL_MEAT_2_gmp_z, X, Y); \ |
414 | \ |
415 | /* Normalize since we know where the msb of the multiplicands \ |
416 | were (bit B), we know that the msb of the of the product is \ |
417 | at either 2B or 2B-1. */ \ |
418 | _FP_FRAC_SRS_4 (_FP_MUL_MEAT_2_gmp_z, (wfracbits)-1, \ |
419 | 2*(wfracbits)); \ |
420 | R##_f0 = _FP_MUL_MEAT_2_gmp_z_f[0]; \ |
421 | R##_f1 = _FP_MUL_MEAT_2_gmp_z_f[1]; \ |
422 | } \ |
423 | while (0) |
424 | |
425 | /* Do at most 120x120=240 bits multiplication using double floating |
426 | point multiplication. This is useful if floating point |
427 | multiplication has much bigger throughput than integer multiply. |
428 | It is supposed to work for _FP_W_TYPE_SIZE 64 and wfracbits |
429 | between 106 and 120 only. |
430 | Caller guarantees that X and Y has (1LLL << (wfracbits - 1)) set. |
431 | SETFETZ is a macro which will disable all FPU exceptions and set rounding |
432 | towards zero, RESETFE should optionally reset it back. */ |
433 | |
434 | #define _FP_MUL_MEAT_2_120_240_double(wfracbits, R, X, Y, setfetz, resetfe) \ |
435 | do \ |
436 | { \ |
437 | static const double _const[] = \ |
438 | { \ |
439 | /* 2^-24 */ 5.9604644775390625e-08, \ |
440 | /* 2^-48 */ 3.5527136788005009e-15, \ |
441 | /* 2^-72 */ 2.1175823681357508e-22, \ |
442 | /* 2^-96 */ 1.2621774483536189e-29, \ |
443 | /* 2^28 */ 2.68435456e+08, \ |
444 | /* 2^4 */ 1.600000e+01, \ |
445 | /* 2^-20 */ 9.5367431640625e-07, \ |
446 | /* 2^-44 */ 5.6843418860808015e-14, \ |
447 | /* 2^-68 */ 3.3881317890172014e-21, \ |
448 | /* 2^-92 */ 2.0194839173657902e-28, \ |
449 | /* 2^-116 */ 1.2037062152420224e-35 \ |
450 | }; \ |
451 | double _a240, _b240, _c240, _d240, _e240, _f240, \ |
452 | _g240, _h240, _i240, _j240, _k240; \ |
453 | union { double d; UDItype i; } _l240, _m240, _n240, _o240, \ |
454 | _p240, _q240, _r240, _s240; \ |
455 | UDItype _t240, _u240, _v240, _w240, _x240, _y240 = 0; \ |
456 | \ |
457 | _FP_STATIC_ASSERT ((wfracbits) >= 106 && (wfracbits) <= 120, \ |
458 | "wfracbits out of range"); \ |
459 | \ |
460 | setfetz; \ |
461 | \ |
462 | _e240 = (double) (long) (X##_f0 & 0xffffff); \ |
463 | _j240 = (double) (long) (Y##_f0 & 0xffffff); \ |
464 | _d240 = (double) (long) ((X##_f0 >> 24) & 0xffffff); \ |
465 | _i240 = (double) (long) ((Y##_f0 >> 24) & 0xffffff); \ |
466 | _c240 = (double) (long) (((X##_f1 << 16) & 0xffffff) | (X##_f0 >> 48)); \ |
467 | _h240 = (double) (long) (((Y##_f1 << 16) & 0xffffff) | (Y##_f0 >> 48)); \ |
468 | _b240 = (double) (long) ((X##_f1 >> 8) & 0xffffff); \ |
469 | _g240 = (double) (long) ((Y##_f1 >> 8) & 0xffffff); \ |
470 | _a240 = (double) (long) (X##_f1 >> 32); \ |
471 | _f240 = (double) (long) (Y##_f1 >> 32); \ |
472 | _e240 *= _const[3]; \ |
473 | _j240 *= _const[3]; \ |
474 | _d240 *= _const[2]; \ |
475 | _i240 *= _const[2]; \ |
476 | _c240 *= _const[1]; \ |
477 | _h240 *= _const[1]; \ |
478 | _b240 *= _const[0]; \ |
479 | _g240 *= _const[0]; \ |
480 | _s240.d = _e240*_j240; \ |
481 | _r240.d = _d240*_j240 + _e240*_i240; \ |
482 | _q240.d = _c240*_j240 + _d240*_i240 + _e240*_h240; \ |
483 | _p240.d = _b240*_j240 + _c240*_i240 + _d240*_h240 + _e240*_g240; \ |
484 | _o240.d = _a240*_j240 + _b240*_i240 + _c240*_h240 + _d240*_g240 + _e240*_f240; \ |
485 | _n240.d = _a240*_i240 + _b240*_h240 + _c240*_g240 + _d240*_f240; \ |
486 | _m240.d = _a240*_h240 + _b240*_g240 + _c240*_f240; \ |
487 | _l240.d = _a240*_g240 + _b240*_f240; \ |
488 | _k240 = _a240*_f240; \ |
489 | _r240.d += _s240.d; \ |
490 | _q240.d += _r240.d; \ |
491 | _p240.d += _q240.d; \ |
492 | _o240.d += _p240.d; \ |
493 | _n240.d += _o240.d; \ |
494 | _m240.d += _n240.d; \ |
495 | _l240.d += _m240.d; \ |
496 | _k240 += _l240.d; \ |
497 | _s240.d -= ((_const[10]+_s240.d)-_const[10]); \ |
498 | _r240.d -= ((_const[9]+_r240.d)-_const[9]); \ |
499 | _q240.d -= ((_const[8]+_q240.d)-_const[8]); \ |
500 | _p240.d -= ((_const[7]+_p240.d)-_const[7]); \ |
501 | _o240.d += _const[7]; \ |
502 | _n240.d += _const[6]; \ |
503 | _m240.d += _const[5]; \ |
504 | _l240.d += _const[4]; \ |
505 | if (_s240.d != 0.0) \ |
506 | _y240 = 1; \ |
507 | if (_r240.d != 0.0) \ |
508 | _y240 = 1; \ |
509 | if (_q240.d != 0.0) \ |
510 | _y240 = 1; \ |
511 | if (_p240.d != 0.0) \ |
512 | _y240 = 1; \ |
513 | _t240 = (DItype) _k240; \ |
514 | _u240 = _l240.i; \ |
515 | _v240 = _m240.i; \ |
516 | _w240 = _n240.i; \ |
517 | _x240 = _o240.i; \ |
518 | R##_f1 = ((_t240 << (128 - (wfracbits - 1))) \ |
519 | | ((_u240 & 0xffffff) >> ((wfracbits - 1) - 104))); \ |
520 | R##_f0 = (((_u240 & 0xffffff) << (168 - (wfracbits - 1))) \ |
521 | | ((_v240 & 0xffffff) << (144 - (wfracbits - 1))) \ |
522 | | ((_w240 & 0xffffff) << (120 - (wfracbits - 1))) \ |
523 | | ((_x240 & 0xffffff) >> ((wfracbits - 1) - 96)) \ |
524 | | _y240); \ |
525 | resetfe; \ |
526 | } \ |
527 | while (0) |
528 | |
529 | /* Division algorithms: */ |
530 | |
531 | #define _FP_DIV_MEAT_2_udiv(fs, R, X, Y) \ |
532 | do \ |
533 | { \ |
534 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_n_f2; \ |
535 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_n_f1; \ |
536 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_n_f0; \ |
537 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_r_f1; \ |
538 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_r_f0; \ |
539 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_m_f1; \ |
540 | _FP_W_TYPE _FP_DIV_MEAT_2_udiv_m_f0; \ |
541 | if (_FP_FRAC_GE_2 (X, Y)) \ |
542 | { \ |
543 | _FP_DIV_MEAT_2_udiv_n_f2 = X##_f1 >> 1; \ |
544 | _FP_DIV_MEAT_2_udiv_n_f1 \ |
545 | = X##_f1 << (_FP_W_TYPE_SIZE - 1) | X##_f0 >> 1; \ |
546 | _FP_DIV_MEAT_2_udiv_n_f0 \ |
547 | = X##_f0 << (_FP_W_TYPE_SIZE - 1); \ |
548 | } \ |
549 | else \ |
550 | { \ |
551 | R##_e--; \ |
552 | _FP_DIV_MEAT_2_udiv_n_f2 = X##_f1; \ |
553 | _FP_DIV_MEAT_2_udiv_n_f1 = X##_f0; \ |
554 | _FP_DIV_MEAT_2_udiv_n_f0 = 0; \ |
555 | } \ |
556 | \ |
557 | /* Normalize, i.e. make the most significant bit of the \ |
558 | denominator set. */ \ |
559 | _FP_FRAC_SLL_2 (Y, _FP_WFRACXBITS_##fs); \ |
560 | \ |
561 | udiv_qrnnd (R##_f1, _FP_DIV_MEAT_2_udiv_r_f1, \ |
562 | _FP_DIV_MEAT_2_udiv_n_f2, _FP_DIV_MEAT_2_udiv_n_f1, \ |
563 | Y##_f1); \ |
564 | umul_ppmm (_FP_DIV_MEAT_2_udiv_m_f1, _FP_DIV_MEAT_2_udiv_m_f0, \ |
565 | R##_f1, Y##_f0); \ |
566 | _FP_DIV_MEAT_2_udiv_r_f0 = _FP_DIV_MEAT_2_udiv_n_f0; \ |
567 | if (_FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m, _FP_DIV_MEAT_2_udiv_r)) \ |
568 | { \ |
569 | R##_f1--; \ |
570 | _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y, \ |
571 | _FP_DIV_MEAT_2_udiv_r); \ |
572 | if (_FP_FRAC_GE_2 (_FP_DIV_MEAT_2_udiv_r, Y) \ |
573 | && _FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m, \ |
574 | _FP_DIV_MEAT_2_udiv_r)) \ |
575 | { \ |
576 | R##_f1--; \ |
577 | _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y, \ |
578 | _FP_DIV_MEAT_2_udiv_r); \ |
579 | } \ |
580 | } \ |
581 | _FP_FRAC_DEC_2 (_FP_DIV_MEAT_2_udiv_r, _FP_DIV_MEAT_2_udiv_m); \ |
582 | \ |
583 | if (_FP_DIV_MEAT_2_udiv_r_f1 == Y##_f1) \ |
584 | { \ |
585 | /* This is a special case, not an optimization \ |
586 | (_FP_DIV_MEAT_2_udiv_r/Y##_f1 would not fit into UWtype). \ |
587 | As _FP_DIV_MEAT_2_udiv_r is guaranteed to be < Y, \ |
588 | R##_f0 can be either (UWtype)-1 or (UWtype)-2. But as we \ |
589 | know what kind of bits it is (sticky, guard, round), \ |
590 | we don't care. We also don't care what the reminder is, \ |
591 | because the guard bit will be set anyway. -jj */ \ |
592 | R##_f0 = -1; \ |
593 | } \ |
594 | else \ |
595 | { \ |
596 | udiv_qrnnd (R##_f0, _FP_DIV_MEAT_2_udiv_r_f1, \ |
597 | _FP_DIV_MEAT_2_udiv_r_f1, \ |
598 | _FP_DIV_MEAT_2_udiv_r_f0, Y##_f1); \ |
599 | umul_ppmm (_FP_DIV_MEAT_2_udiv_m_f1, \ |
600 | _FP_DIV_MEAT_2_udiv_m_f0, R##_f0, Y##_f0); \ |
601 | _FP_DIV_MEAT_2_udiv_r_f0 = 0; \ |
602 | if (_FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m, \ |
603 | _FP_DIV_MEAT_2_udiv_r)) \ |
604 | { \ |
605 | R##_f0--; \ |
606 | _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y, \ |
607 | _FP_DIV_MEAT_2_udiv_r); \ |
608 | if (_FP_FRAC_GE_2 (_FP_DIV_MEAT_2_udiv_r, Y) \ |
609 | && _FP_FRAC_GT_2 (_FP_DIV_MEAT_2_udiv_m, \ |
610 | _FP_DIV_MEAT_2_udiv_r)) \ |
611 | { \ |
612 | R##_f0--; \ |
613 | _FP_FRAC_ADD_2 (_FP_DIV_MEAT_2_udiv_r, Y, \ |
614 | _FP_DIV_MEAT_2_udiv_r); \ |
615 | } \ |
616 | } \ |
617 | if (!_FP_FRAC_EQ_2 (_FP_DIV_MEAT_2_udiv_r, \ |
618 | _FP_DIV_MEAT_2_udiv_m)) \ |
619 | R##_f0 |= _FP_WORK_STICKY; \ |
620 | } \ |
621 | } \ |
622 | while (0) |
623 | |
624 | |
625 | /* Square root algorithms: |
626 | We have just one right now, maybe Newton approximation |
627 | should be added for those machines where division is fast. */ |
628 | |
629 | #define _FP_SQRT_MEAT_2(R, S, T, X, q) \ |
630 | do \ |
631 | { \ |
632 | while (q) \ |
633 | { \ |
634 | T##_f1 = S##_f1 + (q); \ |
635 | if (T##_f1 <= X##_f1) \ |
636 | { \ |
637 | S##_f1 = T##_f1 + (q); \ |
638 | X##_f1 -= T##_f1; \ |
639 | R##_f1 += (q); \ |
640 | } \ |
641 | _FP_FRAC_SLL_2 (X, 1); \ |
642 | (q) >>= 1; \ |
643 | } \ |
644 | (q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \ |
645 | while ((q) != _FP_WORK_ROUND) \ |
646 | { \ |
647 | T##_f0 = S##_f0 + (q); \ |
648 | T##_f1 = S##_f1; \ |
649 | if (T##_f1 < X##_f1 \ |
650 | || (T##_f1 == X##_f1 && T##_f0 <= X##_f0)) \ |
651 | { \ |
652 | S##_f0 = T##_f0 + (q); \ |
653 | S##_f1 += (T##_f0 > S##_f0); \ |
654 | _FP_FRAC_DEC_2 (X, T); \ |
655 | R##_f0 += (q); \ |
656 | } \ |
657 | _FP_FRAC_SLL_2 (X, 1); \ |
658 | (q) >>= 1; \ |
659 | } \ |
660 | if (X##_f0 | X##_f1) \ |
661 | { \ |
662 | if (S##_f1 < X##_f1 \ |
663 | || (S##_f1 == X##_f1 && S##_f0 < X##_f0)) \ |
664 | R##_f0 |= _FP_WORK_ROUND; \ |
665 | R##_f0 |= _FP_WORK_STICKY; \ |
666 | } \ |
667 | } \ |
668 | while (0) |
669 | |
670 | |
671 | /* Assembly/disassembly for converting to/from integral types. |
672 | No shifting or overflow handled here. */ |
673 | |
674 | #define _FP_FRAC_ASSEMBLE_2(r, X, rsize) \ |
675 | (void) (((rsize) <= _FP_W_TYPE_SIZE) \ |
676 | ? ({ (r) = X##_f0; }) \ |
677 | : ({ \ |
678 | (r) = X##_f1; \ |
679 | (r) <<= _FP_W_TYPE_SIZE; \ |
680 | (r) += X##_f0; \ |
681 | })) |
682 | |
683 | #define _FP_FRAC_DISASSEMBLE_2(X, r, rsize) \ |
684 | do \ |
685 | { \ |
686 | X##_f0 = (r); \ |
687 | X##_f1 = ((rsize) <= _FP_W_TYPE_SIZE \ |
688 | ? 0 \ |
689 | : (r) >> _FP_W_TYPE_SIZE); \ |
690 | } \ |
691 | while (0) |
692 | |
693 | /* Convert FP values between word sizes. */ |
694 | |
695 | #define _FP_FRAC_COPY_1_2(D, S) (D##_f = S##_f0) |
696 | |
697 | #define _FP_FRAC_COPY_2_1(D, S) ((D##_f0 = S##_f), (D##_f1 = 0)) |
698 | |
699 | #define _FP_FRAC_COPY_2_2(D, S) _FP_FRAC_COPY_2 (D, S) |
700 | |
701 | #endif /* !SOFT_FP_OP_2_H */ |
702 | |