| 1 | /* Software floating-point emulation. |
| 2 | Basic one-word fraction declaration and manipulation. |
| 3 | Copyright (C) 1997-2023 Free Software Foundation, Inc. |
| 4 | This file is part of the GNU C Library. |
| 5 | |
| 6 | The GNU C Library is free software; you can redistribute it and/or |
| 7 | modify it under the terms of the GNU Lesser General Public |
| 8 | License as published by the Free Software Foundation; either |
| 9 | version 2.1 of the License, or (at your option) any later version. |
| 10 | |
| 11 | In addition to the permissions in the GNU Lesser General Public |
| 12 | License, the Free Software Foundation gives you unlimited |
| 13 | permission to link the compiled version of this file into |
| 14 | combinations with other programs, and to distribute those |
| 15 | combinations without any restriction coming from the use of this |
| 16 | file. (The Lesser General Public License restrictions do apply in |
| 17 | other respects; for example, they cover modification of the file, |
| 18 | and distribution when not linked into a combine executable.) |
| 19 | |
| 20 | The GNU C Library is distributed in the hope that it will be useful, |
| 21 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 22 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 23 | Lesser General Public License for more details. |
| 24 | |
| 25 | You should have received a copy of the GNU Lesser General Public |
| 26 | License along with the GNU C Library; if not, see |
| 27 | <https://www.gnu.org/licenses/>. */ |
| 28 | |
| 29 | #ifndef SOFT_FP_OP_1_H |
| 30 | #define SOFT_FP_OP_1_H 1 |
| 31 | |
| 32 | #define _FP_FRAC_DECL_1(X) _FP_W_TYPE X##_f _FP_ZERO_INIT |
| 33 | #define _FP_FRAC_COPY_1(D, S) (D##_f = S##_f) |
| 34 | #define _FP_FRAC_SET_1(X, I) (X##_f = I) |
| 35 | #define _FP_FRAC_HIGH_1(X) (X##_f) |
| 36 | #define _FP_FRAC_LOW_1(X) (X##_f) |
| 37 | #define _FP_FRAC_WORD_1(X, w) (X##_f) |
| 38 | |
| 39 | #define _FP_FRAC_ADDI_1(X, I) (X##_f += I) |
| 40 | #define _FP_FRAC_SLL_1(X, N) \ |
| 41 | do \ |
| 42 | { \ |
| 43 | if (__builtin_constant_p (N) && (N) == 1) \ |
| 44 | X##_f += X##_f; \ |
| 45 | else \ |
| 46 | X##_f <<= (N); \ |
| 47 | } \ |
| 48 | while (0) |
| 49 | #define _FP_FRAC_SRL_1(X, N) (X##_f >>= N) |
| 50 | |
| 51 | /* Right shift with sticky-lsb. */ |
| 52 | #define _FP_FRAC_SRST_1(X, S, N, sz) __FP_FRAC_SRST_1 (X##_f, S, (N), (sz)) |
| 53 | #define _FP_FRAC_SRS_1(X, N, sz) __FP_FRAC_SRS_1 (X##_f, (N), (sz)) |
| 54 | |
| 55 | #define __FP_FRAC_SRST_1(X, S, N, sz) \ |
| 56 | do \ |
| 57 | { \ |
| 58 | S = (__builtin_constant_p (N) && (N) == 1 \ |
| 59 | ? X & 1 \ |
| 60 | : (X << (_FP_W_TYPE_SIZE - (N))) != 0); \ |
| 61 | X = X >> (N); \ |
| 62 | } \ |
| 63 | while (0) |
| 64 | |
| 65 | #define __FP_FRAC_SRS_1(X, N, sz) \ |
| 66 | (X = (X >> (N) | (__builtin_constant_p (N) && (N) == 1 \ |
| 67 | ? X & 1 \ |
| 68 | : (X << (_FP_W_TYPE_SIZE - (N))) != 0))) |
| 69 | |
| 70 | #define _FP_FRAC_ADD_1(R, X, Y) (R##_f = X##_f + Y##_f) |
| 71 | #define _FP_FRAC_SUB_1(R, X, Y) (R##_f = X##_f - Y##_f) |
| 72 | #define _FP_FRAC_DEC_1(X, Y) (X##_f -= Y##_f) |
| 73 | #define _FP_FRAC_CLZ_1(z, X) __FP_CLZ ((z), X##_f) |
| 74 | |
| 75 | /* Predicates. */ |
| 76 | #define _FP_FRAC_NEGP_1(X) ((_FP_WS_TYPE) X##_f < 0) |
| 77 | #define _FP_FRAC_ZEROP_1(X) (X##_f == 0) |
| 78 | #define _FP_FRAC_OVERP_1(fs, X) (X##_f & _FP_OVERFLOW_##fs) |
| 79 | #define _FP_FRAC_CLEAR_OVERP_1(fs, X) (X##_f &= ~_FP_OVERFLOW_##fs) |
| 80 | #define _FP_FRAC_HIGHBIT_DW_1(fs, X) (X##_f & _FP_HIGHBIT_DW_##fs) |
| 81 | #define _FP_FRAC_EQ_1(X, Y) (X##_f == Y##_f) |
| 82 | #define _FP_FRAC_GE_1(X, Y) (X##_f >= Y##_f) |
| 83 | #define _FP_FRAC_GT_1(X, Y) (X##_f > Y##_f) |
| 84 | |
| 85 | #define _FP_ZEROFRAC_1 0 |
| 86 | #define _FP_MINFRAC_1 1 |
| 87 | #define _FP_MAXFRAC_1 (~(_FP_WS_TYPE) 0) |
| 88 | |
| 89 | /* Unpack the raw bits of a native fp value. Do not classify or |
| 90 | normalize the data. */ |
| 91 | |
| 92 | #define _FP_UNPACK_RAW_1(fs, X, val) \ |
| 93 | do \ |
| 94 | { \ |
| 95 | union _FP_UNION_##fs _FP_UNPACK_RAW_1_flo; \ |
| 96 | _FP_UNPACK_RAW_1_flo.flt = (val); \ |
| 97 | \ |
| 98 | X##_f = _FP_UNPACK_RAW_1_flo.bits.frac; \ |
| 99 | X##_e = _FP_UNPACK_RAW_1_flo.bits.exp; \ |
| 100 | X##_s = _FP_UNPACK_RAW_1_flo.bits.sign; \ |
| 101 | } \ |
| 102 | while (0) |
| 103 | |
| 104 | #define _FP_UNPACK_RAW_1_P(fs, X, val) \ |
| 105 | do \ |
| 106 | { \ |
| 107 | union _FP_UNION_##fs *_FP_UNPACK_RAW_1_P_flo \ |
| 108 | = (union _FP_UNION_##fs *) (val); \ |
| 109 | \ |
| 110 | X##_f = _FP_UNPACK_RAW_1_P_flo->bits.frac; \ |
| 111 | X##_e = _FP_UNPACK_RAW_1_P_flo->bits.exp; \ |
| 112 | X##_s = _FP_UNPACK_RAW_1_P_flo->bits.sign; \ |
| 113 | } \ |
| 114 | while (0) |
| 115 | |
| 116 | /* Repack the raw bits of a native fp value. */ |
| 117 | |
| 118 | #define _FP_PACK_RAW_1(fs, val, X) \ |
| 119 | do \ |
| 120 | { \ |
| 121 | union _FP_UNION_##fs _FP_PACK_RAW_1_flo; \ |
| 122 | \ |
| 123 | _FP_PACK_RAW_1_flo.bits.frac = X##_f; \ |
| 124 | _FP_PACK_RAW_1_flo.bits.exp = X##_e; \ |
| 125 | _FP_PACK_RAW_1_flo.bits.sign = X##_s; \ |
| 126 | \ |
| 127 | (val) = _FP_PACK_RAW_1_flo.flt; \ |
| 128 | } \ |
| 129 | while (0) |
| 130 | |
| 131 | #define _FP_PACK_RAW_1_P(fs, val, X) \ |
| 132 | do \ |
| 133 | { \ |
| 134 | union _FP_UNION_##fs *_FP_PACK_RAW_1_P_flo \ |
| 135 | = (union _FP_UNION_##fs *) (val); \ |
| 136 | \ |
| 137 | _FP_PACK_RAW_1_P_flo->bits.frac = X##_f; \ |
| 138 | _FP_PACK_RAW_1_P_flo->bits.exp = X##_e; \ |
| 139 | _FP_PACK_RAW_1_P_flo->bits.sign = X##_s; \ |
| 140 | } \ |
| 141 | while (0) |
| 142 | |
| 143 | |
| 144 | /* Multiplication algorithms: */ |
| 145 | |
| 146 | /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the |
| 147 | multiplication immediately. */ |
| 148 | |
| 149 | #define _FP_MUL_MEAT_DW_1_imm(wfracbits, R, X, Y) \ |
| 150 | do \ |
| 151 | { \ |
| 152 | R##_f = X##_f * Y##_f; \ |
| 153 | } \ |
| 154 | while (0) |
| 155 | |
| 156 | #define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y) \ |
| 157 | do \ |
| 158 | { \ |
| 159 | _FP_MUL_MEAT_DW_1_imm ((wfracbits), R, X, Y); \ |
| 160 | /* Normalize since we know where the msb of the multiplicands \ |
| 161 | were (bit B), we know that the msb of the of the product is \ |
| 162 | at either 2B or 2B-1. */ \ |
| 163 | _FP_FRAC_SRS_1 (R, (wfracbits)-1, 2*(wfracbits)); \ |
| 164 | } \ |
| 165 | while (0) |
| 166 | |
| 167 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */ |
| 168 | |
| 169 | #define _FP_MUL_MEAT_DW_1_wide(wfracbits, R, X, Y, doit) \ |
| 170 | do \ |
| 171 | { \ |
| 172 | doit (R##_f1, R##_f0, X##_f, Y##_f); \ |
| 173 | } \ |
| 174 | while (0) |
| 175 | |
| 176 | #define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit) \ |
| 177 | do \ |
| 178 | { \ |
| 179 | _FP_FRAC_DECL_2 (_FP_MUL_MEAT_1_wide_Z); \ |
| 180 | _FP_MUL_MEAT_DW_1_wide ((wfracbits), _FP_MUL_MEAT_1_wide_Z, \ |
| 181 | X, Y, doit); \ |
| 182 | /* Normalize since we know where the msb of the multiplicands \ |
| 183 | were (bit B), we know that the msb of the of the product is \ |
| 184 | at either 2B or 2B-1. */ \ |
| 185 | _FP_FRAC_SRS_2 (_FP_MUL_MEAT_1_wide_Z, (wfracbits)-1, \ |
| 186 | 2*(wfracbits)); \ |
| 187 | R##_f = _FP_MUL_MEAT_1_wide_Z_f0; \ |
| 188 | } \ |
| 189 | while (0) |
| 190 | |
| 191 | /* Finally, a simple widening multiply algorithm. What fun! */ |
| 192 | |
| 193 | #define _FP_MUL_MEAT_DW_1_hard(wfracbits, R, X, Y) \ |
| 194 | do \ |
| 195 | { \ |
| 196 | _FP_W_TYPE _FP_MUL_MEAT_DW_1_hard_xh, _FP_MUL_MEAT_DW_1_hard_xl; \ |
| 197 | _FP_W_TYPE _FP_MUL_MEAT_DW_1_hard_yh, _FP_MUL_MEAT_DW_1_hard_yl; \ |
| 198 | _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_1_hard_a); \ |
| 199 | \ |
| 200 | /* Split the words in half. */ \ |
| 201 | _FP_MUL_MEAT_DW_1_hard_xh = X##_f >> (_FP_W_TYPE_SIZE/2); \ |
| 202 | _FP_MUL_MEAT_DW_1_hard_xl \ |
| 203 | = X##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1); \ |
| 204 | _FP_MUL_MEAT_DW_1_hard_yh = Y##_f >> (_FP_W_TYPE_SIZE/2); \ |
| 205 | _FP_MUL_MEAT_DW_1_hard_yl \ |
| 206 | = Y##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1); \ |
| 207 | \ |
| 208 | /* Multiply the pieces. */ \ |
| 209 | R##_f0 = _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yl; \ |
| 210 | _FP_MUL_MEAT_DW_1_hard_a_f0 \ |
| 211 | = _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yl; \ |
| 212 | _FP_MUL_MEAT_DW_1_hard_a_f1 \ |
| 213 | = _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yh; \ |
| 214 | R##_f1 = _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yh; \ |
| 215 | \ |
| 216 | /* Reassemble into two full words. */ \ |
| 217 | if ((_FP_MUL_MEAT_DW_1_hard_a_f0 += _FP_MUL_MEAT_DW_1_hard_a_f1) \ |
| 218 | < _FP_MUL_MEAT_DW_1_hard_a_f1) \ |
| 219 | R##_f1 += (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2); \ |
| 220 | _FP_MUL_MEAT_DW_1_hard_a_f1 \ |
| 221 | = _FP_MUL_MEAT_DW_1_hard_a_f0 >> (_FP_W_TYPE_SIZE/2); \ |
| 222 | _FP_MUL_MEAT_DW_1_hard_a_f0 \ |
| 223 | = _FP_MUL_MEAT_DW_1_hard_a_f0 << (_FP_W_TYPE_SIZE/2); \ |
| 224 | _FP_FRAC_ADD_2 (R, R, _FP_MUL_MEAT_DW_1_hard_a); \ |
| 225 | } \ |
| 226 | while (0) |
| 227 | |
| 228 | #define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y) \ |
| 229 | do \ |
| 230 | { \ |
| 231 | _FP_FRAC_DECL_2 (_FP_MUL_MEAT_1_hard_z); \ |
| 232 | _FP_MUL_MEAT_DW_1_hard ((wfracbits), \ |
| 233 | _FP_MUL_MEAT_1_hard_z, X, Y); \ |
| 234 | \ |
| 235 | /* Normalize. */ \ |
| 236 | _FP_FRAC_SRS_2 (_FP_MUL_MEAT_1_hard_z, \ |
| 237 | (wfracbits) - 1, 2*(wfracbits)); \ |
| 238 | R##_f = _FP_MUL_MEAT_1_hard_z_f0; \ |
| 239 | } \ |
| 240 | while (0) |
| 241 | |
| 242 | |
| 243 | /* Division algorithms: */ |
| 244 | |
| 245 | /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the |
| 246 | division immediately. Give this macro either _FP_DIV_HELP_imm for |
| 247 | C primitives or _FP_DIV_HELP_ldiv for the ISO function. Which you |
| 248 | choose will depend on what the compiler does with divrem4. */ |
| 249 | |
| 250 | #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit) \ |
| 251 | do \ |
| 252 | { \ |
| 253 | _FP_W_TYPE _FP_DIV_MEAT_1_imm_q, _FP_DIV_MEAT_1_imm_r; \ |
| 254 | X##_f <<= (X##_f < Y##_f \ |
| 255 | ? R##_e--, _FP_WFRACBITS_##fs \ |
| 256 | : _FP_WFRACBITS_##fs - 1); \ |
| 257 | doit (_FP_DIV_MEAT_1_imm_q, _FP_DIV_MEAT_1_imm_r, X##_f, Y##_f); \ |
| 258 | R##_f = _FP_DIV_MEAT_1_imm_q | (_FP_DIV_MEAT_1_imm_r != 0); \ |
| 259 | } \ |
| 260 | while (0) |
| 261 | |
| 262 | /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd |
| 263 | that may be useful in this situation. This first is for a primitive |
| 264 | that requires normalization, the second for one that does not. Look |
| 265 | for UDIV_NEEDS_NORMALIZATION to tell which your machine needs. */ |
| 266 | |
| 267 | #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y) \ |
| 268 | do \ |
| 269 | { \ |
| 270 | _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_nh; \ |
| 271 | _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_nl; \ |
| 272 | _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_q; \ |
| 273 | _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_r; \ |
| 274 | _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_y; \ |
| 275 | \ |
| 276 | /* Normalize Y -- i.e. make the most significant bit set. */ \ |
| 277 | _FP_DIV_MEAT_1_udiv_norm_y = Y##_f << _FP_WFRACXBITS_##fs; \ |
| 278 | \ |
| 279 | /* Shift X op correspondingly high, that is, up one full word. */ \ |
| 280 | if (X##_f < Y##_f) \ |
| 281 | { \ |
| 282 | R##_e--; \ |
| 283 | _FP_DIV_MEAT_1_udiv_norm_nl = 0; \ |
| 284 | _FP_DIV_MEAT_1_udiv_norm_nh = X##_f; \ |
| 285 | } \ |
| 286 | else \ |
| 287 | { \ |
| 288 | _FP_DIV_MEAT_1_udiv_norm_nl = X##_f << (_FP_W_TYPE_SIZE - 1); \ |
| 289 | _FP_DIV_MEAT_1_udiv_norm_nh = X##_f >> 1; \ |
| 290 | } \ |
| 291 | \ |
| 292 | udiv_qrnnd (_FP_DIV_MEAT_1_udiv_norm_q, \ |
| 293 | _FP_DIV_MEAT_1_udiv_norm_r, \ |
| 294 | _FP_DIV_MEAT_1_udiv_norm_nh, \ |
| 295 | _FP_DIV_MEAT_1_udiv_norm_nl, \ |
| 296 | _FP_DIV_MEAT_1_udiv_norm_y); \ |
| 297 | R##_f = (_FP_DIV_MEAT_1_udiv_norm_q \ |
| 298 | | (_FP_DIV_MEAT_1_udiv_norm_r != 0)); \ |
| 299 | } \ |
| 300 | while (0) |
| 301 | |
| 302 | #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y) \ |
| 303 | do \ |
| 304 | { \ |
| 305 | _FP_W_TYPE _FP_DIV_MEAT_1_udiv_nh, _FP_DIV_MEAT_1_udiv_nl; \ |
| 306 | _FP_W_TYPE _FP_DIV_MEAT_1_udiv_q, _FP_DIV_MEAT_1_udiv_r; \ |
| 307 | if (X##_f < Y##_f) \ |
| 308 | { \ |
| 309 | R##_e--; \ |
| 310 | _FP_DIV_MEAT_1_udiv_nl = X##_f << _FP_WFRACBITS_##fs; \ |
| 311 | _FP_DIV_MEAT_1_udiv_nh = X##_f >> _FP_WFRACXBITS_##fs; \ |
| 312 | } \ |
| 313 | else \ |
| 314 | { \ |
| 315 | _FP_DIV_MEAT_1_udiv_nl = X##_f << (_FP_WFRACBITS_##fs - 1); \ |
| 316 | _FP_DIV_MEAT_1_udiv_nh = X##_f >> (_FP_WFRACXBITS_##fs + 1); \ |
| 317 | } \ |
| 318 | udiv_qrnnd (_FP_DIV_MEAT_1_udiv_q, _FP_DIV_MEAT_1_udiv_r, \ |
| 319 | _FP_DIV_MEAT_1_udiv_nh, _FP_DIV_MEAT_1_udiv_nl, \ |
| 320 | Y##_f); \ |
| 321 | R##_f = _FP_DIV_MEAT_1_udiv_q | (_FP_DIV_MEAT_1_udiv_r != 0); \ |
| 322 | } \ |
| 323 | while (0) |
| 324 | |
| 325 | |
| 326 | /* Square root algorithms: |
| 327 | We have just one right now, maybe Newton approximation |
| 328 | should be added for those machines where division is fast. */ |
| 329 | |
| 330 | #define _FP_SQRT_MEAT_1(R, S, T, X, q) \ |
| 331 | do \ |
| 332 | { \ |
| 333 | while ((q) != _FP_WORK_ROUND) \ |
| 334 | { \ |
| 335 | T##_f = S##_f + (q); \ |
| 336 | if (T##_f <= X##_f) \ |
| 337 | { \ |
| 338 | S##_f = T##_f + (q); \ |
| 339 | X##_f -= T##_f; \ |
| 340 | R##_f += (q); \ |
| 341 | } \ |
| 342 | _FP_FRAC_SLL_1 (X, 1); \ |
| 343 | (q) >>= 1; \ |
| 344 | } \ |
| 345 | if (X##_f) \ |
| 346 | { \ |
| 347 | if (S##_f < X##_f) \ |
| 348 | R##_f |= _FP_WORK_ROUND; \ |
| 349 | R##_f |= _FP_WORK_STICKY; \ |
| 350 | } \ |
| 351 | } \ |
| 352 | while (0) |
| 353 | |
| 354 | /* Assembly/disassembly for converting to/from integral types. |
| 355 | No shifting or overflow handled here. */ |
| 356 | |
| 357 | #define _FP_FRAC_ASSEMBLE_1(r, X, rsize) ((r) = X##_f) |
| 358 | #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize) (X##_f = (r)) |
| 359 | |
| 360 | |
| 361 | /* Convert FP values between word sizes. */ |
| 362 | |
| 363 | #define _FP_FRAC_COPY_1_1(D, S) (D##_f = S##_f) |
| 364 | |
| 365 | #endif /* !SOFT_FP_OP_1_H */ |
| 366 | |