| 1 | /* Helper macros for functions returning a narrower type. |
| 2 | Copyright (C) 2018-2023 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #ifndef _MATH_NARROW_H |
| 20 | #define _MATH_NARROW_H 1 |
| 21 | |
| 22 | #include <bits/floatn.h> |
| 23 | #include <bits/long-double.h> |
| 24 | #include <errno.h> |
| 25 | #include <fenv.h> |
| 26 | #include <ieee754.h> |
| 27 | #include <math-barriers.h> |
| 28 | #include <math_private.h> |
| 29 | #include <fenv_private.h> |
| 30 | #include <math-narrow-alias.h> |
| 31 | #include <stdbool.h> |
| 32 | |
| 33 | /* Carry out a computation using round-to-odd. The computation is |
| 34 | EXPR; the union type in which to store the result is UNION and the |
| 35 | subfield of the "ieee" field of that union with the low part of the |
| 36 | mantissa is MANTISSA; SUFFIX is the suffix for both underlying libm |
| 37 | functions for the argument type (for computations where a libm |
| 38 | function rather than a C operator is used when argument and result |
| 39 | types are the same) and the libc_fe* macros to ensure that the |
| 40 | correct rounding mode is used, for platforms with multiple rounding |
| 41 | modes where those macros set only the relevant mode. |
| 42 | CLEAR_UNDERFLOW indicates whether underflow exceptions must be |
| 43 | cleared (in the case where a round-toward-zero underflow might not |
| 44 | indicate an underflow after narrowing, when that narrowing only |
| 45 | reduces precision not exponent range and the architecture uses |
| 46 | before-rounding tininess detection). This macro does not work |
| 47 | correctly if the sign of an exact zero result depends on the |
| 48 | rounding mode, so that case must be checked for separately. */ |
| 49 | #define ROUND_TO_ODD(EXPR, UNION, SUFFIX, MANTISSA, CLEAR_UNDERFLOW) \ |
| 50 | ({ \ |
| 51 | fenv_t env; \ |
| 52 | UNION u; \ |
| 53 | \ |
| 54 | libc_feholdexcept_setround ## SUFFIX (&env, FE_TOWARDZERO); \ |
| 55 | u.d = (EXPR); \ |
| 56 | math_force_eval (u.d); \ |
| 57 | if (CLEAR_UNDERFLOW) \ |
| 58 | feclearexcept (FE_UNDERFLOW); \ |
| 59 | u.ieee.MANTISSA \ |
| 60 | |= libc_feupdateenv_test ## SUFFIX (&env, FE_INEXACT) != 0; \ |
| 61 | \ |
| 62 | u.d; \ |
| 63 | }) |
| 64 | |
| 65 | /* Check for error conditions from a narrowing add function returning |
| 66 | RET with arguments X and Y and set errno as needed. Overflow and |
| 67 | underflow can occur for finite arguments and a domain error for |
| 68 | infinite ones. */ |
| 69 | #define CHECK_NARROW_ADD(RET, X, Y) \ |
| 70 | do \ |
| 71 | { \ |
| 72 | if (!isfinite (RET)) \ |
| 73 | { \ |
| 74 | if (isnan (RET)) \ |
| 75 | { \ |
| 76 | if (!isnan (X) && !isnan (Y)) \ |
| 77 | __set_errno (EDOM); \ |
| 78 | } \ |
| 79 | else if (isfinite (X) && isfinite (Y)) \ |
| 80 | __set_errno (ERANGE); \ |
| 81 | } \ |
| 82 | else if ((RET) == 0 && (X) != -(Y)) \ |
| 83 | __set_errno (ERANGE); \ |
| 84 | } \ |
| 85 | while (0) |
| 86 | |
| 87 | /* Implement narrowing add using round-to-odd. The arguments are X |
| 88 | and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are |
| 89 | as for ROUND_TO_ODD. */ |
| 90 | #define NARROW_ADD_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \ |
| 91 | do \ |
| 92 | { \ |
| 93 | TYPE ret; \ |
| 94 | \ |
| 95 | /* Ensure a zero result is computed in the original rounding \ |
| 96 | mode. */ \ |
| 97 | if ((X) == -(Y)) \ |
| 98 | ret = (TYPE) ((X) + (Y)); \ |
| 99 | else \ |
| 100 | ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) + (Y), \ |
| 101 | UNION, SUFFIX, MANTISSA, false); \ |
| 102 | \ |
| 103 | CHECK_NARROW_ADD (ret, (X), (Y)); \ |
| 104 | return ret; \ |
| 105 | } \ |
| 106 | while (0) |
| 107 | |
| 108 | /* Implement a narrowing add function that is not actually narrowing |
| 109 | or where no attempt is made to be correctly rounding (the latter |
| 110 | only applies to IBM long double). The arguments are X and Y and |
| 111 | the return type is TYPE. */ |
| 112 | #define NARROW_ADD_TRIVIAL(X, Y, TYPE) \ |
| 113 | do \ |
| 114 | { \ |
| 115 | TYPE ret; \ |
| 116 | \ |
| 117 | ret = (TYPE) ((X) + (Y)); \ |
| 118 | CHECK_NARROW_ADD (ret, (X), (Y)); \ |
| 119 | return ret; \ |
| 120 | } \ |
| 121 | while (0) |
| 122 | |
| 123 | /* Check for error conditions from a narrowing subtract function |
| 124 | returning RET with arguments X and Y and set errno as needed. |
| 125 | Overflow and underflow can occur for finite arguments and a domain |
| 126 | error for infinite ones. */ |
| 127 | #define CHECK_NARROW_SUB(RET, X, Y) \ |
| 128 | do \ |
| 129 | { \ |
| 130 | if (!isfinite (RET)) \ |
| 131 | { \ |
| 132 | if (isnan (RET)) \ |
| 133 | { \ |
| 134 | if (!isnan (X) && !isnan (Y)) \ |
| 135 | __set_errno (EDOM); \ |
| 136 | } \ |
| 137 | else if (isfinite (X) && isfinite (Y)) \ |
| 138 | __set_errno (ERANGE); \ |
| 139 | } \ |
| 140 | else if ((RET) == 0 && (X) != (Y)) \ |
| 141 | __set_errno (ERANGE); \ |
| 142 | } \ |
| 143 | while (0) |
| 144 | |
| 145 | /* Implement narrowing subtract using round-to-odd. The arguments are |
| 146 | X and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are |
| 147 | as for ROUND_TO_ODD. */ |
| 148 | #define NARROW_SUB_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \ |
| 149 | do \ |
| 150 | { \ |
| 151 | TYPE ret; \ |
| 152 | \ |
| 153 | /* Ensure a zero result is computed in the original rounding \ |
| 154 | mode. */ \ |
| 155 | if ((X) == (Y)) \ |
| 156 | ret = (TYPE) ((X) - (Y)); \ |
| 157 | else \ |
| 158 | ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) - (Y), \ |
| 159 | UNION, SUFFIX, MANTISSA, false); \ |
| 160 | \ |
| 161 | CHECK_NARROW_SUB (ret, (X), (Y)); \ |
| 162 | return ret; \ |
| 163 | } \ |
| 164 | while (0) |
| 165 | |
| 166 | /* Implement a narrowing subtract function that is not actually |
| 167 | narrowing or where no attempt is made to be correctly rounding (the |
| 168 | latter only applies to IBM long double). The arguments are X and Y |
| 169 | and the return type is TYPE. */ |
| 170 | #define NARROW_SUB_TRIVIAL(X, Y, TYPE) \ |
| 171 | do \ |
| 172 | { \ |
| 173 | TYPE ret; \ |
| 174 | \ |
| 175 | ret = (TYPE) ((X) - (Y)); \ |
| 176 | CHECK_NARROW_SUB (ret, (X), (Y)); \ |
| 177 | return ret; \ |
| 178 | } \ |
| 179 | while (0) |
| 180 | |
| 181 | /* Check for error conditions from a narrowing multiply function |
| 182 | returning RET with arguments X and Y and set errno as needed. |
| 183 | Overflow and underflow can occur for finite arguments and a domain |
| 184 | error for Inf * 0. */ |
| 185 | #define CHECK_NARROW_MUL(RET, X, Y) \ |
| 186 | do \ |
| 187 | { \ |
| 188 | if (!isfinite (RET)) \ |
| 189 | { \ |
| 190 | if (isnan (RET)) \ |
| 191 | { \ |
| 192 | if (!isnan (X) && !isnan (Y)) \ |
| 193 | __set_errno (EDOM); \ |
| 194 | } \ |
| 195 | else if (isfinite (X) && isfinite (Y)) \ |
| 196 | __set_errno (ERANGE); \ |
| 197 | } \ |
| 198 | else if ((RET) == 0 && (X) != 0 && (Y) != 0) \ |
| 199 | __set_errno (ERANGE); \ |
| 200 | } \ |
| 201 | while (0) |
| 202 | |
| 203 | /* Implement narrowing multiply using round-to-odd. The arguments are |
| 204 | X and Y, the return type is TYPE and UNION, MANTISSA, SUFFIX and |
| 205 | CLEAR_UNDERFLOW are as for ROUND_TO_ODD. */ |
| 206 | #define NARROW_MUL_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA, \ |
| 207 | CLEAR_UNDERFLOW) \ |
| 208 | do \ |
| 209 | { \ |
| 210 | TYPE ret; \ |
| 211 | \ |
| 212 | ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) * (Y), \ |
| 213 | UNION, SUFFIX, MANTISSA, \ |
| 214 | CLEAR_UNDERFLOW); \ |
| 215 | \ |
| 216 | CHECK_NARROW_MUL (ret, (X), (Y)); \ |
| 217 | return ret; \ |
| 218 | } \ |
| 219 | while (0) |
| 220 | |
| 221 | /* Implement a narrowing multiply function that is not actually |
| 222 | narrowing or where no attempt is made to be correctly rounding (the |
| 223 | latter only applies to IBM long double). The arguments are X and Y |
| 224 | and the return type is TYPE. */ |
| 225 | #define NARROW_MUL_TRIVIAL(X, Y, TYPE) \ |
| 226 | do \ |
| 227 | { \ |
| 228 | TYPE ret; \ |
| 229 | \ |
| 230 | ret = (TYPE) ((X) * (Y)); \ |
| 231 | CHECK_NARROW_MUL (ret, (X), (Y)); \ |
| 232 | return ret; \ |
| 233 | } \ |
| 234 | while (0) |
| 235 | |
| 236 | /* Check for error conditions from a narrowing divide function |
| 237 | returning RET with arguments X and Y and set errno as needed. |
| 238 | Overflow, underflow and divide-by-zero can occur for finite |
| 239 | arguments and a domain error for Inf / Inf and 0 / 0. */ |
| 240 | #define CHECK_NARROW_DIV(RET, X, Y) \ |
| 241 | do \ |
| 242 | { \ |
| 243 | if (!isfinite (RET)) \ |
| 244 | { \ |
| 245 | if (isnan (RET)) \ |
| 246 | { \ |
| 247 | if (!isnan (X) && !isnan (Y)) \ |
| 248 | __set_errno (EDOM); \ |
| 249 | } \ |
| 250 | else if (isfinite (X)) \ |
| 251 | __set_errno (ERANGE); \ |
| 252 | } \ |
| 253 | else if ((RET) == 0 && (X) != 0 && !isinf (Y)) \ |
| 254 | __set_errno (ERANGE); \ |
| 255 | } \ |
| 256 | while (0) |
| 257 | |
| 258 | /* Implement narrowing divide using round-to-odd. The arguments are X |
| 259 | and Y, the return type is TYPE and UNION, MANTISSA, SUFFIX and |
| 260 | CLEAR_UNDERFLOW are as for ROUND_TO_ODD. */ |
| 261 | #define NARROW_DIV_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA, \ |
| 262 | CLEAR_UNDERFLOW) \ |
| 263 | do \ |
| 264 | { \ |
| 265 | TYPE ret; \ |
| 266 | \ |
| 267 | ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) / (Y), \ |
| 268 | UNION, SUFFIX, MANTISSA, \ |
| 269 | CLEAR_UNDERFLOW); \ |
| 270 | \ |
| 271 | CHECK_NARROW_DIV (ret, (X), (Y)); \ |
| 272 | return ret; \ |
| 273 | } \ |
| 274 | while (0) |
| 275 | |
| 276 | /* Implement a narrowing divide function that is not actually |
| 277 | narrowing or where no attempt is made to be correctly rounding (the |
| 278 | latter only applies to IBM long double). The arguments are X and Y |
| 279 | and the return type is TYPE. */ |
| 280 | #define NARROW_DIV_TRIVIAL(X, Y, TYPE) \ |
| 281 | do \ |
| 282 | { \ |
| 283 | TYPE ret; \ |
| 284 | \ |
| 285 | ret = (TYPE) ((X) / (Y)); \ |
| 286 | CHECK_NARROW_DIV (ret, (X), (Y)); \ |
| 287 | return ret; \ |
| 288 | } \ |
| 289 | while (0) |
| 290 | |
| 291 | /* Check for error conditions from a narrowing square root function |
| 292 | returning RET with argument X and set errno as needed. Overflow |
| 293 | and underflow can occur for finite positive arguments and a domain |
| 294 | error for negative arguments. */ |
| 295 | #define CHECK_NARROW_SQRT(RET, X) \ |
| 296 | do \ |
| 297 | { \ |
| 298 | if (!isfinite (RET)) \ |
| 299 | { \ |
| 300 | if (isnan (RET)) \ |
| 301 | { \ |
| 302 | if (!isnan (X)) \ |
| 303 | __set_errno (EDOM); \ |
| 304 | } \ |
| 305 | else if (isfinite (X)) \ |
| 306 | __set_errno (ERANGE); \ |
| 307 | } \ |
| 308 | else if ((RET) == 0 && (X) != 0) \ |
| 309 | __set_errno (ERANGE); \ |
| 310 | } \ |
| 311 | while (0) |
| 312 | |
| 313 | /* Implement narrowing square root using round-to-odd. The argument |
| 314 | is X, the return type is TYPE and UNION, MANTISSA and SUFFIX are as |
| 315 | for ROUND_TO_ODD. */ |
| 316 | #define NARROW_SQRT_ROUND_TO_ODD(X, TYPE, UNION, SUFFIX, MANTISSA) \ |
| 317 | do \ |
| 318 | { \ |
| 319 | TYPE ret; \ |
| 320 | \ |
| 321 | ret = (TYPE) ROUND_TO_ODD (sqrt ## SUFFIX (math_opt_barrier (X)), \ |
| 322 | UNION, SUFFIX, MANTISSA, false); \ |
| 323 | \ |
| 324 | CHECK_NARROW_SQRT (ret, (X)); \ |
| 325 | return ret; \ |
| 326 | } \ |
| 327 | while (0) |
| 328 | |
| 329 | /* Implement a narrowing square root function where no attempt is made |
| 330 | to be correctly rounding (this only applies to IBM long double; the |
| 331 | case where the function is not actually narrowing is handled by |
| 332 | aliasing other sqrt functions in libm, not using this macro). The |
| 333 | argument is X and the return type is TYPE. */ |
| 334 | #define NARROW_SQRT_TRIVIAL(X, TYPE, SUFFIX) \ |
| 335 | do \ |
| 336 | { \ |
| 337 | TYPE ret; \ |
| 338 | \ |
| 339 | ret = (TYPE) (sqrt ## SUFFIX (X)); \ |
| 340 | CHECK_NARROW_SQRT (ret, (X)); \ |
| 341 | return ret; \ |
| 342 | } \ |
| 343 | while (0) |
| 344 | |
| 345 | /* Check for error conditions from a narrowing fused multiply-add |
| 346 | function returning RET with arguments X, Y and Z and set errno as |
| 347 | needed. Checking for error conditions for fma (either narrowing or |
| 348 | not) and setting errno is not currently implemented. See bug |
| 349 | 6801. */ |
| 350 | #define CHECK_NARROW_FMA(RET, X, Y, Z) \ |
| 351 | do \ |
| 352 | { \ |
| 353 | } \ |
| 354 | while (0) |
| 355 | |
| 356 | /* Implement narrowing fused multiply-add using round-to-odd. The |
| 357 | arguments are X, Y and Z, the return type is TYPE and UNION, |
| 358 | MANTISSA, SUFFIX and CLEAR_UNDERFLOW are as for ROUND_TO_ODD. */ |
| 359 | #define NARROW_FMA_ROUND_TO_ODD(X, Y, Z, TYPE, UNION, SUFFIX, MANTISSA, \ |
| 360 | CLEAR_UNDERFLOW) \ |
| 361 | do \ |
| 362 | { \ |
| 363 | typeof (X) tmp; \ |
| 364 | TYPE ret; \ |
| 365 | \ |
| 366 | tmp = ROUND_TO_ODD (fma ## SUFFIX (math_opt_barrier (X), (Y), \ |
| 367 | (Z)), \ |
| 368 | UNION, SUFFIX, MANTISSA, CLEAR_UNDERFLOW); \ |
| 369 | /* If the round-to-odd result is zero, the result is an exact \ |
| 370 | zero and must be recomputed in the original rounding mode. */ \ |
| 371 | if (tmp == 0) \ |
| 372 | ret = (TYPE) (math_opt_barrier (X) * (Y) + (Z)); \ |
| 373 | else \ |
| 374 | ret = (TYPE) tmp; \ |
| 375 | \ |
| 376 | CHECK_NARROW_FMA (ret, (X), (Y), (Z)); \ |
| 377 | return ret; \ |
| 378 | } \ |
| 379 | while (0) |
| 380 | |
| 381 | /* Implement a narrowing fused multiply-add function where no attempt |
| 382 | is made to be correctly rounding (this only applies to IBM long |
| 383 | double; the case where the function is not actually narrowing is |
| 384 | handled by aliasing other fma functions in libm, not using this |
| 385 | macro). The arguments are X, Y and Z and the return type is |
| 386 | TYPE. */ |
| 387 | #define NARROW_FMA_TRIVIAL(X, Y, Z, TYPE, SUFFIX) \ |
| 388 | do \ |
| 389 | { \ |
| 390 | TYPE ret; \ |
| 391 | \ |
| 392 | ret = (TYPE) (fma ## SUFFIX ((X), (Y), (Z))); \ |
| 393 | CHECK_NARROW_FMA (ret, (X), (Y), (Z)); \ |
| 394 | return ret; \ |
| 395 | } \ |
| 396 | while (0) |
| 397 | |
| 398 | #endif /* math-narrow.h. */ |
| 399 | |