1 | /* Helper macros for functions returning a narrower type. |
2 | Copyright (C) 2018-2023 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #ifndef _MATH_NARROW_H |
20 | #define _MATH_NARROW_H 1 |
21 | |
22 | #include <bits/floatn.h> |
23 | #include <bits/long-double.h> |
24 | #include <errno.h> |
25 | #include <fenv.h> |
26 | #include <ieee754.h> |
27 | #include <math-barriers.h> |
28 | #include <math_private.h> |
29 | #include <fenv_private.h> |
30 | #include <math-narrow-alias.h> |
31 | #include <stdbool.h> |
32 | |
33 | /* Carry out a computation using round-to-odd. The computation is |
34 | EXPR; the union type in which to store the result is UNION and the |
35 | subfield of the "ieee" field of that union with the low part of the |
36 | mantissa is MANTISSA; SUFFIX is the suffix for both underlying libm |
37 | functions for the argument type (for computations where a libm |
38 | function rather than a C operator is used when argument and result |
39 | types are the same) and the libc_fe* macros to ensure that the |
40 | correct rounding mode is used, for platforms with multiple rounding |
41 | modes where those macros set only the relevant mode. |
42 | CLEAR_UNDERFLOW indicates whether underflow exceptions must be |
43 | cleared (in the case where a round-toward-zero underflow might not |
44 | indicate an underflow after narrowing, when that narrowing only |
45 | reduces precision not exponent range and the architecture uses |
46 | before-rounding tininess detection). This macro does not work |
47 | correctly if the sign of an exact zero result depends on the |
48 | rounding mode, so that case must be checked for separately. */ |
49 | #define ROUND_TO_ODD(EXPR, UNION, SUFFIX, MANTISSA, CLEAR_UNDERFLOW) \ |
50 | ({ \ |
51 | fenv_t env; \ |
52 | UNION u; \ |
53 | \ |
54 | libc_feholdexcept_setround ## SUFFIX (&env, FE_TOWARDZERO); \ |
55 | u.d = (EXPR); \ |
56 | math_force_eval (u.d); \ |
57 | if (CLEAR_UNDERFLOW) \ |
58 | feclearexcept (FE_UNDERFLOW); \ |
59 | u.ieee.MANTISSA \ |
60 | |= libc_feupdateenv_test ## SUFFIX (&env, FE_INEXACT) != 0; \ |
61 | \ |
62 | u.d; \ |
63 | }) |
64 | |
65 | /* Check for error conditions from a narrowing add function returning |
66 | RET with arguments X and Y and set errno as needed. Overflow and |
67 | underflow can occur for finite arguments and a domain error for |
68 | infinite ones. */ |
69 | #define CHECK_NARROW_ADD(RET, X, Y) \ |
70 | do \ |
71 | { \ |
72 | if (!isfinite (RET)) \ |
73 | { \ |
74 | if (isnan (RET)) \ |
75 | { \ |
76 | if (!isnan (X) && !isnan (Y)) \ |
77 | __set_errno (EDOM); \ |
78 | } \ |
79 | else if (isfinite (X) && isfinite (Y)) \ |
80 | __set_errno (ERANGE); \ |
81 | } \ |
82 | else if ((RET) == 0 && (X) != -(Y)) \ |
83 | __set_errno (ERANGE); \ |
84 | } \ |
85 | while (0) |
86 | |
87 | /* Implement narrowing add using round-to-odd. The arguments are X |
88 | and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are |
89 | as for ROUND_TO_ODD. */ |
90 | #define NARROW_ADD_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \ |
91 | do \ |
92 | { \ |
93 | TYPE ret; \ |
94 | \ |
95 | /* Ensure a zero result is computed in the original rounding \ |
96 | mode. */ \ |
97 | if ((X) == -(Y)) \ |
98 | ret = (TYPE) ((X) + (Y)); \ |
99 | else \ |
100 | ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) + (Y), \ |
101 | UNION, SUFFIX, MANTISSA, false); \ |
102 | \ |
103 | CHECK_NARROW_ADD (ret, (X), (Y)); \ |
104 | return ret; \ |
105 | } \ |
106 | while (0) |
107 | |
108 | /* Implement a narrowing add function that is not actually narrowing |
109 | or where no attempt is made to be correctly rounding (the latter |
110 | only applies to IBM long double). The arguments are X and Y and |
111 | the return type is TYPE. */ |
112 | #define NARROW_ADD_TRIVIAL(X, Y, TYPE) \ |
113 | do \ |
114 | { \ |
115 | TYPE ret; \ |
116 | \ |
117 | ret = (TYPE) ((X) + (Y)); \ |
118 | CHECK_NARROW_ADD (ret, (X), (Y)); \ |
119 | return ret; \ |
120 | } \ |
121 | while (0) |
122 | |
123 | /* Check for error conditions from a narrowing subtract function |
124 | returning RET with arguments X and Y and set errno as needed. |
125 | Overflow and underflow can occur for finite arguments and a domain |
126 | error for infinite ones. */ |
127 | #define CHECK_NARROW_SUB(RET, X, Y) \ |
128 | do \ |
129 | { \ |
130 | if (!isfinite (RET)) \ |
131 | { \ |
132 | if (isnan (RET)) \ |
133 | { \ |
134 | if (!isnan (X) && !isnan (Y)) \ |
135 | __set_errno (EDOM); \ |
136 | } \ |
137 | else if (isfinite (X) && isfinite (Y)) \ |
138 | __set_errno (ERANGE); \ |
139 | } \ |
140 | else if ((RET) == 0 && (X) != (Y)) \ |
141 | __set_errno (ERANGE); \ |
142 | } \ |
143 | while (0) |
144 | |
145 | /* Implement narrowing subtract using round-to-odd. The arguments are |
146 | X and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are |
147 | as for ROUND_TO_ODD. */ |
148 | #define NARROW_SUB_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \ |
149 | do \ |
150 | { \ |
151 | TYPE ret; \ |
152 | \ |
153 | /* Ensure a zero result is computed in the original rounding \ |
154 | mode. */ \ |
155 | if ((X) == (Y)) \ |
156 | ret = (TYPE) ((X) - (Y)); \ |
157 | else \ |
158 | ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) - (Y), \ |
159 | UNION, SUFFIX, MANTISSA, false); \ |
160 | \ |
161 | CHECK_NARROW_SUB (ret, (X), (Y)); \ |
162 | return ret; \ |
163 | } \ |
164 | while (0) |
165 | |
166 | /* Implement a narrowing subtract function that is not actually |
167 | narrowing or where no attempt is made to be correctly rounding (the |
168 | latter only applies to IBM long double). The arguments are X and Y |
169 | and the return type is TYPE. */ |
170 | #define NARROW_SUB_TRIVIAL(X, Y, TYPE) \ |
171 | do \ |
172 | { \ |
173 | TYPE ret; \ |
174 | \ |
175 | ret = (TYPE) ((X) - (Y)); \ |
176 | CHECK_NARROW_SUB (ret, (X), (Y)); \ |
177 | return ret; \ |
178 | } \ |
179 | while (0) |
180 | |
181 | /* Check for error conditions from a narrowing multiply function |
182 | returning RET with arguments X and Y and set errno as needed. |
183 | Overflow and underflow can occur for finite arguments and a domain |
184 | error for Inf * 0. */ |
185 | #define CHECK_NARROW_MUL(RET, X, Y) \ |
186 | do \ |
187 | { \ |
188 | if (!isfinite (RET)) \ |
189 | { \ |
190 | if (isnan (RET)) \ |
191 | { \ |
192 | if (!isnan (X) && !isnan (Y)) \ |
193 | __set_errno (EDOM); \ |
194 | } \ |
195 | else if (isfinite (X) && isfinite (Y)) \ |
196 | __set_errno (ERANGE); \ |
197 | } \ |
198 | else if ((RET) == 0 && (X) != 0 && (Y) != 0) \ |
199 | __set_errno (ERANGE); \ |
200 | } \ |
201 | while (0) |
202 | |
203 | /* Implement narrowing multiply using round-to-odd. The arguments are |
204 | X and Y, the return type is TYPE and UNION, MANTISSA, SUFFIX and |
205 | CLEAR_UNDERFLOW are as for ROUND_TO_ODD. */ |
206 | #define NARROW_MUL_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA, \ |
207 | CLEAR_UNDERFLOW) \ |
208 | do \ |
209 | { \ |
210 | TYPE ret; \ |
211 | \ |
212 | ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) * (Y), \ |
213 | UNION, SUFFIX, MANTISSA, \ |
214 | CLEAR_UNDERFLOW); \ |
215 | \ |
216 | CHECK_NARROW_MUL (ret, (X), (Y)); \ |
217 | return ret; \ |
218 | } \ |
219 | while (0) |
220 | |
221 | /* Implement a narrowing multiply function that is not actually |
222 | narrowing or where no attempt is made to be correctly rounding (the |
223 | latter only applies to IBM long double). The arguments are X and Y |
224 | and the return type is TYPE. */ |
225 | #define NARROW_MUL_TRIVIAL(X, Y, TYPE) \ |
226 | do \ |
227 | { \ |
228 | TYPE ret; \ |
229 | \ |
230 | ret = (TYPE) ((X) * (Y)); \ |
231 | CHECK_NARROW_MUL (ret, (X), (Y)); \ |
232 | return ret; \ |
233 | } \ |
234 | while (0) |
235 | |
236 | /* Check for error conditions from a narrowing divide function |
237 | returning RET with arguments X and Y and set errno as needed. |
238 | Overflow, underflow and divide-by-zero can occur for finite |
239 | arguments and a domain error for Inf / Inf and 0 / 0. */ |
240 | #define CHECK_NARROW_DIV(RET, X, Y) \ |
241 | do \ |
242 | { \ |
243 | if (!isfinite (RET)) \ |
244 | { \ |
245 | if (isnan (RET)) \ |
246 | { \ |
247 | if (!isnan (X) && !isnan (Y)) \ |
248 | __set_errno (EDOM); \ |
249 | } \ |
250 | else if (isfinite (X)) \ |
251 | __set_errno (ERANGE); \ |
252 | } \ |
253 | else if ((RET) == 0 && (X) != 0 && !isinf (Y)) \ |
254 | __set_errno (ERANGE); \ |
255 | } \ |
256 | while (0) |
257 | |
258 | /* Implement narrowing divide using round-to-odd. The arguments are X |
259 | and Y, the return type is TYPE and UNION, MANTISSA, SUFFIX and |
260 | CLEAR_UNDERFLOW are as for ROUND_TO_ODD. */ |
261 | #define NARROW_DIV_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA, \ |
262 | CLEAR_UNDERFLOW) \ |
263 | do \ |
264 | { \ |
265 | TYPE ret; \ |
266 | \ |
267 | ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) / (Y), \ |
268 | UNION, SUFFIX, MANTISSA, \ |
269 | CLEAR_UNDERFLOW); \ |
270 | \ |
271 | CHECK_NARROW_DIV (ret, (X), (Y)); \ |
272 | return ret; \ |
273 | } \ |
274 | while (0) |
275 | |
276 | /* Implement a narrowing divide function that is not actually |
277 | narrowing or where no attempt is made to be correctly rounding (the |
278 | latter only applies to IBM long double). The arguments are X and Y |
279 | and the return type is TYPE. */ |
280 | #define NARROW_DIV_TRIVIAL(X, Y, TYPE) \ |
281 | do \ |
282 | { \ |
283 | TYPE ret; \ |
284 | \ |
285 | ret = (TYPE) ((X) / (Y)); \ |
286 | CHECK_NARROW_DIV (ret, (X), (Y)); \ |
287 | return ret; \ |
288 | } \ |
289 | while (0) |
290 | |
291 | /* Check for error conditions from a narrowing square root function |
292 | returning RET with argument X and set errno as needed. Overflow |
293 | and underflow can occur for finite positive arguments and a domain |
294 | error for negative arguments. */ |
295 | #define CHECK_NARROW_SQRT(RET, X) \ |
296 | do \ |
297 | { \ |
298 | if (!isfinite (RET)) \ |
299 | { \ |
300 | if (isnan (RET)) \ |
301 | { \ |
302 | if (!isnan (X)) \ |
303 | __set_errno (EDOM); \ |
304 | } \ |
305 | else if (isfinite (X)) \ |
306 | __set_errno (ERANGE); \ |
307 | } \ |
308 | else if ((RET) == 0 && (X) != 0) \ |
309 | __set_errno (ERANGE); \ |
310 | } \ |
311 | while (0) |
312 | |
313 | /* Implement narrowing square root using round-to-odd. The argument |
314 | is X, the return type is TYPE and UNION, MANTISSA and SUFFIX are as |
315 | for ROUND_TO_ODD. */ |
316 | #define NARROW_SQRT_ROUND_TO_ODD(X, TYPE, UNION, SUFFIX, MANTISSA) \ |
317 | do \ |
318 | { \ |
319 | TYPE ret; \ |
320 | \ |
321 | ret = (TYPE) ROUND_TO_ODD (sqrt ## SUFFIX (math_opt_barrier (X)), \ |
322 | UNION, SUFFIX, MANTISSA, false); \ |
323 | \ |
324 | CHECK_NARROW_SQRT (ret, (X)); \ |
325 | return ret; \ |
326 | } \ |
327 | while (0) |
328 | |
329 | /* Implement a narrowing square root function where no attempt is made |
330 | to be correctly rounding (this only applies to IBM long double; the |
331 | case where the function is not actually narrowing is handled by |
332 | aliasing other sqrt functions in libm, not using this macro). The |
333 | argument is X and the return type is TYPE. */ |
334 | #define NARROW_SQRT_TRIVIAL(X, TYPE, SUFFIX) \ |
335 | do \ |
336 | { \ |
337 | TYPE ret; \ |
338 | \ |
339 | ret = (TYPE) (sqrt ## SUFFIX (X)); \ |
340 | CHECK_NARROW_SQRT (ret, (X)); \ |
341 | return ret; \ |
342 | } \ |
343 | while (0) |
344 | |
345 | /* Check for error conditions from a narrowing fused multiply-add |
346 | function returning RET with arguments X, Y and Z and set errno as |
347 | needed. Checking for error conditions for fma (either narrowing or |
348 | not) and setting errno is not currently implemented. See bug |
349 | 6801. */ |
350 | #define CHECK_NARROW_FMA(RET, X, Y, Z) \ |
351 | do \ |
352 | { \ |
353 | } \ |
354 | while (0) |
355 | |
356 | /* Implement narrowing fused multiply-add using round-to-odd. The |
357 | arguments are X, Y and Z, the return type is TYPE and UNION, |
358 | MANTISSA, SUFFIX and CLEAR_UNDERFLOW are as for ROUND_TO_ODD. */ |
359 | #define NARROW_FMA_ROUND_TO_ODD(X, Y, Z, TYPE, UNION, SUFFIX, MANTISSA, \ |
360 | CLEAR_UNDERFLOW) \ |
361 | do \ |
362 | { \ |
363 | typeof (X) tmp; \ |
364 | TYPE ret; \ |
365 | \ |
366 | tmp = ROUND_TO_ODD (fma ## SUFFIX (math_opt_barrier (X), (Y), \ |
367 | (Z)), \ |
368 | UNION, SUFFIX, MANTISSA, CLEAR_UNDERFLOW); \ |
369 | /* If the round-to-odd result is zero, the result is an exact \ |
370 | zero and must be recomputed in the original rounding mode. */ \ |
371 | if (tmp == 0) \ |
372 | ret = (TYPE) (math_opt_barrier (X) * (Y) + (Z)); \ |
373 | else \ |
374 | ret = (TYPE) tmp; \ |
375 | \ |
376 | CHECK_NARROW_FMA (ret, (X), (Y), (Z)); \ |
377 | return ret; \ |
378 | } \ |
379 | while (0) |
380 | |
381 | /* Implement a narrowing fused multiply-add function where no attempt |
382 | is made to be correctly rounding (this only applies to IBM long |
383 | double; the case where the function is not actually narrowing is |
384 | handled by aliasing other fma functions in libm, not using this |
385 | macro). The arguments are X, Y and Z and the return type is |
386 | TYPE. */ |
387 | #define NARROW_FMA_TRIVIAL(X, Y, Z, TYPE, SUFFIX) \ |
388 | do \ |
389 | { \ |
390 | TYPE ret; \ |
391 | \ |
392 | ret = (TYPE) (fma ## SUFFIX ((X), (Y), (Z))); \ |
393 | CHECK_NARROW_FMA (ret, (X), (Y), (Z)); \ |
394 | return ret; \ |
395 | } \ |
396 | while (0) |
397 | |
398 | #endif /* math-narrow.h. */ |
399 | |