| 1 | /* Thread-local storage handling in the ELF dynamic linker. Generic version. |
| 2 | Copyright (C) 2002-2023 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <assert.h> |
| 20 | #include <errno.h> |
| 21 | #include <libintl.h> |
| 22 | #include <signal.h> |
| 23 | #include <stdlib.h> |
| 24 | #include <unistd.h> |
| 25 | #include <sys/param.h> |
| 26 | #include <atomic.h> |
| 27 | |
| 28 | #include <tls.h> |
| 29 | #include <dl-tls.h> |
| 30 | #include <ldsodefs.h> |
| 31 | |
| 32 | #if PTHREAD_IN_LIBC |
| 33 | # include <list.h> |
| 34 | #endif |
| 35 | |
| 36 | #define TUNABLE_NAMESPACE rtld |
| 37 | #include <dl-tunables.h> |
| 38 | |
| 39 | /* Surplus static TLS, GLRO(dl_tls_static_surplus), is used for |
| 40 | |
| 41 | - IE TLS in libc.so for all dlmopen namespaces except in the initial |
| 42 | one where libc.so is not loaded dynamically but at startup time, |
| 43 | - IE TLS in other libraries which may be dynamically loaded even in the |
| 44 | initial namespace, |
| 45 | - and optionally for optimizing dynamic TLS access. |
| 46 | |
| 47 | The maximum number of namespaces is DL_NNS, but to support that many |
| 48 | namespaces correctly the static TLS allocation should be significantly |
| 49 | increased, which may cause problems with small thread stacks due to the |
| 50 | way static TLS is accounted (bug 11787). |
| 51 | |
| 52 | So there is a rtld.nns tunable limit on the number of supported namespaces |
| 53 | that affects the size of the static TLS and by default it's small enough |
| 54 | not to cause problems with existing applications. The limit is not |
| 55 | enforced or checked: it is the user's responsibility to increase rtld.nns |
| 56 | if more dlmopen namespaces are used. |
| 57 | |
| 58 | Audit modules use their own namespaces, they are not included in rtld.nns, |
| 59 | but come on top when computing the number of namespaces. */ |
| 60 | |
| 61 | /* Size of initial-exec TLS in libc.so. This should be the maximum of |
| 62 | observed PT_GNU_TLS sizes across all architectures. Some |
| 63 | architectures have lower values due to differences in type sizes |
| 64 | and link editor capabilities. */ |
| 65 | #define LIBC_IE_TLS 144 |
| 66 | |
| 67 | /* Size of initial-exec TLS in libraries other than libc.so. |
| 68 | This should be large enough to cover runtime libraries of the |
| 69 | compiler such as libgomp and libraries in libc other than libc.so. */ |
| 70 | #define OTHER_IE_TLS 144 |
| 71 | |
| 72 | /* Default number of namespaces. */ |
| 73 | #define DEFAULT_NNS 4 |
| 74 | |
| 75 | /* Default for dl_tls_static_optional. */ |
| 76 | #define OPTIONAL_TLS 512 |
| 77 | |
| 78 | /* Compute the static TLS surplus based on the namespace count and the |
| 79 | TLS space that can be used for optimizations. */ |
| 80 | static inline int |
| 81 | tls_static_surplus (int nns, int opt_tls) |
| 82 | { |
| 83 | return (nns - 1) * LIBC_IE_TLS + nns * OTHER_IE_TLS + opt_tls; |
| 84 | } |
| 85 | |
| 86 | /* This value is chosen so that with default values for the tunables, |
| 87 | the computation of dl_tls_static_surplus in |
| 88 | _dl_tls_static_surplus_init yields the historic value 1664, for |
| 89 | backwards compatibility. */ |
| 90 | #define LEGACY_TLS (1664 - tls_static_surplus (DEFAULT_NNS, OPTIONAL_TLS)) |
| 91 | |
| 92 | /* Calculate the size of the static TLS surplus, when the given |
| 93 | number of audit modules are loaded. Must be called after the |
| 94 | number of audit modules is known and before static TLS allocation. */ |
| 95 | void |
| 96 | _dl_tls_static_surplus_init (size_t naudit) |
| 97 | { |
| 98 | size_t nns, opt_tls; |
| 99 | |
| 100 | #if HAVE_TUNABLES |
| 101 | nns = TUNABLE_GET (nns, size_t, NULL); |
| 102 | opt_tls = TUNABLE_GET (optional_static_tls, size_t, NULL); |
| 103 | #else |
| 104 | /* Default values of the tunables. */ |
| 105 | nns = DEFAULT_NNS; |
| 106 | opt_tls = OPTIONAL_TLS; |
| 107 | #endif |
| 108 | if (nns > DL_NNS) |
| 109 | nns = DL_NNS; |
| 110 | if (DL_NNS - nns < naudit) |
| 111 | _dl_fatal_printf ("Failed loading %lu audit modules, %lu are supported.\n" , |
| 112 | (unsigned long) naudit, (unsigned long) (DL_NNS - nns)); |
| 113 | nns += naudit; |
| 114 | |
| 115 | GL(dl_tls_static_optional) = opt_tls; |
| 116 | assert (LEGACY_TLS >= 0); |
| 117 | GLRO(dl_tls_static_surplus) = tls_static_surplus (nns, opt_tls) + LEGACY_TLS; |
| 118 | } |
| 119 | |
| 120 | /* Out-of-memory handler. */ |
| 121 | static void |
| 122 | __attribute__ ((__noreturn__)) |
| 123 | oom (void) |
| 124 | { |
| 125 | _dl_fatal_printf ("cannot allocate memory for thread-local data: ABORT\n" ); |
| 126 | } |
| 127 | |
| 128 | |
| 129 | void |
| 130 | _dl_assign_tls_modid (struct link_map *l) |
| 131 | { |
| 132 | size_t result; |
| 133 | |
| 134 | if (__builtin_expect (GL(dl_tls_dtv_gaps), false)) |
| 135 | { |
| 136 | size_t disp = 0; |
| 137 | struct dtv_slotinfo_list *runp = GL(dl_tls_dtv_slotinfo_list); |
| 138 | |
| 139 | /* Note that this branch will never be executed during program |
| 140 | start since there are no gaps at that time. Therefore it |
| 141 | does not matter that the dl_tls_dtv_slotinfo is not allocated |
| 142 | yet when the function is called for the first times. |
| 143 | |
| 144 | NB: the offset +1 is due to the fact that DTV[0] is used |
| 145 | for something else. */ |
| 146 | result = GL(dl_tls_static_nelem) + 1; |
| 147 | if (result <= GL(dl_tls_max_dtv_idx)) |
| 148 | do |
| 149 | { |
| 150 | while (result - disp < runp->len) |
| 151 | { |
| 152 | if (runp->slotinfo[result - disp].map == NULL) |
| 153 | break; |
| 154 | |
| 155 | ++result; |
| 156 | assert (result <= GL(dl_tls_max_dtv_idx) + 1); |
| 157 | } |
| 158 | |
| 159 | if (result - disp < runp->len) |
| 160 | { |
| 161 | /* Mark the entry as used, so any dependency see it. */ |
| 162 | atomic_store_relaxed (&runp->slotinfo[result - disp].map, l); |
| 163 | break; |
| 164 | } |
| 165 | |
| 166 | disp += runp->len; |
| 167 | } |
| 168 | while ((runp = runp->next) != NULL); |
| 169 | |
| 170 | if (result > GL(dl_tls_max_dtv_idx)) |
| 171 | { |
| 172 | /* The new index must indeed be exactly one higher than the |
| 173 | previous high. */ |
| 174 | assert (result == GL(dl_tls_max_dtv_idx) + 1); |
| 175 | /* There is no gap anymore. */ |
| 176 | GL(dl_tls_dtv_gaps) = false; |
| 177 | |
| 178 | goto nogaps; |
| 179 | } |
| 180 | } |
| 181 | else |
| 182 | { |
| 183 | /* No gaps, allocate a new entry. */ |
| 184 | nogaps: |
| 185 | |
| 186 | result = GL(dl_tls_max_dtv_idx) + 1; |
| 187 | /* Can be read concurrently. */ |
| 188 | atomic_store_relaxed (&GL(dl_tls_max_dtv_idx), result); |
| 189 | } |
| 190 | |
| 191 | l->l_tls_modid = result; |
| 192 | } |
| 193 | |
| 194 | |
| 195 | size_t |
| 196 | _dl_count_modids (void) |
| 197 | { |
| 198 | /* The count is the max unless dlclose or failed dlopen created gaps. */ |
| 199 | if (__glibc_likely (!GL(dl_tls_dtv_gaps))) |
| 200 | return GL(dl_tls_max_dtv_idx); |
| 201 | |
| 202 | /* We have gaps and are forced to count the non-NULL entries. */ |
| 203 | size_t n = 0; |
| 204 | struct dtv_slotinfo_list *runp = GL(dl_tls_dtv_slotinfo_list); |
| 205 | while (runp != NULL) |
| 206 | { |
| 207 | for (size_t i = 0; i < runp->len; ++i) |
| 208 | if (runp->slotinfo[i].map != NULL) |
| 209 | ++n; |
| 210 | |
| 211 | runp = runp->next; |
| 212 | } |
| 213 | |
| 214 | return n; |
| 215 | } |
| 216 | |
| 217 | |
| 218 | #ifdef SHARED |
| 219 | void |
| 220 | _dl_determine_tlsoffset (void) |
| 221 | { |
| 222 | size_t max_align = TCB_ALIGNMENT; |
| 223 | size_t freetop = 0; |
| 224 | size_t freebottom = 0; |
| 225 | |
| 226 | /* The first element of the dtv slot info list is allocated. */ |
| 227 | assert (GL(dl_tls_dtv_slotinfo_list) != NULL); |
| 228 | /* There is at this point only one element in the |
| 229 | dl_tls_dtv_slotinfo_list list. */ |
| 230 | assert (GL(dl_tls_dtv_slotinfo_list)->next == NULL); |
| 231 | |
| 232 | struct dtv_slotinfo *slotinfo = GL(dl_tls_dtv_slotinfo_list)->slotinfo; |
| 233 | |
| 234 | /* Determining the offset of the various parts of the static TLS |
| 235 | block has several dependencies. In addition we have to work |
| 236 | around bugs in some toolchains. |
| 237 | |
| 238 | Each TLS block from the objects available at link time has a size |
| 239 | and an alignment requirement. The GNU ld computes the alignment |
| 240 | requirements for the data at the positions *in the file*, though. |
| 241 | I.e, it is not simply possible to allocate a block with the size |
| 242 | of the TLS program header entry. The data is layed out assuming |
| 243 | that the first byte of the TLS block fulfills |
| 244 | |
| 245 | p_vaddr mod p_align == &TLS_BLOCK mod p_align |
| 246 | |
| 247 | This means we have to add artificial padding at the beginning of |
| 248 | the TLS block. These bytes are never used for the TLS data in |
| 249 | this module but the first byte allocated must be aligned |
| 250 | according to mod p_align == 0 so that the first byte of the TLS |
| 251 | block is aligned according to p_vaddr mod p_align. This is ugly |
| 252 | and the linker can help by computing the offsets in the TLS block |
| 253 | assuming the first byte of the TLS block is aligned according to |
| 254 | p_align. |
| 255 | |
| 256 | The extra space which might be allocated before the first byte of |
| 257 | the TLS block need not go unused. The code below tries to use |
| 258 | that memory for the next TLS block. This can work if the total |
| 259 | memory requirement for the next TLS block is smaller than the |
| 260 | gap. */ |
| 261 | |
| 262 | #if TLS_TCB_AT_TP |
| 263 | /* We simply start with zero. */ |
| 264 | size_t offset = 0; |
| 265 | |
| 266 | for (size_t cnt = 0; slotinfo[cnt].map != NULL; ++cnt) |
| 267 | { |
| 268 | assert (cnt < GL(dl_tls_dtv_slotinfo_list)->len); |
| 269 | |
| 270 | size_t firstbyte = (-slotinfo[cnt].map->l_tls_firstbyte_offset |
| 271 | & (slotinfo[cnt].map->l_tls_align - 1)); |
| 272 | size_t off; |
| 273 | max_align = MAX (max_align, slotinfo[cnt].map->l_tls_align); |
| 274 | |
| 275 | if (freebottom - freetop >= slotinfo[cnt].map->l_tls_blocksize) |
| 276 | { |
| 277 | off = roundup (freetop + slotinfo[cnt].map->l_tls_blocksize |
| 278 | - firstbyte, slotinfo[cnt].map->l_tls_align) |
| 279 | + firstbyte; |
| 280 | if (off <= freebottom) |
| 281 | { |
| 282 | freetop = off; |
| 283 | |
| 284 | /* XXX For some architectures we perhaps should store the |
| 285 | negative offset. */ |
| 286 | slotinfo[cnt].map->l_tls_offset = off; |
| 287 | continue; |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | off = roundup (offset + slotinfo[cnt].map->l_tls_blocksize - firstbyte, |
| 292 | slotinfo[cnt].map->l_tls_align) + firstbyte; |
| 293 | if (off > offset + slotinfo[cnt].map->l_tls_blocksize |
| 294 | + (freebottom - freetop)) |
| 295 | { |
| 296 | freetop = offset; |
| 297 | freebottom = off - slotinfo[cnt].map->l_tls_blocksize; |
| 298 | } |
| 299 | offset = off; |
| 300 | |
| 301 | /* XXX For some architectures we perhaps should store the |
| 302 | negative offset. */ |
| 303 | slotinfo[cnt].map->l_tls_offset = off; |
| 304 | } |
| 305 | |
| 306 | GL(dl_tls_static_used) = offset; |
| 307 | GLRO (dl_tls_static_size) = (roundup (offset + GLRO(dl_tls_static_surplus), |
| 308 | max_align) |
| 309 | + TLS_TCB_SIZE); |
| 310 | #elif TLS_DTV_AT_TP |
| 311 | /* The TLS blocks start right after the TCB. */ |
| 312 | size_t offset = TLS_TCB_SIZE; |
| 313 | |
| 314 | for (size_t cnt = 0; slotinfo[cnt].map != NULL; ++cnt) |
| 315 | { |
| 316 | assert (cnt < GL(dl_tls_dtv_slotinfo_list)->len); |
| 317 | |
| 318 | size_t firstbyte = (-slotinfo[cnt].map->l_tls_firstbyte_offset |
| 319 | & (slotinfo[cnt].map->l_tls_align - 1)); |
| 320 | size_t off; |
| 321 | max_align = MAX (max_align, slotinfo[cnt].map->l_tls_align); |
| 322 | |
| 323 | if (slotinfo[cnt].map->l_tls_blocksize <= freetop - freebottom) |
| 324 | { |
| 325 | off = roundup (freebottom, slotinfo[cnt].map->l_tls_align); |
| 326 | if (off - freebottom < firstbyte) |
| 327 | off += slotinfo[cnt].map->l_tls_align; |
| 328 | if (off + slotinfo[cnt].map->l_tls_blocksize - firstbyte <= freetop) |
| 329 | { |
| 330 | slotinfo[cnt].map->l_tls_offset = off - firstbyte; |
| 331 | freebottom = (off + slotinfo[cnt].map->l_tls_blocksize |
| 332 | - firstbyte); |
| 333 | continue; |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | off = roundup (offset, slotinfo[cnt].map->l_tls_align); |
| 338 | if (off - offset < firstbyte) |
| 339 | off += slotinfo[cnt].map->l_tls_align; |
| 340 | |
| 341 | slotinfo[cnt].map->l_tls_offset = off - firstbyte; |
| 342 | if (off - firstbyte - offset > freetop - freebottom) |
| 343 | { |
| 344 | freebottom = offset; |
| 345 | freetop = off - firstbyte; |
| 346 | } |
| 347 | |
| 348 | offset = off + slotinfo[cnt].map->l_tls_blocksize - firstbyte; |
| 349 | } |
| 350 | |
| 351 | GL(dl_tls_static_used) = offset; |
| 352 | GLRO (dl_tls_static_size) = roundup (offset + GLRO(dl_tls_static_surplus), |
| 353 | TCB_ALIGNMENT); |
| 354 | #else |
| 355 | # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined" |
| 356 | #endif |
| 357 | |
| 358 | /* The alignment requirement for the static TLS block. */ |
| 359 | GLRO (dl_tls_static_align) = max_align; |
| 360 | } |
| 361 | #endif /* SHARED */ |
| 362 | |
| 363 | static void * |
| 364 | allocate_dtv (void *result) |
| 365 | { |
| 366 | dtv_t *dtv; |
| 367 | size_t dtv_length; |
| 368 | |
| 369 | /* Relaxed MO, because the dtv size is later rechecked, not relied on. */ |
| 370 | size_t max_modid = atomic_load_relaxed (&GL(dl_tls_max_dtv_idx)); |
| 371 | /* We allocate a few more elements in the dtv than are needed for the |
| 372 | initial set of modules. This should avoid in most cases expansions |
| 373 | of the dtv. */ |
| 374 | dtv_length = max_modid + DTV_SURPLUS; |
| 375 | dtv = calloc (dtv_length + 2, sizeof (dtv_t)); |
| 376 | if (dtv != NULL) |
| 377 | { |
| 378 | /* This is the initial length of the dtv. */ |
| 379 | dtv[0].counter = dtv_length; |
| 380 | |
| 381 | /* The rest of the dtv (including the generation counter) is |
| 382 | Initialize with zero to indicate nothing there. */ |
| 383 | |
| 384 | /* Add the dtv to the thread data structures. */ |
| 385 | INSTALL_DTV (result, dtv); |
| 386 | } |
| 387 | else |
| 388 | result = NULL; |
| 389 | |
| 390 | return result; |
| 391 | } |
| 392 | |
| 393 | /* Get size and alignment requirements of the static TLS block. This |
| 394 | function is no longer used by glibc itself, but the GCC sanitizers |
| 395 | use it despite the GLIBC_PRIVATE status. */ |
| 396 | void |
| 397 | _dl_get_tls_static_info (size_t *sizep, size_t *alignp) |
| 398 | { |
| 399 | *sizep = GLRO (dl_tls_static_size); |
| 400 | *alignp = GLRO (dl_tls_static_align); |
| 401 | } |
| 402 | |
| 403 | /* Derive the location of the pointer to the start of the original |
| 404 | allocation (before alignment) from the pointer to the TCB. */ |
| 405 | static inline void ** |
| 406 | tcb_to_pointer_to_free_location (void *tcb) |
| 407 | { |
| 408 | #if TLS_TCB_AT_TP |
| 409 | /* The TCB follows the TLS blocks, and the pointer to the front |
| 410 | follows the TCB. */ |
| 411 | void **original_pointer_location = tcb + TLS_TCB_SIZE; |
| 412 | #elif TLS_DTV_AT_TP |
| 413 | /* The TCB comes first, preceded by the pre-TCB, and the pointer is |
| 414 | before that. */ |
| 415 | void **original_pointer_location = tcb - TLS_PRE_TCB_SIZE - sizeof (void *); |
| 416 | #endif |
| 417 | return original_pointer_location; |
| 418 | } |
| 419 | |
| 420 | void * |
| 421 | _dl_allocate_tls_storage (void) |
| 422 | { |
| 423 | void *result; |
| 424 | size_t size = GLRO (dl_tls_static_size); |
| 425 | |
| 426 | #if TLS_DTV_AT_TP |
| 427 | /* Memory layout is: |
| 428 | [ TLS_PRE_TCB_SIZE ] [ TLS_TCB_SIZE ] [ TLS blocks ] |
| 429 | ^ This should be returned. */ |
| 430 | size += TLS_PRE_TCB_SIZE; |
| 431 | #endif |
| 432 | |
| 433 | /* Perform the allocation. Reserve space for the required alignment |
| 434 | and the pointer to the original allocation. */ |
| 435 | size_t alignment = GLRO (dl_tls_static_align); |
| 436 | void *allocated = malloc (size + alignment + sizeof (void *)); |
| 437 | if (__glibc_unlikely (allocated == NULL)) |
| 438 | return NULL; |
| 439 | |
| 440 | /* Perform alignment and allocate the DTV. */ |
| 441 | #if TLS_TCB_AT_TP |
| 442 | /* The TCB follows the TLS blocks, which determine the alignment. |
| 443 | (TCB alignment requirements have been taken into account when |
| 444 | calculating GLRO (dl_tls_static_align).) */ |
| 445 | void *aligned = (void *) roundup ((uintptr_t) allocated, alignment); |
| 446 | result = aligned + size - TLS_TCB_SIZE; |
| 447 | |
| 448 | /* Clear the TCB data structure. We can't ask the caller (i.e. |
| 449 | libpthread) to do it, because we will initialize the DTV et al. */ |
| 450 | memset (result, '\0', TLS_TCB_SIZE); |
| 451 | #elif TLS_DTV_AT_TP |
| 452 | /* Pre-TCB and TCB come before the TLS blocks. The layout computed |
| 453 | in _dl_determine_tlsoffset assumes that the TCB is aligned to the |
| 454 | TLS block alignment, and not just the TLS blocks after it. This |
| 455 | can leave an unused alignment gap between the TCB and the TLS |
| 456 | blocks. */ |
| 457 | result = (void *) roundup |
| 458 | (sizeof (void *) + TLS_PRE_TCB_SIZE + (uintptr_t) allocated, |
| 459 | alignment); |
| 460 | |
| 461 | /* Clear the TCB data structure and TLS_PRE_TCB_SIZE bytes before |
| 462 | it. We can't ask the caller (i.e. libpthread) to do it, because |
| 463 | we will initialize the DTV et al. */ |
| 464 | memset (result - TLS_PRE_TCB_SIZE, '\0', TLS_PRE_TCB_SIZE + TLS_TCB_SIZE); |
| 465 | #endif |
| 466 | |
| 467 | /* Record the value of the original pointer for later |
| 468 | deallocation. */ |
| 469 | *tcb_to_pointer_to_free_location (result) = allocated; |
| 470 | |
| 471 | result = allocate_dtv (result); |
| 472 | if (result == NULL) |
| 473 | free (allocated); |
| 474 | return result; |
| 475 | } |
| 476 | |
| 477 | |
| 478 | #ifndef SHARED |
| 479 | extern dtv_t _dl_static_dtv[]; |
| 480 | # define _dl_initial_dtv (&_dl_static_dtv[1]) |
| 481 | #endif |
| 482 | |
| 483 | static dtv_t * |
| 484 | _dl_resize_dtv (dtv_t *dtv, size_t max_modid) |
| 485 | { |
| 486 | /* Resize the dtv. */ |
| 487 | dtv_t *newp; |
| 488 | size_t newsize = max_modid + DTV_SURPLUS; |
| 489 | size_t oldsize = dtv[-1].counter; |
| 490 | |
| 491 | if (dtv == GL(dl_initial_dtv)) |
| 492 | { |
| 493 | /* This is the initial dtv that was either statically allocated in |
| 494 | __libc_setup_tls or allocated during rtld startup using the |
| 495 | dl-minimal.c malloc instead of the real malloc. We can't free |
| 496 | it, we have to abandon the old storage. */ |
| 497 | |
| 498 | newp = malloc ((2 + newsize) * sizeof (dtv_t)); |
| 499 | if (newp == NULL) |
| 500 | oom (); |
| 501 | memcpy (newp, &dtv[-1], (2 + oldsize) * sizeof (dtv_t)); |
| 502 | } |
| 503 | else |
| 504 | { |
| 505 | newp = realloc (&dtv[-1], |
| 506 | (2 + newsize) * sizeof (dtv_t)); |
| 507 | if (newp == NULL) |
| 508 | oom (); |
| 509 | } |
| 510 | |
| 511 | newp[0].counter = newsize; |
| 512 | |
| 513 | /* Clear the newly allocated part. */ |
| 514 | memset (newp + 2 + oldsize, '\0', |
| 515 | (newsize - oldsize) * sizeof (dtv_t)); |
| 516 | |
| 517 | /* Return the generation counter. */ |
| 518 | return &newp[1]; |
| 519 | } |
| 520 | |
| 521 | |
| 522 | /* Allocate initial TLS. RESULT should be a non-NULL pointer to storage |
| 523 | for the TLS space. The DTV may be resized, and so this function may |
| 524 | call malloc to allocate that space. The loader's GL(dl_load_tls_lock) |
| 525 | is taken when manipulating global TLS-related data in the loader. */ |
| 526 | void * |
| 527 | _dl_allocate_tls_init (void *result, bool init_tls) |
| 528 | { |
| 529 | if (result == NULL) |
| 530 | /* The memory allocation failed. */ |
| 531 | return NULL; |
| 532 | |
| 533 | dtv_t *dtv = GET_DTV (result); |
| 534 | struct dtv_slotinfo_list *listp; |
| 535 | size_t total = 0; |
| 536 | size_t maxgen = 0; |
| 537 | |
| 538 | /* Protects global dynamic TLS related state. */ |
| 539 | __rtld_lock_lock_recursive (GL(dl_load_tls_lock)); |
| 540 | |
| 541 | /* Check if the current dtv is big enough. */ |
| 542 | if (dtv[-1].counter < GL(dl_tls_max_dtv_idx)) |
| 543 | { |
| 544 | /* Resize the dtv. */ |
| 545 | dtv = _dl_resize_dtv (dtv, GL(dl_tls_max_dtv_idx)); |
| 546 | |
| 547 | /* Install this new dtv in the thread data structures. */ |
| 548 | INSTALL_DTV (result, &dtv[-1]); |
| 549 | } |
| 550 | |
| 551 | /* We have to prepare the dtv for all currently loaded modules using |
| 552 | TLS. For those which are dynamically loaded we add the values |
| 553 | indicating deferred allocation. */ |
| 554 | listp = GL(dl_tls_dtv_slotinfo_list); |
| 555 | while (1) |
| 556 | { |
| 557 | size_t cnt; |
| 558 | |
| 559 | for (cnt = total == 0 ? 1 : 0; cnt < listp->len; ++cnt) |
| 560 | { |
| 561 | struct link_map *map; |
| 562 | void *dest; |
| 563 | |
| 564 | /* Check for the total number of used slots. */ |
| 565 | if (total + cnt > GL(dl_tls_max_dtv_idx)) |
| 566 | break; |
| 567 | |
| 568 | map = listp->slotinfo[cnt].map; |
| 569 | if (map == NULL) |
| 570 | /* Unused entry. */ |
| 571 | continue; |
| 572 | |
| 573 | /* Keep track of the maximum generation number. This might |
| 574 | not be the generation counter. */ |
| 575 | assert (listp->slotinfo[cnt].gen <= GL(dl_tls_generation)); |
| 576 | maxgen = MAX (maxgen, listp->slotinfo[cnt].gen); |
| 577 | |
| 578 | dtv[map->l_tls_modid].pointer.val = TLS_DTV_UNALLOCATED; |
| 579 | dtv[map->l_tls_modid].pointer.to_free = NULL; |
| 580 | |
| 581 | if (map->l_tls_offset == NO_TLS_OFFSET |
| 582 | || map->l_tls_offset == FORCED_DYNAMIC_TLS_OFFSET) |
| 583 | continue; |
| 584 | |
| 585 | assert (map->l_tls_modid == total + cnt); |
| 586 | assert (map->l_tls_blocksize >= map->l_tls_initimage_size); |
| 587 | #if TLS_TCB_AT_TP |
| 588 | assert ((size_t) map->l_tls_offset >= map->l_tls_blocksize); |
| 589 | dest = (char *) result - map->l_tls_offset; |
| 590 | #elif TLS_DTV_AT_TP |
| 591 | dest = (char *) result + map->l_tls_offset; |
| 592 | #else |
| 593 | # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined" |
| 594 | #endif |
| 595 | |
| 596 | /* Set up the DTV entry. The simplified __tls_get_addr that |
| 597 | some platforms use in static programs requires it. */ |
| 598 | dtv[map->l_tls_modid].pointer.val = dest; |
| 599 | |
| 600 | /* Copy the initialization image and clear the BSS part. For |
| 601 | audit modules or dependencies with initial-exec TLS, we can not |
| 602 | set the initial TLS image on default loader initialization |
| 603 | because it would already be set by the audit setup. However, |
| 604 | subsequent thread creation would need to follow the default |
| 605 | behaviour. */ |
| 606 | if (map->l_ns != LM_ID_BASE && !init_tls) |
| 607 | continue; |
| 608 | memset (__mempcpy (dest, map->l_tls_initimage, |
| 609 | map->l_tls_initimage_size), '\0', |
| 610 | map->l_tls_blocksize - map->l_tls_initimage_size); |
| 611 | } |
| 612 | |
| 613 | total += cnt; |
| 614 | if (total > GL(dl_tls_max_dtv_idx)) |
| 615 | break; |
| 616 | |
| 617 | listp = listp->next; |
| 618 | assert (listp != NULL); |
| 619 | } |
| 620 | __rtld_lock_unlock_recursive (GL(dl_load_tls_lock)); |
| 621 | |
| 622 | /* The DTV version is up-to-date now. */ |
| 623 | dtv[0].counter = maxgen; |
| 624 | |
| 625 | return result; |
| 626 | } |
| 627 | rtld_hidden_def (_dl_allocate_tls_init) |
| 628 | |
| 629 | void * |
| 630 | _dl_allocate_tls (void *mem) |
| 631 | { |
| 632 | return _dl_allocate_tls_init (mem == NULL |
| 633 | ? _dl_allocate_tls_storage () |
| 634 | : allocate_dtv (mem), true); |
| 635 | } |
| 636 | rtld_hidden_def (_dl_allocate_tls) |
| 637 | |
| 638 | |
| 639 | void |
| 640 | _dl_deallocate_tls (void *tcb, bool dealloc_tcb) |
| 641 | { |
| 642 | dtv_t *dtv = GET_DTV (tcb); |
| 643 | |
| 644 | /* We need to free the memory allocated for non-static TLS. */ |
| 645 | for (size_t cnt = 0; cnt < dtv[-1].counter; ++cnt) |
| 646 | free (dtv[1 + cnt].pointer.to_free); |
| 647 | |
| 648 | /* The array starts with dtv[-1]. */ |
| 649 | if (dtv != GL(dl_initial_dtv)) |
| 650 | free (dtv - 1); |
| 651 | |
| 652 | if (dealloc_tcb) |
| 653 | free (*tcb_to_pointer_to_free_location (tcb)); |
| 654 | } |
| 655 | rtld_hidden_def (_dl_deallocate_tls) |
| 656 | |
| 657 | |
| 658 | #ifdef SHARED |
| 659 | /* The __tls_get_addr function has two basic forms which differ in the |
| 660 | arguments. The IA-64 form takes two parameters, the module ID and |
| 661 | offset. The form used, among others, on IA-32 takes a reference to |
| 662 | a special structure which contain the same information. The second |
| 663 | form seems to be more often used (in the moment) so we default to |
| 664 | it. Users of the IA-64 form have to provide adequate definitions |
| 665 | of the following macros. */ |
| 666 | # ifndef GET_ADDR_ARGS |
| 667 | # define GET_ADDR_ARGS tls_index *ti |
| 668 | # define GET_ADDR_PARAM ti |
| 669 | # endif |
| 670 | # ifndef GET_ADDR_MODULE |
| 671 | # define GET_ADDR_MODULE ti->ti_module |
| 672 | # endif |
| 673 | # ifndef GET_ADDR_OFFSET |
| 674 | # define GET_ADDR_OFFSET ti->ti_offset |
| 675 | # endif |
| 676 | |
| 677 | /* Allocate one DTV entry. */ |
| 678 | static struct dtv_pointer |
| 679 | allocate_dtv_entry (size_t alignment, size_t size) |
| 680 | { |
| 681 | if (powerof2 (alignment) && alignment <= _Alignof (max_align_t)) |
| 682 | { |
| 683 | /* The alignment is supported by malloc. */ |
| 684 | void *ptr = malloc (size); |
| 685 | return (struct dtv_pointer) { ptr, ptr }; |
| 686 | } |
| 687 | |
| 688 | /* Emulate memalign to by manually aligning a pointer returned by |
| 689 | malloc. First compute the size with an overflow check. */ |
| 690 | size_t alloc_size = size + alignment; |
| 691 | if (alloc_size < size) |
| 692 | return (struct dtv_pointer) {}; |
| 693 | |
| 694 | /* Perform the allocation. This is the pointer we need to free |
| 695 | later. */ |
| 696 | void *start = malloc (alloc_size); |
| 697 | if (start == NULL) |
| 698 | return (struct dtv_pointer) {}; |
| 699 | |
| 700 | /* Find the aligned position within the larger allocation. */ |
| 701 | void *aligned = (void *) roundup ((uintptr_t) start, alignment); |
| 702 | |
| 703 | return (struct dtv_pointer) { .val = aligned, .to_free = start }; |
| 704 | } |
| 705 | |
| 706 | static struct dtv_pointer |
| 707 | allocate_and_init (struct link_map *map) |
| 708 | { |
| 709 | struct dtv_pointer result = allocate_dtv_entry |
| 710 | (map->l_tls_align, map->l_tls_blocksize); |
| 711 | if (result.val == NULL) |
| 712 | oom (); |
| 713 | |
| 714 | /* Initialize the memory. */ |
| 715 | memset (__mempcpy (result.val, map->l_tls_initimage, |
| 716 | map->l_tls_initimage_size), |
| 717 | '\0', map->l_tls_blocksize - map->l_tls_initimage_size); |
| 718 | |
| 719 | return result; |
| 720 | } |
| 721 | |
| 722 | |
| 723 | struct link_map * |
| 724 | _dl_update_slotinfo (unsigned long int req_modid) |
| 725 | { |
| 726 | struct link_map *the_map = NULL; |
| 727 | dtv_t *dtv = THREAD_DTV (); |
| 728 | |
| 729 | /* The global dl_tls_dtv_slotinfo array contains for each module |
| 730 | index the generation counter current when the entry was created. |
| 731 | This array never shrinks so that all module indices which were |
| 732 | valid at some time can be used to access it. Before the first |
| 733 | use of a new module index in this function the array was extended |
| 734 | appropriately. Access also does not have to be guarded against |
| 735 | modifications of the array. It is assumed that pointer-size |
| 736 | values can be read atomically even in SMP environments. It is |
| 737 | possible that other threads at the same time dynamically load |
| 738 | code and therefore add to the slotinfo list. This is a problem |
| 739 | since we must not pick up any information about incomplete work. |
| 740 | The solution to this is to ignore all dtv slots which were |
| 741 | created after the one we are currently interested. We know that |
| 742 | dynamic loading for this module is completed and this is the last |
| 743 | load operation we know finished. */ |
| 744 | unsigned long int idx = req_modid; |
| 745 | struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list); |
| 746 | |
| 747 | while (idx >= listp->len) |
| 748 | { |
| 749 | idx -= listp->len; |
| 750 | listp = listp->next; |
| 751 | } |
| 752 | |
| 753 | if (dtv[0].counter < listp->slotinfo[idx].gen) |
| 754 | { |
| 755 | /* CONCURRENCY NOTES: |
| 756 | |
| 757 | Here the dtv needs to be updated to new_gen generation count. |
| 758 | |
| 759 | This code may be called during TLS access when GL(dl_load_tls_lock) |
| 760 | is not held. In that case the user code has to synchronize with |
| 761 | dlopen and dlclose calls of relevant modules. A module m is |
| 762 | relevant if the generation of m <= new_gen and dlclose of m is |
| 763 | synchronized: a memory access here happens after the dlopen and |
| 764 | before the dlclose of relevant modules. The dtv entries for |
| 765 | relevant modules need to be updated, other entries can be |
| 766 | arbitrary. |
| 767 | |
| 768 | This e.g. means that the first part of the slotinfo list can be |
| 769 | accessed race free, but the tail may be concurrently extended. |
| 770 | Similarly relevant slotinfo entries can be read race free, but |
| 771 | other entries are racy. However updating a non-relevant dtv |
| 772 | entry does not affect correctness. For a relevant module m, |
| 773 | max_modid >= modid of m. */ |
| 774 | size_t new_gen = listp->slotinfo[idx].gen; |
| 775 | size_t total = 0; |
| 776 | size_t max_modid = atomic_load_relaxed (&GL(dl_tls_max_dtv_idx)); |
| 777 | assert (max_modid >= req_modid); |
| 778 | |
| 779 | /* We have to look through the entire dtv slotinfo list. */ |
| 780 | listp = GL(dl_tls_dtv_slotinfo_list); |
| 781 | do |
| 782 | { |
| 783 | for (size_t cnt = total == 0 ? 1 : 0; cnt < listp->len; ++cnt) |
| 784 | { |
| 785 | size_t modid = total + cnt; |
| 786 | |
| 787 | /* Later entries are not relevant. */ |
| 788 | if (modid > max_modid) |
| 789 | break; |
| 790 | |
| 791 | size_t gen = atomic_load_relaxed (&listp->slotinfo[cnt].gen); |
| 792 | |
| 793 | if (gen > new_gen) |
| 794 | /* Not relevant. */ |
| 795 | continue; |
| 796 | |
| 797 | /* If the entry is older than the current dtv layout we |
| 798 | know we don't have to handle it. */ |
| 799 | if (gen <= dtv[0].counter) |
| 800 | continue; |
| 801 | |
| 802 | /* If there is no map this means the entry is empty. */ |
| 803 | struct link_map *map |
| 804 | = atomic_load_relaxed (&listp->slotinfo[cnt].map); |
| 805 | /* Check whether the current dtv array is large enough. */ |
| 806 | if (dtv[-1].counter < modid) |
| 807 | { |
| 808 | if (map == NULL) |
| 809 | continue; |
| 810 | |
| 811 | /* Resize the dtv. */ |
| 812 | dtv = _dl_resize_dtv (dtv, max_modid); |
| 813 | |
| 814 | assert (modid <= dtv[-1].counter); |
| 815 | |
| 816 | /* Install this new dtv in the thread data |
| 817 | structures. */ |
| 818 | INSTALL_NEW_DTV (dtv); |
| 819 | } |
| 820 | |
| 821 | /* If there is currently memory allocate for this |
| 822 | dtv entry free it. */ |
| 823 | /* XXX Ideally we will at some point create a memory |
| 824 | pool. */ |
| 825 | free (dtv[modid].pointer.to_free); |
| 826 | dtv[modid].pointer.val = TLS_DTV_UNALLOCATED; |
| 827 | dtv[modid].pointer.to_free = NULL; |
| 828 | |
| 829 | if (modid == req_modid) |
| 830 | the_map = map; |
| 831 | } |
| 832 | |
| 833 | total += listp->len; |
| 834 | if (total > max_modid) |
| 835 | break; |
| 836 | |
| 837 | /* Synchronize with _dl_add_to_slotinfo. Ideally this would |
| 838 | be consume MO since we only need to order the accesses to |
| 839 | the next node after the read of the address and on most |
| 840 | hardware (other than alpha) a normal load would do that |
| 841 | because of the address dependency. */ |
| 842 | listp = atomic_load_acquire (&listp->next); |
| 843 | } |
| 844 | while (listp != NULL); |
| 845 | |
| 846 | /* This will be the new maximum generation counter. */ |
| 847 | dtv[0].counter = new_gen; |
| 848 | } |
| 849 | |
| 850 | return the_map; |
| 851 | } |
| 852 | |
| 853 | |
| 854 | static void * |
| 855 | __attribute_noinline__ |
| 856 | tls_get_addr_tail (GET_ADDR_ARGS, dtv_t *dtv, struct link_map *the_map) |
| 857 | { |
| 858 | /* The allocation was deferred. Do it now. */ |
| 859 | if (the_map == NULL) |
| 860 | { |
| 861 | /* Find the link map for this module. */ |
| 862 | size_t idx = GET_ADDR_MODULE; |
| 863 | struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list); |
| 864 | |
| 865 | while (idx >= listp->len) |
| 866 | { |
| 867 | idx -= listp->len; |
| 868 | listp = listp->next; |
| 869 | } |
| 870 | |
| 871 | the_map = listp->slotinfo[idx].map; |
| 872 | } |
| 873 | |
| 874 | /* Make sure that, if a dlopen running in parallel forces the |
| 875 | variable into static storage, we'll wait until the address in the |
| 876 | static TLS block is set up, and use that. If we're undecided |
| 877 | yet, make sure we make the decision holding the lock as well. */ |
| 878 | if (__glibc_unlikely (the_map->l_tls_offset |
| 879 | != FORCED_DYNAMIC_TLS_OFFSET)) |
| 880 | { |
| 881 | __rtld_lock_lock_recursive (GL(dl_load_tls_lock)); |
| 882 | if (__glibc_likely (the_map->l_tls_offset == NO_TLS_OFFSET)) |
| 883 | { |
| 884 | the_map->l_tls_offset = FORCED_DYNAMIC_TLS_OFFSET; |
| 885 | __rtld_lock_unlock_recursive (GL(dl_load_tls_lock)); |
| 886 | } |
| 887 | else if (__glibc_likely (the_map->l_tls_offset |
| 888 | != FORCED_DYNAMIC_TLS_OFFSET)) |
| 889 | { |
| 890 | #if TLS_TCB_AT_TP |
| 891 | void *p = (char *) THREAD_SELF - the_map->l_tls_offset; |
| 892 | #elif TLS_DTV_AT_TP |
| 893 | void *p = (char *) THREAD_SELF + the_map->l_tls_offset + TLS_PRE_TCB_SIZE; |
| 894 | #else |
| 895 | # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined" |
| 896 | #endif |
| 897 | __rtld_lock_unlock_recursive (GL(dl_load_tls_lock)); |
| 898 | |
| 899 | dtv[GET_ADDR_MODULE].pointer.to_free = NULL; |
| 900 | dtv[GET_ADDR_MODULE].pointer.val = p; |
| 901 | |
| 902 | return (char *) p + GET_ADDR_OFFSET; |
| 903 | } |
| 904 | else |
| 905 | __rtld_lock_unlock_recursive (GL(dl_load_tls_lock)); |
| 906 | } |
| 907 | struct dtv_pointer result = allocate_and_init (the_map); |
| 908 | dtv[GET_ADDR_MODULE].pointer = result; |
| 909 | assert (result.to_free != NULL); |
| 910 | |
| 911 | return (char *) result.val + GET_ADDR_OFFSET; |
| 912 | } |
| 913 | |
| 914 | |
| 915 | static struct link_map * |
| 916 | __attribute_noinline__ |
| 917 | update_get_addr (GET_ADDR_ARGS) |
| 918 | { |
| 919 | struct link_map *the_map = _dl_update_slotinfo (GET_ADDR_MODULE); |
| 920 | dtv_t *dtv = THREAD_DTV (); |
| 921 | |
| 922 | void *p = dtv[GET_ADDR_MODULE].pointer.val; |
| 923 | |
| 924 | if (__glibc_unlikely (p == TLS_DTV_UNALLOCATED)) |
| 925 | return tls_get_addr_tail (GET_ADDR_PARAM, dtv, the_map); |
| 926 | |
| 927 | return (void *) p + GET_ADDR_OFFSET; |
| 928 | } |
| 929 | |
| 930 | /* For all machines that have a non-macro version of __tls_get_addr, we |
| 931 | want to use rtld_hidden_proto/rtld_hidden_def in order to call the |
| 932 | internal alias for __tls_get_addr from ld.so. This avoids a PLT entry |
| 933 | in ld.so for __tls_get_addr. */ |
| 934 | |
| 935 | #ifndef __tls_get_addr |
| 936 | extern void * __tls_get_addr (GET_ADDR_ARGS); |
| 937 | rtld_hidden_proto (__tls_get_addr) |
| 938 | rtld_hidden_def (__tls_get_addr) |
| 939 | #endif |
| 940 | |
| 941 | /* The generic dynamic and local dynamic model cannot be used in |
| 942 | statically linked applications. */ |
| 943 | void * |
| 944 | __tls_get_addr (GET_ADDR_ARGS) |
| 945 | { |
| 946 | dtv_t *dtv = THREAD_DTV (); |
| 947 | |
| 948 | /* Update is needed if dtv[0].counter < the generation of the accessed |
| 949 | module. The global generation counter is used here as it is easier |
| 950 | to check. Synchronization for the relaxed MO access is guaranteed |
| 951 | by user code, see CONCURRENCY NOTES in _dl_update_slotinfo. */ |
| 952 | size_t gen = atomic_load_relaxed (&GL(dl_tls_generation)); |
| 953 | if (__glibc_unlikely (dtv[0].counter != gen)) |
| 954 | return update_get_addr (GET_ADDR_PARAM); |
| 955 | |
| 956 | void *p = dtv[GET_ADDR_MODULE].pointer.val; |
| 957 | |
| 958 | if (__glibc_unlikely (p == TLS_DTV_UNALLOCATED)) |
| 959 | return tls_get_addr_tail (GET_ADDR_PARAM, dtv, NULL); |
| 960 | |
| 961 | return (char *) p + GET_ADDR_OFFSET; |
| 962 | } |
| 963 | #endif |
| 964 | |
| 965 | |
| 966 | /* Look up the module's TLS block as for __tls_get_addr, |
| 967 | but never touch anything. Return null if it's not allocated yet. */ |
| 968 | void * |
| 969 | _dl_tls_get_addr_soft (struct link_map *l) |
| 970 | { |
| 971 | if (__glibc_unlikely (l->l_tls_modid == 0)) |
| 972 | /* This module has no TLS segment. */ |
| 973 | return NULL; |
| 974 | |
| 975 | dtv_t *dtv = THREAD_DTV (); |
| 976 | /* This may be called without holding the GL(dl_load_tls_lock). Reading |
| 977 | arbitrary gen value is fine since this is best effort code. */ |
| 978 | size_t gen = atomic_load_relaxed (&GL(dl_tls_generation)); |
| 979 | if (__glibc_unlikely (dtv[0].counter != gen)) |
| 980 | { |
| 981 | /* This thread's DTV is not completely current, |
| 982 | but it might already cover this module. */ |
| 983 | |
| 984 | if (l->l_tls_modid >= dtv[-1].counter) |
| 985 | /* Nope. */ |
| 986 | return NULL; |
| 987 | |
| 988 | size_t idx = l->l_tls_modid; |
| 989 | struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list); |
| 990 | while (idx >= listp->len) |
| 991 | { |
| 992 | idx -= listp->len; |
| 993 | listp = listp->next; |
| 994 | } |
| 995 | |
| 996 | /* We've reached the slot for this module. |
| 997 | If its generation counter is higher than the DTV's, |
| 998 | this thread does not know about this module yet. */ |
| 999 | if (dtv[0].counter < listp->slotinfo[idx].gen) |
| 1000 | return NULL; |
| 1001 | } |
| 1002 | |
| 1003 | void *data = dtv[l->l_tls_modid].pointer.val; |
| 1004 | if (__glibc_unlikely (data == TLS_DTV_UNALLOCATED)) |
| 1005 | /* The DTV is current, but this thread has not yet needed |
| 1006 | to allocate this module's segment. */ |
| 1007 | data = NULL; |
| 1008 | |
| 1009 | return data; |
| 1010 | } |
| 1011 | |
| 1012 | |
| 1013 | void |
| 1014 | _dl_add_to_slotinfo (struct link_map *l, bool do_add) |
| 1015 | { |
| 1016 | /* Now that we know the object is loaded successfully add |
| 1017 | modules containing TLS data to the dtv info table. We |
| 1018 | might have to increase its size. */ |
| 1019 | struct dtv_slotinfo_list *listp; |
| 1020 | struct dtv_slotinfo_list *prevp; |
| 1021 | size_t idx = l->l_tls_modid; |
| 1022 | |
| 1023 | /* Find the place in the dtv slotinfo list. */ |
| 1024 | listp = GL(dl_tls_dtv_slotinfo_list); |
| 1025 | prevp = NULL; /* Needed to shut up gcc. */ |
| 1026 | do |
| 1027 | { |
| 1028 | /* Does it fit in the array of this list element? */ |
| 1029 | if (idx < listp->len) |
| 1030 | break; |
| 1031 | idx -= listp->len; |
| 1032 | prevp = listp; |
| 1033 | listp = listp->next; |
| 1034 | } |
| 1035 | while (listp != NULL); |
| 1036 | |
| 1037 | if (listp == NULL) |
| 1038 | { |
| 1039 | /* When we come here it means we have to add a new element |
| 1040 | to the slotinfo list. And the new module must be in |
| 1041 | the first slot. */ |
| 1042 | assert (idx == 0); |
| 1043 | |
| 1044 | listp = (struct dtv_slotinfo_list *) |
| 1045 | malloc (sizeof (struct dtv_slotinfo_list) |
| 1046 | + TLS_SLOTINFO_SURPLUS * sizeof (struct dtv_slotinfo)); |
| 1047 | if (listp == NULL) |
| 1048 | { |
| 1049 | /* We ran out of memory while resizing the dtv slotinfo list. */ |
| 1050 | _dl_signal_error (ENOMEM, "dlopen" , NULL, N_("\ |
| 1051 | cannot create TLS data structures" )); |
| 1052 | } |
| 1053 | |
| 1054 | listp->len = TLS_SLOTINFO_SURPLUS; |
| 1055 | listp->next = NULL; |
| 1056 | memset (listp->slotinfo, '\0', |
| 1057 | TLS_SLOTINFO_SURPLUS * sizeof (struct dtv_slotinfo)); |
| 1058 | /* Synchronize with _dl_update_slotinfo. */ |
| 1059 | atomic_store_release (&prevp->next, listp); |
| 1060 | } |
| 1061 | |
| 1062 | /* Add the information into the slotinfo data structure. */ |
| 1063 | if (do_add) |
| 1064 | { |
| 1065 | /* Can be read concurrently. See _dl_update_slotinfo. */ |
| 1066 | atomic_store_relaxed (&listp->slotinfo[idx].map, l); |
| 1067 | atomic_store_relaxed (&listp->slotinfo[idx].gen, |
| 1068 | GL(dl_tls_generation) + 1); |
| 1069 | } |
| 1070 | } |
| 1071 | |
| 1072 | #if PTHREAD_IN_LIBC |
| 1073 | static inline void __attribute__((always_inline)) |
| 1074 | init_one_static_tls (struct pthread *curp, struct link_map *map) |
| 1075 | { |
| 1076 | # if TLS_TCB_AT_TP |
| 1077 | void *dest = (char *) curp - map->l_tls_offset; |
| 1078 | # elif TLS_DTV_AT_TP |
| 1079 | void *dest = (char *) curp + map->l_tls_offset + TLS_PRE_TCB_SIZE; |
| 1080 | # else |
| 1081 | # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined" |
| 1082 | # endif |
| 1083 | |
| 1084 | /* Initialize the memory. */ |
| 1085 | memset (__mempcpy (dest, map->l_tls_initimage, map->l_tls_initimage_size), |
| 1086 | '\0', map->l_tls_blocksize - map->l_tls_initimage_size); |
| 1087 | } |
| 1088 | |
| 1089 | void |
| 1090 | _dl_init_static_tls (struct link_map *map) |
| 1091 | { |
| 1092 | lll_lock (GL (dl_stack_cache_lock), LLL_PRIVATE); |
| 1093 | |
| 1094 | /* Iterate over the list with system-allocated threads first. */ |
| 1095 | list_t *runp; |
| 1096 | list_for_each (runp, &GL (dl_stack_used)) |
| 1097 | init_one_static_tls (list_entry (runp, struct pthread, list), map); |
| 1098 | |
| 1099 | /* Now the list with threads using user-allocated stacks. */ |
| 1100 | list_for_each (runp, &GL (dl_stack_user)) |
| 1101 | init_one_static_tls (list_entry (runp, struct pthread, list), map); |
| 1102 | |
| 1103 | lll_unlock (GL (dl_stack_cache_lock), LLL_PRIVATE); |
| 1104 | } |
| 1105 | #endif /* PTHREAD_IN_LIBC */ |
| 1106 | |