1 | /* Thread-local storage handling in the ELF dynamic linker. Generic version. |
2 | Copyright (C) 2002-2023 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #include <assert.h> |
20 | #include <errno.h> |
21 | #include <libintl.h> |
22 | #include <signal.h> |
23 | #include <stdlib.h> |
24 | #include <unistd.h> |
25 | #include <sys/param.h> |
26 | #include <atomic.h> |
27 | |
28 | #include <tls.h> |
29 | #include <dl-tls.h> |
30 | #include <ldsodefs.h> |
31 | |
32 | #if PTHREAD_IN_LIBC |
33 | # include <list.h> |
34 | #endif |
35 | |
36 | #define TUNABLE_NAMESPACE rtld |
37 | #include <dl-tunables.h> |
38 | |
39 | /* Surplus static TLS, GLRO(dl_tls_static_surplus), is used for |
40 | |
41 | - IE TLS in libc.so for all dlmopen namespaces except in the initial |
42 | one where libc.so is not loaded dynamically but at startup time, |
43 | - IE TLS in other libraries which may be dynamically loaded even in the |
44 | initial namespace, |
45 | - and optionally for optimizing dynamic TLS access. |
46 | |
47 | The maximum number of namespaces is DL_NNS, but to support that many |
48 | namespaces correctly the static TLS allocation should be significantly |
49 | increased, which may cause problems with small thread stacks due to the |
50 | way static TLS is accounted (bug 11787). |
51 | |
52 | So there is a rtld.nns tunable limit on the number of supported namespaces |
53 | that affects the size of the static TLS and by default it's small enough |
54 | not to cause problems with existing applications. The limit is not |
55 | enforced or checked: it is the user's responsibility to increase rtld.nns |
56 | if more dlmopen namespaces are used. |
57 | |
58 | Audit modules use their own namespaces, they are not included in rtld.nns, |
59 | but come on top when computing the number of namespaces. */ |
60 | |
61 | /* Size of initial-exec TLS in libc.so. This should be the maximum of |
62 | observed PT_GNU_TLS sizes across all architectures. Some |
63 | architectures have lower values due to differences in type sizes |
64 | and link editor capabilities. */ |
65 | #define LIBC_IE_TLS 144 |
66 | |
67 | /* Size of initial-exec TLS in libraries other than libc.so. |
68 | This should be large enough to cover runtime libraries of the |
69 | compiler such as libgomp and libraries in libc other than libc.so. */ |
70 | #define OTHER_IE_TLS 144 |
71 | |
72 | /* Default number of namespaces. */ |
73 | #define DEFAULT_NNS 4 |
74 | |
75 | /* Default for dl_tls_static_optional. */ |
76 | #define OPTIONAL_TLS 512 |
77 | |
78 | /* Compute the static TLS surplus based on the namespace count and the |
79 | TLS space that can be used for optimizations. */ |
80 | static inline int |
81 | tls_static_surplus (int nns, int opt_tls) |
82 | { |
83 | return (nns - 1) * LIBC_IE_TLS + nns * OTHER_IE_TLS + opt_tls; |
84 | } |
85 | |
86 | /* This value is chosen so that with default values for the tunables, |
87 | the computation of dl_tls_static_surplus in |
88 | _dl_tls_static_surplus_init yields the historic value 1664, for |
89 | backwards compatibility. */ |
90 | #define LEGACY_TLS (1664 - tls_static_surplus (DEFAULT_NNS, OPTIONAL_TLS)) |
91 | |
92 | /* Calculate the size of the static TLS surplus, when the given |
93 | number of audit modules are loaded. Must be called after the |
94 | number of audit modules is known and before static TLS allocation. */ |
95 | void |
96 | _dl_tls_static_surplus_init (size_t naudit) |
97 | { |
98 | size_t nns, opt_tls; |
99 | |
100 | #if HAVE_TUNABLES |
101 | nns = TUNABLE_GET (nns, size_t, NULL); |
102 | opt_tls = TUNABLE_GET (optional_static_tls, size_t, NULL); |
103 | #else |
104 | /* Default values of the tunables. */ |
105 | nns = DEFAULT_NNS; |
106 | opt_tls = OPTIONAL_TLS; |
107 | #endif |
108 | if (nns > DL_NNS) |
109 | nns = DL_NNS; |
110 | if (DL_NNS - nns < naudit) |
111 | _dl_fatal_printf ("Failed loading %lu audit modules, %lu are supported.\n" , |
112 | (unsigned long) naudit, (unsigned long) (DL_NNS - nns)); |
113 | nns += naudit; |
114 | |
115 | GL(dl_tls_static_optional) = opt_tls; |
116 | assert (LEGACY_TLS >= 0); |
117 | GLRO(dl_tls_static_surplus) = tls_static_surplus (nns, opt_tls) + LEGACY_TLS; |
118 | } |
119 | |
120 | /* Out-of-memory handler. */ |
121 | static void |
122 | __attribute__ ((__noreturn__)) |
123 | oom (void) |
124 | { |
125 | _dl_fatal_printf ("cannot allocate memory for thread-local data: ABORT\n" ); |
126 | } |
127 | |
128 | |
129 | void |
130 | _dl_assign_tls_modid (struct link_map *l) |
131 | { |
132 | size_t result; |
133 | |
134 | if (__builtin_expect (GL(dl_tls_dtv_gaps), false)) |
135 | { |
136 | size_t disp = 0; |
137 | struct dtv_slotinfo_list *runp = GL(dl_tls_dtv_slotinfo_list); |
138 | |
139 | /* Note that this branch will never be executed during program |
140 | start since there are no gaps at that time. Therefore it |
141 | does not matter that the dl_tls_dtv_slotinfo is not allocated |
142 | yet when the function is called for the first times. |
143 | |
144 | NB: the offset +1 is due to the fact that DTV[0] is used |
145 | for something else. */ |
146 | result = GL(dl_tls_static_nelem) + 1; |
147 | if (result <= GL(dl_tls_max_dtv_idx)) |
148 | do |
149 | { |
150 | while (result - disp < runp->len) |
151 | { |
152 | if (runp->slotinfo[result - disp].map == NULL) |
153 | break; |
154 | |
155 | ++result; |
156 | assert (result <= GL(dl_tls_max_dtv_idx) + 1); |
157 | } |
158 | |
159 | if (result - disp < runp->len) |
160 | { |
161 | /* Mark the entry as used, so any dependency see it. */ |
162 | atomic_store_relaxed (&runp->slotinfo[result - disp].map, l); |
163 | break; |
164 | } |
165 | |
166 | disp += runp->len; |
167 | } |
168 | while ((runp = runp->next) != NULL); |
169 | |
170 | if (result > GL(dl_tls_max_dtv_idx)) |
171 | { |
172 | /* The new index must indeed be exactly one higher than the |
173 | previous high. */ |
174 | assert (result == GL(dl_tls_max_dtv_idx) + 1); |
175 | /* There is no gap anymore. */ |
176 | GL(dl_tls_dtv_gaps) = false; |
177 | |
178 | goto nogaps; |
179 | } |
180 | } |
181 | else |
182 | { |
183 | /* No gaps, allocate a new entry. */ |
184 | nogaps: |
185 | |
186 | result = GL(dl_tls_max_dtv_idx) + 1; |
187 | /* Can be read concurrently. */ |
188 | atomic_store_relaxed (&GL(dl_tls_max_dtv_idx), result); |
189 | } |
190 | |
191 | l->l_tls_modid = result; |
192 | } |
193 | |
194 | |
195 | size_t |
196 | _dl_count_modids (void) |
197 | { |
198 | /* The count is the max unless dlclose or failed dlopen created gaps. */ |
199 | if (__glibc_likely (!GL(dl_tls_dtv_gaps))) |
200 | return GL(dl_tls_max_dtv_idx); |
201 | |
202 | /* We have gaps and are forced to count the non-NULL entries. */ |
203 | size_t n = 0; |
204 | struct dtv_slotinfo_list *runp = GL(dl_tls_dtv_slotinfo_list); |
205 | while (runp != NULL) |
206 | { |
207 | for (size_t i = 0; i < runp->len; ++i) |
208 | if (runp->slotinfo[i].map != NULL) |
209 | ++n; |
210 | |
211 | runp = runp->next; |
212 | } |
213 | |
214 | return n; |
215 | } |
216 | |
217 | |
218 | #ifdef SHARED |
219 | void |
220 | _dl_determine_tlsoffset (void) |
221 | { |
222 | size_t max_align = TCB_ALIGNMENT; |
223 | size_t freetop = 0; |
224 | size_t freebottom = 0; |
225 | |
226 | /* The first element of the dtv slot info list is allocated. */ |
227 | assert (GL(dl_tls_dtv_slotinfo_list) != NULL); |
228 | /* There is at this point only one element in the |
229 | dl_tls_dtv_slotinfo_list list. */ |
230 | assert (GL(dl_tls_dtv_slotinfo_list)->next == NULL); |
231 | |
232 | struct dtv_slotinfo *slotinfo = GL(dl_tls_dtv_slotinfo_list)->slotinfo; |
233 | |
234 | /* Determining the offset of the various parts of the static TLS |
235 | block has several dependencies. In addition we have to work |
236 | around bugs in some toolchains. |
237 | |
238 | Each TLS block from the objects available at link time has a size |
239 | and an alignment requirement. The GNU ld computes the alignment |
240 | requirements for the data at the positions *in the file*, though. |
241 | I.e, it is not simply possible to allocate a block with the size |
242 | of the TLS program header entry. The data is layed out assuming |
243 | that the first byte of the TLS block fulfills |
244 | |
245 | p_vaddr mod p_align == &TLS_BLOCK mod p_align |
246 | |
247 | This means we have to add artificial padding at the beginning of |
248 | the TLS block. These bytes are never used for the TLS data in |
249 | this module but the first byte allocated must be aligned |
250 | according to mod p_align == 0 so that the first byte of the TLS |
251 | block is aligned according to p_vaddr mod p_align. This is ugly |
252 | and the linker can help by computing the offsets in the TLS block |
253 | assuming the first byte of the TLS block is aligned according to |
254 | p_align. |
255 | |
256 | The extra space which might be allocated before the first byte of |
257 | the TLS block need not go unused. The code below tries to use |
258 | that memory for the next TLS block. This can work if the total |
259 | memory requirement for the next TLS block is smaller than the |
260 | gap. */ |
261 | |
262 | #if TLS_TCB_AT_TP |
263 | /* We simply start with zero. */ |
264 | size_t offset = 0; |
265 | |
266 | for (size_t cnt = 0; slotinfo[cnt].map != NULL; ++cnt) |
267 | { |
268 | assert (cnt < GL(dl_tls_dtv_slotinfo_list)->len); |
269 | |
270 | size_t firstbyte = (-slotinfo[cnt].map->l_tls_firstbyte_offset |
271 | & (slotinfo[cnt].map->l_tls_align - 1)); |
272 | size_t off; |
273 | max_align = MAX (max_align, slotinfo[cnt].map->l_tls_align); |
274 | |
275 | if (freebottom - freetop >= slotinfo[cnt].map->l_tls_blocksize) |
276 | { |
277 | off = roundup (freetop + slotinfo[cnt].map->l_tls_blocksize |
278 | - firstbyte, slotinfo[cnt].map->l_tls_align) |
279 | + firstbyte; |
280 | if (off <= freebottom) |
281 | { |
282 | freetop = off; |
283 | |
284 | /* XXX For some architectures we perhaps should store the |
285 | negative offset. */ |
286 | slotinfo[cnt].map->l_tls_offset = off; |
287 | continue; |
288 | } |
289 | } |
290 | |
291 | off = roundup (offset + slotinfo[cnt].map->l_tls_blocksize - firstbyte, |
292 | slotinfo[cnt].map->l_tls_align) + firstbyte; |
293 | if (off > offset + slotinfo[cnt].map->l_tls_blocksize |
294 | + (freebottom - freetop)) |
295 | { |
296 | freetop = offset; |
297 | freebottom = off - slotinfo[cnt].map->l_tls_blocksize; |
298 | } |
299 | offset = off; |
300 | |
301 | /* XXX For some architectures we perhaps should store the |
302 | negative offset. */ |
303 | slotinfo[cnt].map->l_tls_offset = off; |
304 | } |
305 | |
306 | GL(dl_tls_static_used) = offset; |
307 | GLRO (dl_tls_static_size) = (roundup (offset + GLRO(dl_tls_static_surplus), |
308 | max_align) |
309 | + TLS_TCB_SIZE); |
310 | #elif TLS_DTV_AT_TP |
311 | /* The TLS blocks start right after the TCB. */ |
312 | size_t offset = TLS_TCB_SIZE; |
313 | |
314 | for (size_t cnt = 0; slotinfo[cnt].map != NULL; ++cnt) |
315 | { |
316 | assert (cnt < GL(dl_tls_dtv_slotinfo_list)->len); |
317 | |
318 | size_t firstbyte = (-slotinfo[cnt].map->l_tls_firstbyte_offset |
319 | & (slotinfo[cnt].map->l_tls_align - 1)); |
320 | size_t off; |
321 | max_align = MAX (max_align, slotinfo[cnt].map->l_tls_align); |
322 | |
323 | if (slotinfo[cnt].map->l_tls_blocksize <= freetop - freebottom) |
324 | { |
325 | off = roundup (freebottom, slotinfo[cnt].map->l_tls_align); |
326 | if (off - freebottom < firstbyte) |
327 | off += slotinfo[cnt].map->l_tls_align; |
328 | if (off + slotinfo[cnt].map->l_tls_blocksize - firstbyte <= freetop) |
329 | { |
330 | slotinfo[cnt].map->l_tls_offset = off - firstbyte; |
331 | freebottom = (off + slotinfo[cnt].map->l_tls_blocksize |
332 | - firstbyte); |
333 | continue; |
334 | } |
335 | } |
336 | |
337 | off = roundup (offset, slotinfo[cnt].map->l_tls_align); |
338 | if (off - offset < firstbyte) |
339 | off += slotinfo[cnt].map->l_tls_align; |
340 | |
341 | slotinfo[cnt].map->l_tls_offset = off - firstbyte; |
342 | if (off - firstbyte - offset > freetop - freebottom) |
343 | { |
344 | freebottom = offset; |
345 | freetop = off - firstbyte; |
346 | } |
347 | |
348 | offset = off + slotinfo[cnt].map->l_tls_blocksize - firstbyte; |
349 | } |
350 | |
351 | GL(dl_tls_static_used) = offset; |
352 | GLRO (dl_tls_static_size) = roundup (offset + GLRO(dl_tls_static_surplus), |
353 | TCB_ALIGNMENT); |
354 | #else |
355 | # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined" |
356 | #endif |
357 | |
358 | /* The alignment requirement for the static TLS block. */ |
359 | GLRO (dl_tls_static_align) = max_align; |
360 | } |
361 | #endif /* SHARED */ |
362 | |
363 | static void * |
364 | allocate_dtv (void *result) |
365 | { |
366 | dtv_t *dtv; |
367 | size_t dtv_length; |
368 | |
369 | /* Relaxed MO, because the dtv size is later rechecked, not relied on. */ |
370 | size_t max_modid = atomic_load_relaxed (&GL(dl_tls_max_dtv_idx)); |
371 | /* We allocate a few more elements in the dtv than are needed for the |
372 | initial set of modules. This should avoid in most cases expansions |
373 | of the dtv. */ |
374 | dtv_length = max_modid + DTV_SURPLUS; |
375 | dtv = calloc (dtv_length + 2, sizeof (dtv_t)); |
376 | if (dtv != NULL) |
377 | { |
378 | /* This is the initial length of the dtv. */ |
379 | dtv[0].counter = dtv_length; |
380 | |
381 | /* The rest of the dtv (including the generation counter) is |
382 | Initialize with zero to indicate nothing there. */ |
383 | |
384 | /* Add the dtv to the thread data structures. */ |
385 | INSTALL_DTV (result, dtv); |
386 | } |
387 | else |
388 | result = NULL; |
389 | |
390 | return result; |
391 | } |
392 | |
393 | /* Get size and alignment requirements of the static TLS block. This |
394 | function is no longer used by glibc itself, but the GCC sanitizers |
395 | use it despite the GLIBC_PRIVATE status. */ |
396 | void |
397 | _dl_get_tls_static_info (size_t *sizep, size_t *alignp) |
398 | { |
399 | *sizep = GLRO (dl_tls_static_size); |
400 | *alignp = GLRO (dl_tls_static_align); |
401 | } |
402 | |
403 | /* Derive the location of the pointer to the start of the original |
404 | allocation (before alignment) from the pointer to the TCB. */ |
405 | static inline void ** |
406 | tcb_to_pointer_to_free_location (void *tcb) |
407 | { |
408 | #if TLS_TCB_AT_TP |
409 | /* The TCB follows the TLS blocks, and the pointer to the front |
410 | follows the TCB. */ |
411 | void **original_pointer_location = tcb + TLS_TCB_SIZE; |
412 | #elif TLS_DTV_AT_TP |
413 | /* The TCB comes first, preceded by the pre-TCB, and the pointer is |
414 | before that. */ |
415 | void **original_pointer_location = tcb - TLS_PRE_TCB_SIZE - sizeof (void *); |
416 | #endif |
417 | return original_pointer_location; |
418 | } |
419 | |
420 | void * |
421 | _dl_allocate_tls_storage (void) |
422 | { |
423 | void *result; |
424 | size_t size = GLRO (dl_tls_static_size); |
425 | |
426 | #if TLS_DTV_AT_TP |
427 | /* Memory layout is: |
428 | [ TLS_PRE_TCB_SIZE ] [ TLS_TCB_SIZE ] [ TLS blocks ] |
429 | ^ This should be returned. */ |
430 | size += TLS_PRE_TCB_SIZE; |
431 | #endif |
432 | |
433 | /* Perform the allocation. Reserve space for the required alignment |
434 | and the pointer to the original allocation. */ |
435 | size_t alignment = GLRO (dl_tls_static_align); |
436 | void *allocated = malloc (size + alignment + sizeof (void *)); |
437 | if (__glibc_unlikely (allocated == NULL)) |
438 | return NULL; |
439 | |
440 | /* Perform alignment and allocate the DTV. */ |
441 | #if TLS_TCB_AT_TP |
442 | /* The TCB follows the TLS blocks, which determine the alignment. |
443 | (TCB alignment requirements have been taken into account when |
444 | calculating GLRO (dl_tls_static_align).) */ |
445 | void *aligned = (void *) roundup ((uintptr_t) allocated, alignment); |
446 | result = aligned + size - TLS_TCB_SIZE; |
447 | |
448 | /* Clear the TCB data structure. We can't ask the caller (i.e. |
449 | libpthread) to do it, because we will initialize the DTV et al. */ |
450 | memset (result, '\0', TLS_TCB_SIZE); |
451 | #elif TLS_DTV_AT_TP |
452 | /* Pre-TCB and TCB come before the TLS blocks. The layout computed |
453 | in _dl_determine_tlsoffset assumes that the TCB is aligned to the |
454 | TLS block alignment, and not just the TLS blocks after it. This |
455 | can leave an unused alignment gap between the TCB and the TLS |
456 | blocks. */ |
457 | result = (void *) roundup |
458 | (sizeof (void *) + TLS_PRE_TCB_SIZE + (uintptr_t) allocated, |
459 | alignment); |
460 | |
461 | /* Clear the TCB data structure and TLS_PRE_TCB_SIZE bytes before |
462 | it. We can't ask the caller (i.e. libpthread) to do it, because |
463 | we will initialize the DTV et al. */ |
464 | memset (result - TLS_PRE_TCB_SIZE, '\0', TLS_PRE_TCB_SIZE + TLS_TCB_SIZE); |
465 | #endif |
466 | |
467 | /* Record the value of the original pointer for later |
468 | deallocation. */ |
469 | *tcb_to_pointer_to_free_location (result) = allocated; |
470 | |
471 | result = allocate_dtv (result); |
472 | if (result == NULL) |
473 | free (allocated); |
474 | return result; |
475 | } |
476 | |
477 | |
478 | #ifndef SHARED |
479 | extern dtv_t _dl_static_dtv[]; |
480 | # define _dl_initial_dtv (&_dl_static_dtv[1]) |
481 | #endif |
482 | |
483 | static dtv_t * |
484 | _dl_resize_dtv (dtv_t *dtv, size_t max_modid) |
485 | { |
486 | /* Resize the dtv. */ |
487 | dtv_t *newp; |
488 | size_t newsize = max_modid + DTV_SURPLUS; |
489 | size_t oldsize = dtv[-1].counter; |
490 | |
491 | if (dtv == GL(dl_initial_dtv)) |
492 | { |
493 | /* This is the initial dtv that was either statically allocated in |
494 | __libc_setup_tls or allocated during rtld startup using the |
495 | dl-minimal.c malloc instead of the real malloc. We can't free |
496 | it, we have to abandon the old storage. */ |
497 | |
498 | newp = malloc ((2 + newsize) * sizeof (dtv_t)); |
499 | if (newp == NULL) |
500 | oom (); |
501 | memcpy (newp, &dtv[-1], (2 + oldsize) * sizeof (dtv_t)); |
502 | } |
503 | else |
504 | { |
505 | newp = realloc (&dtv[-1], |
506 | (2 + newsize) * sizeof (dtv_t)); |
507 | if (newp == NULL) |
508 | oom (); |
509 | } |
510 | |
511 | newp[0].counter = newsize; |
512 | |
513 | /* Clear the newly allocated part. */ |
514 | memset (newp + 2 + oldsize, '\0', |
515 | (newsize - oldsize) * sizeof (dtv_t)); |
516 | |
517 | /* Return the generation counter. */ |
518 | return &newp[1]; |
519 | } |
520 | |
521 | |
522 | /* Allocate initial TLS. RESULT should be a non-NULL pointer to storage |
523 | for the TLS space. The DTV may be resized, and so this function may |
524 | call malloc to allocate that space. The loader's GL(dl_load_tls_lock) |
525 | is taken when manipulating global TLS-related data in the loader. */ |
526 | void * |
527 | _dl_allocate_tls_init (void *result, bool init_tls) |
528 | { |
529 | if (result == NULL) |
530 | /* The memory allocation failed. */ |
531 | return NULL; |
532 | |
533 | dtv_t *dtv = GET_DTV (result); |
534 | struct dtv_slotinfo_list *listp; |
535 | size_t total = 0; |
536 | size_t maxgen = 0; |
537 | |
538 | /* Protects global dynamic TLS related state. */ |
539 | __rtld_lock_lock_recursive (GL(dl_load_tls_lock)); |
540 | |
541 | /* Check if the current dtv is big enough. */ |
542 | if (dtv[-1].counter < GL(dl_tls_max_dtv_idx)) |
543 | { |
544 | /* Resize the dtv. */ |
545 | dtv = _dl_resize_dtv (dtv, GL(dl_tls_max_dtv_idx)); |
546 | |
547 | /* Install this new dtv in the thread data structures. */ |
548 | INSTALL_DTV (result, &dtv[-1]); |
549 | } |
550 | |
551 | /* We have to prepare the dtv for all currently loaded modules using |
552 | TLS. For those which are dynamically loaded we add the values |
553 | indicating deferred allocation. */ |
554 | listp = GL(dl_tls_dtv_slotinfo_list); |
555 | while (1) |
556 | { |
557 | size_t cnt; |
558 | |
559 | for (cnt = total == 0 ? 1 : 0; cnt < listp->len; ++cnt) |
560 | { |
561 | struct link_map *map; |
562 | void *dest; |
563 | |
564 | /* Check for the total number of used slots. */ |
565 | if (total + cnt > GL(dl_tls_max_dtv_idx)) |
566 | break; |
567 | |
568 | map = listp->slotinfo[cnt].map; |
569 | if (map == NULL) |
570 | /* Unused entry. */ |
571 | continue; |
572 | |
573 | /* Keep track of the maximum generation number. This might |
574 | not be the generation counter. */ |
575 | assert (listp->slotinfo[cnt].gen <= GL(dl_tls_generation)); |
576 | maxgen = MAX (maxgen, listp->slotinfo[cnt].gen); |
577 | |
578 | dtv[map->l_tls_modid].pointer.val = TLS_DTV_UNALLOCATED; |
579 | dtv[map->l_tls_modid].pointer.to_free = NULL; |
580 | |
581 | if (map->l_tls_offset == NO_TLS_OFFSET |
582 | || map->l_tls_offset == FORCED_DYNAMIC_TLS_OFFSET) |
583 | continue; |
584 | |
585 | assert (map->l_tls_modid == total + cnt); |
586 | assert (map->l_tls_blocksize >= map->l_tls_initimage_size); |
587 | #if TLS_TCB_AT_TP |
588 | assert ((size_t) map->l_tls_offset >= map->l_tls_blocksize); |
589 | dest = (char *) result - map->l_tls_offset; |
590 | #elif TLS_DTV_AT_TP |
591 | dest = (char *) result + map->l_tls_offset; |
592 | #else |
593 | # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined" |
594 | #endif |
595 | |
596 | /* Set up the DTV entry. The simplified __tls_get_addr that |
597 | some platforms use in static programs requires it. */ |
598 | dtv[map->l_tls_modid].pointer.val = dest; |
599 | |
600 | /* Copy the initialization image and clear the BSS part. For |
601 | audit modules or dependencies with initial-exec TLS, we can not |
602 | set the initial TLS image on default loader initialization |
603 | because it would already be set by the audit setup. However, |
604 | subsequent thread creation would need to follow the default |
605 | behaviour. */ |
606 | if (map->l_ns != LM_ID_BASE && !init_tls) |
607 | continue; |
608 | memset (__mempcpy (dest, map->l_tls_initimage, |
609 | map->l_tls_initimage_size), '\0', |
610 | map->l_tls_blocksize - map->l_tls_initimage_size); |
611 | } |
612 | |
613 | total += cnt; |
614 | if (total > GL(dl_tls_max_dtv_idx)) |
615 | break; |
616 | |
617 | listp = listp->next; |
618 | assert (listp != NULL); |
619 | } |
620 | __rtld_lock_unlock_recursive (GL(dl_load_tls_lock)); |
621 | |
622 | /* The DTV version is up-to-date now. */ |
623 | dtv[0].counter = maxgen; |
624 | |
625 | return result; |
626 | } |
627 | rtld_hidden_def (_dl_allocate_tls_init) |
628 | |
629 | void * |
630 | _dl_allocate_tls (void *mem) |
631 | { |
632 | return _dl_allocate_tls_init (mem == NULL |
633 | ? _dl_allocate_tls_storage () |
634 | : allocate_dtv (mem), true); |
635 | } |
636 | rtld_hidden_def (_dl_allocate_tls) |
637 | |
638 | |
639 | void |
640 | _dl_deallocate_tls (void *tcb, bool dealloc_tcb) |
641 | { |
642 | dtv_t *dtv = GET_DTV (tcb); |
643 | |
644 | /* We need to free the memory allocated for non-static TLS. */ |
645 | for (size_t cnt = 0; cnt < dtv[-1].counter; ++cnt) |
646 | free (dtv[1 + cnt].pointer.to_free); |
647 | |
648 | /* The array starts with dtv[-1]. */ |
649 | if (dtv != GL(dl_initial_dtv)) |
650 | free (dtv - 1); |
651 | |
652 | if (dealloc_tcb) |
653 | free (*tcb_to_pointer_to_free_location (tcb)); |
654 | } |
655 | rtld_hidden_def (_dl_deallocate_tls) |
656 | |
657 | |
658 | #ifdef SHARED |
659 | /* The __tls_get_addr function has two basic forms which differ in the |
660 | arguments. The IA-64 form takes two parameters, the module ID and |
661 | offset. The form used, among others, on IA-32 takes a reference to |
662 | a special structure which contain the same information. The second |
663 | form seems to be more often used (in the moment) so we default to |
664 | it. Users of the IA-64 form have to provide adequate definitions |
665 | of the following macros. */ |
666 | # ifndef GET_ADDR_ARGS |
667 | # define GET_ADDR_ARGS tls_index *ti |
668 | # define GET_ADDR_PARAM ti |
669 | # endif |
670 | # ifndef GET_ADDR_MODULE |
671 | # define GET_ADDR_MODULE ti->ti_module |
672 | # endif |
673 | # ifndef GET_ADDR_OFFSET |
674 | # define GET_ADDR_OFFSET ti->ti_offset |
675 | # endif |
676 | |
677 | /* Allocate one DTV entry. */ |
678 | static struct dtv_pointer |
679 | allocate_dtv_entry (size_t alignment, size_t size) |
680 | { |
681 | if (powerof2 (alignment) && alignment <= _Alignof (max_align_t)) |
682 | { |
683 | /* The alignment is supported by malloc. */ |
684 | void *ptr = malloc (size); |
685 | return (struct dtv_pointer) { ptr, ptr }; |
686 | } |
687 | |
688 | /* Emulate memalign to by manually aligning a pointer returned by |
689 | malloc. First compute the size with an overflow check. */ |
690 | size_t alloc_size = size + alignment; |
691 | if (alloc_size < size) |
692 | return (struct dtv_pointer) {}; |
693 | |
694 | /* Perform the allocation. This is the pointer we need to free |
695 | later. */ |
696 | void *start = malloc (alloc_size); |
697 | if (start == NULL) |
698 | return (struct dtv_pointer) {}; |
699 | |
700 | /* Find the aligned position within the larger allocation. */ |
701 | void *aligned = (void *) roundup ((uintptr_t) start, alignment); |
702 | |
703 | return (struct dtv_pointer) { .val = aligned, .to_free = start }; |
704 | } |
705 | |
706 | static struct dtv_pointer |
707 | allocate_and_init (struct link_map *map) |
708 | { |
709 | struct dtv_pointer result = allocate_dtv_entry |
710 | (map->l_tls_align, map->l_tls_blocksize); |
711 | if (result.val == NULL) |
712 | oom (); |
713 | |
714 | /* Initialize the memory. */ |
715 | memset (__mempcpy (result.val, map->l_tls_initimage, |
716 | map->l_tls_initimage_size), |
717 | '\0', map->l_tls_blocksize - map->l_tls_initimage_size); |
718 | |
719 | return result; |
720 | } |
721 | |
722 | |
723 | struct link_map * |
724 | _dl_update_slotinfo (unsigned long int req_modid) |
725 | { |
726 | struct link_map *the_map = NULL; |
727 | dtv_t *dtv = THREAD_DTV (); |
728 | |
729 | /* The global dl_tls_dtv_slotinfo array contains for each module |
730 | index the generation counter current when the entry was created. |
731 | This array never shrinks so that all module indices which were |
732 | valid at some time can be used to access it. Before the first |
733 | use of a new module index in this function the array was extended |
734 | appropriately. Access also does not have to be guarded against |
735 | modifications of the array. It is assumed that pointer-size |
736 | values can be read atomically even in SMP environments. It is |
737 | possible that other threads at the same time dynamically load |
738 | code and therefore add to the slotinfo list. This is a problem |
739 | since we must not pick up any information about incomplete work. |
740 | The solution to this is to ignore all dtv slots which were |
741 | created after the one we are currently interested. We know that |
742 | dynamic loading for this module is completed and this is the last |
743 | load operation we know finished. */ |
744 | unsigned long int idx = req_modid; |
745 | struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list); |
746 | |
747 | while (idx >= listp->len) |
748 | { |
749 | idx -= listp->len; |
750 | listp = listp->next; |
751 | } |
752 | |
753 | if (dtv[0].counter < listp->slotinfo[idx].gen) |
754 | { |
755 | /* CONCURRENCY NOTES: |
756 | |
757 | Here the dtv needs to be updated to new_gen generation count. |
758 | |
759 | This code may be called during TLS access when GL(dl_load_tls_lock) |
760 | is not held. In that case the user code has to synchronize with |
761 | dlopen and dlclose calls of relevant modules. A module m is |
762 | relevant if the generation of m <= new_gen and dlclose of m is |
763 | synchronized: a memory access here happens after the dlopen and |
764 | before the dlclose of relevant modules. The dtv entries for |
765 | relevant modules need to be updated, other entries can be |
766 | arbitrary. |
767 | |
768 | This e.g. means that the first part of the slotinfo list can be |
769 | accessed race free, but the tail may be concurrently extended. |
770 | Similarly relevant slotinfo entries can be read race free, but |
771 | other entries are racy. However updating a non-relevant dtv |
772 | entry does not affect correctness. For a relevant module m, |
773 | max_modid >= modid of m. */ |
774 | size_t new_gen = listp->slotinfo[idx].gen; |
775 | size_t total = 0; |
776 | size_t max_modid = atomic_load_relaxed (&GL(dl_tls_max_dtv_idx)); |
777 | assert (max_modid >= req_modid); |
778 | |
779 | /* We have to look through the entire dtv slotinfo list. */ |
780 | listp = GL(dl_tls_dtv_slotinfo_list); |
781 | do |
782 | { |
783 | for (size_t cnt = total == 0 ? 1 : 0; cnt < listp->len; ++cnt) |
784 | { |
785 | size_t modid = total + cnt; |
786 | |
787 | /* Later entries are not relevant. */ |
788 | if (modid > max_modid) |
789 | break; |
790 | |
791 | size_t gen = atomic_load_relaxed (&listp->slotinfo[cnt].gen); |
792 | |
793 | if (gen > new_gen) |
794 | /* Not relevant. */ |
795 | continue; |
796 | |
797 | /* If the entry is older than the current dtv layout we |
798 | know we don't have to handle it. */ |
799 | if (gen <= dtv[0].counter) |
800 | continue; |
801 | |
802 | /* If there is no map this means the entry is empty. */ |
803 | struct link_map *map |
804 | = atomic_load_relaxed (&listp->slotinfo[cnt].map); |
805 | /* Check whether the current dtv array is large enough. */ |
806 | if (dtv[-1].counter < modid) |
807 | { |
808 | if (map == NULL) |
809 | continue; |
810 | |
811 | /* Resize the dtv. */ |
812 | dtv = _dl_resize_dtv (dtv, max_modid); |
813 | |
814 | assert (modid <= dtv[-1].counter); |
815 | |
816 | /* Install this new dtv in the thread data |
817 | structures. */ |
818 | INSTALL_NEW_DTV (dtv); |
819 | } |
820 | |
821 | /* If there is currently memory allocate for this |
822 | dtv entry free it. */ |
823 | /* XXX Ideally we will at some point create a memory |
824 | pool. */ |
825 | free (dtv[modid].pointer.to_free); |
826 | dtv[modid].pointer.val = TLS_DTV_UNALLOCATED; |
827 | dtv[modid].pointer.to_free = NULL; |
828 | |
829 | if (modid == req_modid) |
830 | the_map = map; |
831 | } |
832 | |
833 | total += listp->len; |
834 | if (total > max_modid) |
835 | break; |
836 | |
837 | /* Synchronize with _dl_add_to_slotinfo. Ideally this would |
838 | be consume MO since we only need to order the accesses to |
839 | the next node after the read of the address and on most |
840 | hardware (other than alpha) a normal load would do that |
841 | because of the address dependency. */ |
842 | listp = atomic_load_acquire (&listp->next); |
843 | } |
844 | while (listp != NULL); |
845 | |
846 | /* This will be the new maximum generation counter. */ |
847 | dtv[0].counter = new_gen; |
848 | } |
849 | |
850 | return the_map; |
851 | } |
852 | |
853 | |
854 | static void * |
855 | __attribute_noinline__ |
856 | tls_get_addr_tail (GET_ADDR_ARGS, dtv_t *dtv, struct link_map *the_map) |
857 | { |
858 | /* The allocation was deferred. Do it now. */ |
859 | if (the_map == NULL) |
860 | { |
861 | /* Find the link map for this module. */ |
862 | size_t idx = GET_ADDR_MODULE; |
863 | struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list); |
864 | |
865 | while (idx >= listp->len) |
866 | { |
867 | idx -= listp->len; |
868 | listp = listp->next; |
869 | } |
870 | |
871 | the_map = listp->slotinfo[idx].map; |
872 | } |
873 | |
874 | /* Make sure that, if a dlopen running in parallel forces the |
875 | variable into static storage, we'll wait until the address in the |
876 | static TLS block is set up, and use that. If we're undecided |
877 | yet, make sure we make the decision holding the lock as well. */ |
878 | if (__glibc_unlikely (the_map->l_tls_offset |
879 | != FORCED_DYNAMIC_TLS_OFFSET)) |
880 | { |
881 | __rtld_lock_lock_recursive (GL(dl_load_tls_lock)); |
882 | if (__glibc_likely (the_map->l_tls_offset == NO_TLS_OFFSET)) |
883 | { |
884 | the_map->l_tls_offset = FORCED_DYNAMIC_TLS_OFFSET; |
885 | __rtld_lock_unlock_recursive (GL(dl_load_tls_lock)); |
886 | } |
887 | else if (__glibc_likely (the_map->l_tls_offset |
888 | != FORCED_DYNAMIC_TLS_OFFSET)) |
889 | { |
890 | #if TLS_TCB_AT_TP |
891 | void *p = (char *) THREAD_SELF - the_map->l_tls_offset; |
892 | #elif TLS_DTV_AT_TP |
893 | void *p = (char *) THREAD_SELF + the_map->l_tls_offset + TLS_PRE_TCB_SIZE; |
894 | #else |
895 | # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined" |
896 | #endif |
897 | __rtld_lock_unlock_recursive (GL(dl_load_tls_lock)); |
898 | |
899 | dtv[GET_ADDR_MODULE].pointer.to_free = NULL; |
900 | dtv[GET_ADDR_MODULE].pointer.val = p; |
901 | |
902 | return (char *) p + GET_ADDR_OFFSET; |
903 | } |
904 | else |
905 | __rtld_lock_unlock_recursive (GL(dl_load_tls_lock)); |
906 | } |
907 | struct dtv_pointer result = allocate_and_init (the_map); |
908 | dtv[GET_ADDR_MODULE].pointer = result; |
909 | assert (result.to_free != NULL); |
910 | |
911 | return (char *) result.val + GET_ADDR_OFFSET; |
912 | } |
913 | |
914 | |
915 | static struct link_map * |
916 | __attribute_noinline__ |
917 | update_get_addr (GET_ADDR_ARGS) |
918 | { |
919 | struct link_map *the_map = _dl_update_slotinfo (GET_ADDR_MODULE); |
920 | dtv_t *dtv = THREAD_DTV (); |
921 | |
922 | void *p = dtv[GET_ADDR_MODULE].pointer.val; |
923 | |
924 | if (__glibc_unlikely (p == TLS_DTV_UNALLOCATED)) |
925 | return tls_get_addr_tail (GET_ADDR_PARAM, dtv, the_map); |
926 | |
927 | return (void *) p + GET_ADDR_OFFSET; |
928 | } |
929 | |
930 | /* For all machines that have a non-macro version of __tls_get_addr, we |
931 | want to use rtld_hidden_proto/rtld_hidden_def in order to call the |
932 | internal alias for __tls_get_addr from ld.so. This avoids a PLT entry |
933 | in ld.so for __tls_get_addr. */ |
934 | |
935 | #ifndef __tls_get_addr |
936 | extern void * __tls_get_addr (GET_ADDR_ARGS); |
937 | rtld_hidden_proto (__tls_get_addr) |
938 | rtld_hidden_def (__tls_get_addr) |
939 | #endif |
940 | |
941 | /* The generic dynamic and local dynamic model cannot be used in |
942 | statically linked applications. */ |
943 | void * |
944 | __tls_get_addr (GET_ADDR_ARGS) |
945 | { |
946 | dtv_t *dtv = THREAD_DTV (); |
947 | |
948 | /* Update is needed if dtv[0].counter < the generation of the accessed |
949 | module. The global generation counter is used here as it is easier |
950 | to check. Synchronization for the relaxed MO access is guaranteed |
951 | by user code, see CONCURRENCY NOTES in _dl_update_slotinfo. */ |
952 | size_t gen = atomic_load_relaxed (&GL(dl_tls_generation)); |
953 | if (__glibc_unlikely (dtv[0].counter != gen)) |
954 | return update_get_addr (GET_ADDR_PARAM); |
955 | |
956 | void *p = dtv[GET_ADDR_MODULE].pointer.val; |
957 | |
958 | if (__glibc_unlikely (p == TLS_DTV_UNALLOCATED)) |
959 | return tls_get_addr_tail (GET_ADDR_PARAM, dtv, NULL); |
960 | |
961 | return (char *) p + GET_ADDR_OFFSET; |
962 | } |
963 | #endif |
964 | |
965 | |
966 | /* Look up the module's TLS block as for __tls_get_addr, |
967 | but never touch anything. Return null if it's not allocated yet. */ |
968 | void * |
969 | _dl_tls_get_addr_soft (struct link_map *l) |
970 | { |
971 | if (__glibc_unlikely (l->l_tls_modid == 0)) |
972 | /* This module has no TLS segment. */ |
973 | return NULL; |
974 | |
975 | dtv_t *dtv = THREAD_DTV (); |
976 | /* This may be called without holding the GL(dl_load_tls_lock). Reading |
977 | arbitrary gen value is fine since this is best effort code. */ |
978 | size_t gen = atomic_load_relaxed (&GL(dl_tls_generation)); |
979 | if (__glibc_unlikely (dtv[0].counter != gen)) |
980 | { |
981 | /* This thread's DTV is not completely current, |
982 | but it might already cover this module. */ |
983 | |
984 | if (l->l_tls_modid >= dtv[-1].counter) |
985 | /* Nope. */ |
986 | return NULL; |
987 | |
988 | size_t idx = l->l_tls_modid; |
989 | struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list); |
990 | while (idx >= listp->len) |
991 | { |
992 | idx -= listp->len; |
993 | listp = listp->next; |
994 | } |
995 | |
996 | /* We've reached the slot for this module. |
997 | If its generation counter is higher than the DTV's, |
998 | this thread does not know about this module yet. */ |
999 | if (dtv[0].counter < listp->slotinfo[idx].gen) |
1000 | return NULL; |
1001 | } |
1002 | |
1003 | void *data = dtv[l->l_tls_modid].pointer.val; |
1004 | if (__glibc_unlikely (data == TLS_DTV_UNALLOCATED)) |
1005 | /* The DTV is current, but this thread has not yet needed |
1006 | to allocate this module's segment. */ |
1007 | data = NULL; |
1008 | |
1009 | return data; |
1010 | } |
1011 | |
1012 | |
1013 | void |
1014 | _dl_add_to_slotinfo (struct link_map *l, bool do_add) |
1015 | { |
1016 | /* Now that we know the object is loaded successfully add |
1017 | modules containing TLS data to the dtv info table. We |
1018 | might have to increase its size. */ |
1019 | struct dtv_slotinfo_list *listp; |
1020 | struct dtv_slotinfo_list *prevp; |
1021 | size_t idx = l->l_tls_modid; |
1022 | |
1023 | /* Find the place in the dtv slotinfo list. */ |
1024 | listp = GL(dl_tls_dtv_slotinfo_list); |
1025 | prevp = NULL; /* Needed to shut up gcc. */ |
1026 | do |
1027 | { |
1028 | /* Does it fit in the array of this list element? */ |
1029 | if (idx < listp->len) |
1030 | break; |
1031 | idx -= listp->len; |
1032 | prevp = listp; |
1033 | listp = listp->next; |
1034 | } |
1035 | while (listp != NULL); |
1036 | |
1037 | if (listp == NULL) |
1038 | { |
1039 | /* When we come here it means we have to add a new element |
1040 | to the slotinfo list. And the new module must be in |
1041 | the first slot. */ |
1042 | assert (idx == 0); |
1043 | |
1044 | listp = (struct dtv_slotinfo_list *) |
1045 | malloc (sizeof (struct dtv_slotinfo_list) |
1046 | + TLS_SLOTINFO_SURPLUS * sizeof (struct dtv_slotinfo)); |
1047 | if (listp == NULL) |
1048 | { |
1049 | /* We ran out of memory while resizing the dtv slotinfo list. */ |
1050 | _dl_signal_error (ENOMEM, "dlopen" , NULL, N_("\ |
1051 | cannot create TLS data structures" )); |
1052 | } |
1053 | |
1054 | listp->len = TLS_SLOTINFO_SURPLUS; |
1055 | listp->next = NULL; |
1056 | memset (listp->slotinfo, '\0', |
1057 | TLS_SLOTINFO_SURPLUS * sizeof (struct dtv_slotinfo)); |
1058 | /* Synchronize with _dl_update_slotinfo. */ |
1059 | atomic_store_release (&prevp->next, listp); |
1060 | } |
1061 | |
1062 | /* Add the information into the slotinfo data structure. */ |
1063 | if (do_add) |
1064 | { |
1065 | /* Can be read concurrently. See _dl_update_slotinfo. */ |
1066 | atomic_store_relaxed (&listp->slotinfo[idx].map, l); |
1067 | atomic_store_relaxed (&listp->slotinfo[idx].gen, |
1068 | GL(dl_tls_generation) + 1); |
1069 | } |
1070 | } |
1071 | |
1072 | #if PTHREAD_IN_LIBC |
1073 | static inline void __attribute__((always_inline)) |
1074 | init_one_static_tls (struct pthread *curp, struct link_map *map) |
1075 | { |
1076 | # if TLS_TCB_AT_TP |
1077 | void *dest = (char *) curp - map->l_tls_offset; |
1078 | # elif TLS_DTV_AT_TP |
1079 | void *dest = (char *) curp + map->l_tls_offset + TLS_PRE_TCB_SIZE; |
1080 | # else |
1081 | # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined" |
1082 | # endif |
1083 | |
1084 | /* Initialize the memory. */ |
1085 | memset (__mempcpy (dest, map->l_tls_initimage, map->l_tls_initimage_size), |
1086 | '\0', map->l_tls_blocksize - map->l_tls_initimage_size); |
1087 | } |
1088 | |
1089 | void |
1090 | _dl_init_static_tls (struct link_map *map) |
1091 | { |
1092 | lll_lock (GL (dl_stack_cache_lock), LLL_PRIVATE); |
1093 | |
1094 | /* Iterate over the list with system-allocated threads first. */ |
1095 | list_t *runp; |
1096 | list_for_each (runp, &GL (dl_stack_used)) |
1097 | init_one_static_tls (list_entry (runp, struct pthread, list), map); |
1098 | |
1099 | /* Now the list with threads using user-allocated stacks. */ |
1100 | list_for_each (runp, &GL (dl_stack_user)) |
1101 | init_one_static_tls (list_entry (runp, struct pthread, list), map); |
1102 | |
1103 | lll_unlock (GL (dl_stack_cache_lock), LLL_PRIVATE); |
1104 | } |
1105 | #endif /* PTHREAD_IN_LIBC */ |
1106 | |