| 1 | /* strchr/strchrnul optimized with 256-bit EVEX instructions. |
| 2 | Copyright (C) 2021-2022 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <isa-level.h> |
| 20 | |
| 21 | #if ISA_SHOULD_BUILD (4) |
| 22 | |
| 23 | # include <sysdep.h> |
| 24 | |
| 25 | # ifndef STRCHR |
| 26 | # define STRCHR __strchr_evex |
| 27 | # endif |
| 28 | |
| 29 | # define VMOVU vmovdqu64 |
| 30 | # define VMOVA vmovdqa64 |
| 31 | |
| 32 | # ifdef USE_AS_WCSCHR |
| 33 | # define VPBROADCAST vpbroadcastd |
| 34 | # define VPCMP vpcmpd |
| 35 | # define VPTESTN vptestnmd |
| 36 | # define VPMINU vpminud |
| 37 | # define CHAR_REG esi |
| 38 | # define SHIFT_REG ecx |
| 39 | # define CHAR_SIZE 4 |
| 40 | # else |
| 41 | # define VPBROADCAST vpbroadcastb |
| 42 | # define VPCMP vpcmpb |
| 43 | # define VPTESTN vptestnmb |
| 44 | # define VPMINU vpminub |
| 45 | # define CHAR_REG sil |
| 46 | # define SHIFT_REG edx |
| 47 | # define CHAR_SIZE 1 |
| 48 | # endif |
| 49 | |
| 50 | # define XMMZERO xmm16 |
| 51 | |
| 52 | # define YMMZERO ymm16 |
| 53 | # define YMM0 ymm17 |
| 54 | # define YMM1 ymm18 |
| 55 | # define YMM2 ymm19 |
| 56 | # define YMM3 ymm20 |
| 57 | # define YMM4 ymm21 |
| 58 | # define YMM5 ymm22 |
| 59 | # define YMM6 ymm23 |
| 60 | # define YMM7 ymm24 |
| 61 | # define YMM8 ymm25 |
| 62 | |
| 63 | # define VEC_SIZE 32 |
| 64 | # define PAGE_SIZE 4096 |
| 65 | # define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE) |
| 66 | |
| 67 | .section .text.evex,"ax" ,@progbits |
| 68 | ENTRY_P2ALIGN (STRCHR, 5) |
| 69 | /* Broadcast CHAR to YMM0. */ |
| 70 | VPBROADCAST %esi, %YMM0 |
| 71 | movl %edi, %eax |
| 72 | andl $(PAGE_SIZE - 1), %eax |
| 73 | /* Check if we cross page boundary with one vector load. |
| 74 | Otherwise it is safe to use an unaligned load. */ |
| 75 | cmpl $(PAGE_SIZE - VEC_SIZE), %eax |
| 76 | ja L(cross_page_boundary) |
| 77 | |
| 78 | /* Check the first VEC_SIZE bytes. Search for both CHAR and the |
| 79 | null bytes. */ |
| 80 | VMOVU (%rdi), %YMM1 |
| 81 | |
| 82 | /* Leaves only CHARS matching esi as 0. */ |
| 83 | vpxorq %YMM1, %YMM0, %YMM2 |
| 84 | VPMINU %YMM2, %YMM1, %YMM2 |
| 85 | /* Each bit in K0 represents a CHAR or a null byte in YMM1. */ |
| 86 | VPTESTN %YMM2, %YMM2, %k0 |
| 87 | kmovd %k0, %eax |
| 88 | testl %eax, %eax |
| 89 | jz L(aligned_more) |
| 90 | tzcntl %eax, %eax |
| 91 | # ifndef USE_AS_STRCHRNUL |
| 92 | /* Found CHAR or the null byte. */ |
| 93 | cmp (%rdi, %rax, CHAR_SIZE), %CHAR_REG |
| 94 | /* NB: Use a branch instead of cmovcc here. The expectation is |
| 95 | that with strchr the user will branch based on input being |
| 96 | null. Since this branch will be 100% predictive of the user |
| 97 | branch a branch miss here should save what otherwise would |
| 98 | be branch miss in the user code. Otherwise using a branch 1) |
| 99 | saves code size and 2) is faster in highly predictable |
| 100 | environments. */ |
| 101 | jne L(zero) |
| 102 | # endif |
| 103 | # ifdef USE_AS_WCSCHR |
| 104 | /* NB: Multiply wchar_t count by 4 to get the number of bytes. |
| 105 | */ |
| 106 | leaq (%rdi, %rax, CHAR_SIZE), %rax |
| 107 | # else |
| 108 | addq %rdi, %rax |
| 109 | # endif |
| 110 | ret |
| 111 | |
| 112 | |
| 113 | |
| 114 | .p2align 4,, 10 |
| 115 | L(first_vec_x4): |
| 116 | # ifndef USE_AS_STRCHRNUL |
| 117 | /* Check to see if first match was CHAR (k0) or null (k1). */ |
| 118 | kmovd %k0, %eax |
| 119 | tzcntl %eax, %eax |
| 120 | kmovd %k1, %ecx |
| 121 | /* bzhil will not be 0 if first match was null. */ |
| 122 | bzhil %eax, %ecx, %ecx |
| 123 | jne L(zero) |
| 124 | # else |
| 125 | /* Combine CHAR and null matches. */ |
| 126 | kord %k0, %k1, %k0 |
| 127 | kmovd %k0, %eax |
| 128 | tzcntl %eax, %eax |
| 129 | # endif |
| 130 | /* NB: Multiply sizeof char type (1 or 4) to get the number of |
| 131 | bytes. */ |
| 132 | leaq (VEC_SIZE * 4)(%rdi, %rax, CHAR_SIZE), %rax |
| 133 | ret |
| 134 | |
| 135 | # ifndef USE_AS_STRCHRNUL |
| 136 | L(zero): |
| 137 | xorl %eax, %eax |
| 138 | ret |
| 139 | # endif |
| 140 | |
| 141 | |
| 142 | .p2align 4 |
| 143 | L(first_vec_x1): |
| 144 | /* Use bsf here to save 1-byte keeping keeping the block in 1x |
| 145 | fetch block. eax guranteed non-zero. */ |
| 146 | bsfl %eax, %eax |
| 147 | # ifndef USE_AS_STRCHRNUL |
| 148 | /* Found CHAR or the null byte. */ |
| 149 | cmp (VEC_SIZE)(%rdi, %rax, CHAR_SIZE), %CHAR_REG |
| 150 | jne L(zero) |
| 151 | |
| 152 | # endif |
| 153 | /* NB: Multiply sizeof char type (1 or 4) to get the number of |
| 154 | bytes. */ |
| 155 | leaq (VEC_SIZE)(%rdi, %rax, CHAR_SIZE), %rax |
| 156 | ret |
| 157 | |
| 158 | .p2align 4,, 10 |
| 159 | L(first_vec_x2): |
| 160 | # ifndef USE_AS_STRCHRNUL |
| 161 | /* Check to see if first match was CHAR (k0) or null (k1). */ |
| 162 | kmovd %k0, %eax |
| 163 | tzcntl %eax, %eax |
| 164 | kmovd %k1, %ecx |
| 165 | /* bzhil will not be 0 if first match was null. */ |
| 166 | bzhil %eax, %ecx, %ecx |
| 167 | jne L(zero) |
| 168 | # else |
| 169 | /* Combine CHAR and null matches. */ |
| 170 | kord %k0, %k1, %k0 |
| 171 | kmovd %k0, %eax |
| 172 | tzcntl %eax, %eax |
| 173 | # endif |
| 174 | /* NB: Multiply sizeof char type (1 or 4) to get the number of |
| 175 | bytes. */ |
| 176 | leaq (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %rax |
| 177 | ret |
| 178 | |
| 179 | .p2align 4,, 10 |
| 180 | L(first_vec_x3): |
| 181 | /* Use bsf here to save 1-byte keeping keeping the block in 1x |
| 182 | fetch block. eax guranteed non-zero. */ |
| 183 | bsfl %eax, %eax |
| 184 | # ifndef USE_AS_STRCHRNUL |
| 185 | /* Found CHAR or the null byte. */ |
| 186 | cmp (VEC_SIZE * 3)(%rdi, %rax, CHAR_SIZE), %CHAR_REG |
| 187 | jne L(zero) |
| 188 | # endif |
| 189 | /* NB: Multiply sizeof char type (1 or 4) to get the number of |
| 190 | bytes. */ |
| 191 | leaq (VEC_SIZE * 3)(%rdi, %rax, CHAR_SIZE), %rax |
| 192 | ret |
| 193 | |
| 194 | .p2align 4 |
| 195 | L(aligned_more): |
| 196 | /* Align data to VEC_SIZE. */ |
| 197 | andq $-VEC_SIZE, %rdi |
| 198 | L(cross_page_continue): |
| 199 | /* Check the next 4 * VEC_SIZE. Only one VEC_SIZE at a time since |
| 200 | data is only aligned to VEC_SIZE. Use two alternating methods |
| 201 | for checking VEC to balance latency and port contention. */ |
| 202 | |
| 203 | /* This method has higher latency but has better port |
| 204 | distribution. */ |
| 205 | VMOVA (VEC_SIZE)(%rdi), %YMM1 |
| 206 | /* Leaves only CHARS matching esi as 0. */ |
| 207 | vpxorq %YMM1, %YMM0, %YMM2 |
| 208 | VPMINU %YMM2, %YMM1, %YMM2 |
| 209 | /* Each bit in K0 represents a CHAR or a null byte in YMM1. */ |
| 210 | VPTESTN %YMM2, %YMM2, %k0 |
| 211 | kmovd %k0, %eax |
| 212 | testl %eax, %eax |
| 213 | jnz L(first_vec_x1) |
| 214 | |
| 215 | /* This method has higher latency but has better port |
| 216 | distribution. */ |
| 217 | VMOVA (VEC_SIZE * 2)(%rdi), %YMM1 |
| 218 | /* Each bit in K0 represents a CHAR in YMM1. */ |
| 219 | VPCMP $0, %YMM1, %YMM0, %k0 |
| 220 | /* Each bit in K1 represents a CHAR in YMM1. */ |
| 221 | VPTESTN %YMM1, %YMM1, %k1 |
| 222 | kortestd %k0, %k1 |
| 223 | jnz L(first_vec_x2) |
| 224 | |
| 225 | VMOVA (VEC_SIZE * 3)(%rdi), %YMM1 |
| 226 | /* Leaves only CHARS matching esi as 0. */ |
| 227 | vpxorq %YMM1, %YMM0, %YMM2 |
| 228 | VPMINU %YMM2, %YMM1, %YMM2 |
| 229 | /* Each bit in K0 represents a CHAR or a null byte in YMM1. */ |
| 230 | VPTESTN %YMM2, %YMM2, %k0 |
| 231 | kmovd %k0, %eax |
| 232 | testl %eax, %eax |
| 233 | jnz L(first_vec_x3) |
| 234 | |
| 235 | VMOVA (VEC_SIZE * 4)(%rdi), %YMM1 |
| 236 | /* Each bit in K0 represents a CHAR in YMM1. */ |
| 237 | VPCMP $0, %YMM1, %YMM0, %k0 |
| 238 | /* Each bit in K1 represents a CHAR in YMM1. */ |
| 239 | VPTESTN %YMM1, %YMM1, %k1 |
| 240 | kortestd %k0, %k1 |
| 241 | jnz L(first_vec_x4) |
| 242 | |
| 243 | /* Align data to VEC_SIZE * 4 for the loop. */ |
| 244 | addq $VEC_SIZE, %rdi |
| 245 | andq $-(VEC_SIZE * 4), %rdi |
| 246 | |
| 247 | .p2align 4 |
| 248 | L(loop_4x_vec): |
| 249 | /* Check 4x VEC at a time. No penalty to imm32 offset with evex |
| 250 | encoding. */ |
| 251 | VMOVA (VEC_SIZE * 4)(%rdi), %YMM1 |
| 252 | VMOVA (VEC_SIZE * 5)(%rdi), %YMM2 |
| 253 | VMOVA (VEC_SIZE * 6)(%rdi), %YMM3 |
| 254 | VMOVA (VEC_SIZE * 7)(%rdi), %YMM4 |
| 255 | |
| 256 | /* For YMM1 and YMM3 use xor to set the CHARs matching esi to |
| 257 | zero. */ |
| 258 | vpxorq %YMM1, %YMM0, %YMM5 |
| 259 | /* For YMM2 and YMM4 cmp not equals to CHAR and store result in |
| 260 | k register. Its possible to save either 1 or 2 instructions |
| 261 | using cmp no equals method for either YMM1 or YMM1 and YMM3 |
| 262 | respectively but bottleneck on p5 makes it not worth it. */ |
| 263 | VPCMP $4, %YMM0, %YMM2, %k2 |
| 264 | vpxorq %YMM3, %YMM0, %YMM7 |
| 265 | VPCMP $4, %YMM0, %YMM4, %k4 |
| 266 | |
| 267 | /* Use min to select all zeros from either xor or end of string). |
| 268 | */ |
| 269 | VPMINU %YMM1, %YMM5, %YMM1 |
| 270 | VPMINU %YMM3, %YMM7, %YMM3 |
| 271 | |
| 272 | /* Use min + zeromask to select for zeros. Since k2 and k4 will |
| 273 | have 0 as positions that matched with CHAR which will set |
| 274 | zero in the corresponding destination bytes in YMM2 / YMM4. |
| 275 | */ |
| 276 | VPMINU %YMM1, %YMM2, %YMM2{%k2}{z} |
| 277 | VPMINU %YMM3, %YMM4, %YMM4 |
| 278 | VPMINU %YMM2, %YMM4, %YMM4{%k4}{z} |
| 279 | |
| 280 | VPTESTN %YMM4, %YMM4, %k1 |
| 281 | kmovd %k1, %ecx |
| 282 | subq $-(VEC_SIZE * 4), %rdi |
| 283 | testl %ecx, %ecx |
| 284 | jz L(loop_4x_vec) |
| 285 | |
| 286 | VPTESTN %YMM1, %YMM1, %k0 |
| 287 | kmovd %k0, %eax |
| 288 | testl %eax, %eax |
| 289 | jnz L(last_vec_x1) |
| 290 | |
| 291 | VPTESTN %YMM2, %YMM2, %k0 |
| 292 | kmovd %k0, %eax |
| 293 | testl %eax, %eax |
| 294 | jnz L(last_vec_x2) |
| 295 | |
| 296 | VPTESTN %YMM3, %YMM3, %k0 |
| 297 | kmovd %k0, %eax |
| 298 | /* Combine YMM3 matches (eax) with YMM4 matches (ecx). */ |
| 299 | # ifdef USE_AS_WCSCHR |
| 300 | sall $8, %ecx |
| 301 | orl %ecx, %eax |
| 302 | bsfl %eax, %eax |
| 303 | # else |
| 304 | salq $32, %rcx |
| 305 | orq %rcx, %rax |
| 306 | bsfq %rax, %rax |
| 307 | # endif |
| 308 | # ifndef USE_AS_STRCHRNUL |
| 309 | /* Check if match was CHAR or null. */ |
| 310 | cmp (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %CHAR_REG |
| 311 | jne L(zero_end) |
| 312 | # endif |
| 313 | /* NB: Multiply sizeof char type (1 or 4) to get the number of |
| 314 | bytes. */ |
| 315 | leaq (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %rax |
| 316 | ret |
| 317 | |
| 318 | .p2align 4,, 8 |
| 319 | L(last_vec_x1): |
| 320 | bsfl %eax, %eax |
| 321 | # ifdef USE_AS_WCSCHR |
| 322 | /* NB: Multiply wchar_t count by 4 to get the number of bytes. |
| 323 | */ |
| 324 | leaq (%rdi, %rax, CHAR_SIZE), %rax |
| 325 | # else |
| 326 | addq %rdi, %rax |
| 327 | # endif |
| 328 | |
| 329 | # ifndef USE_AS_STRCHRNUL |
| 330 | /* Check if match was null. */ |
| 331 | cmp (%rax), %CHAR_REG |
| 332 | jne L(zero_end) |
| 333 | # endif |
| 334 | |
| 335 | ret |
| 336 | |
| 337 | .p2align 4,, 8 |
| 338 | L(last_vec_x2): |
| 339 | bsfl %eax, %eax |
| 340 | # ifndef USE_AS_STRCHRNUL |
| 341 | /* Check if match was null. */ |
| 342 | cmp (VEC_SIZE)(%rdi, %rax, CHAR_SIZE), %CHAR_REG |
| 343 | jne L(zero_end) |
| 344 | # endif |
| 345 | /* NB: Multiply sizeof char type (1 or 4) to get the number of |
| 346 | bytes. */ |
| 347 | leaq (VEC_SIZE)(%rdi, %rax, CHAR_SIZE), %rax |
| 348 | ret |
| 349 | |
| 350 | /* Cold case for crossing page with first load. */ |
| 351 | .p2align 4,, 8 |
| 352 | L(cross_page_boundary): |
| 353 | movq %rdi, %rdx |
| 354 | /* Align rdi. */ |
| 355 | andq $-VEC_SIZE, %rdi |
| 356 | VMOVA (%rdi), %YMM1 |
| 357 | /* Leaves only CHARS matching esi as 0. */ |
| 358 | vpxorq %YMM1, %YMM0, %YMM2 |
| 359 | VPMINU %YMM2, %YMM1, %YMM2 |
| 360 | /* Each bit in K0 represents a CHAR or a null byte in YMM1. */ |
| 361 | VPTESTN %YMM2, %YMM2, %k0 |
| 362 | kmovd %k0, %eax |
| 363 | /* Remove the leading bits. */ |
| 364 | # ifdef USE_AS_WCSCHR |
| 365 | movl %edx, %SHIFT_REG |
| 366 | /* NB: Divide shift count by 4 since each bit in K1 represent 4 |
| 367 | bytes. */ |
| 368 | sarl $2, %SHIFT_REG |
| 369 | andl $(CHAR_PER_VEC - 1), %SHIFT_REG |
| 370 | # endif |
| 371 | sarxl %SHIFT_REG, %eax, %eax |
| 372 | /* If eax is zero continue. */ |
| 373 | testl %eax, %eax |
| 374 | jz L(cross_page_continue) |
| 375 | bsfl %eax, %eax |
| 376 | |
| 377 | # ifdef USE_AS_WCSCHR |
| 378 | /* NB: Multiply wchar_t count by 4 to get the number of |
| 379 | bytes. */ |
| 380 | leaq (%rdx, %rax, CHAR_SIZE), %rax |
| 381 | # else |
| 382 | addq %rdx, %rax |
| 383 | # endif |
| 384 | # ifndef USE_AS_STRCHRNUL |
| 385 | /* Check to see if match was CHAR or null. */ |
| 386 | cmp (%rax), %CHAR_REG |
| 387 | je L(cross_page_ret) |
| 388 | L(zero_end): |
| 389 | xorl %eax, %eax |
| 390 | L(cross_page_ret): |
| 391 | # endif |
| 392 | ret |
| 393 | |
| 394 | END (STRCHR) |
| 395 | #endif |
| 396 | |