| 1 | /* memrchr optimized with 256-bit EVEX instructions. |
| 2 | Copyright (C) 2021-2022 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <isa-level.h> |
| 20 | |
| 21 | #if ISA_SHOULD_BUILD (4) |
| 22 | |
| 23 | # include <sysdep.h> |
| 24 | # include "evex256-vecs.h" |
| 25 | # if VEC_SIZE != 32 |
| 26 | # error "VEC_SIZE != 32 unimplemented" |
| 27 | # endif |
| 28 | |
| 29 | # ifndef MEMRCHR |
| 30 | # define MEMRCHR __memrchr_evex |
| 31 | # endif |
| 32 | |
| 33 | # define PAGE_SIZE 4096 |
| 34 | # define VECMATCH VEC(0) |
| 35 | |
| 36 | .section SECTION(.text), "ax" , @progbits |
| 37 | ENTRY_P2ALIGN(MEMRCHR, 6) |
| 38 | # ifdef __ILP32__ |
| 39 | /* Clear upper bits. */ |
| 40 | and %RDX_LP, %RDX_LP |
| 41 | # else |
| 42 | test %RDX_LP, %RDX_LP |
| 43 | # endif |
| 44 | jz L(zero_0) |
| 45 | |
| 46 | /* Get end pointer. Minus one for two reasons. 1) It is necessary for a |
| 47 | correct page cross check and 2) it correctly sets up end ptr to be |
| 48 | subtract by lzcnt aligned. */ |
| 49 | leaq -1(%rdi, %rdx), %rax |
| 50 | vpbroadcastb %esi, %VECMATCH |
| 51 | |
| 52 | /* Check if we can load 1x VEC without cross a page. */ |
| 53 | testl $(PAGE_SIZE - VEC_SIZE), %eax |
| 54 | jz L(page_cross) |
| 55 | |
| 56 | /* Don't use rax for pointer here because EVEX has better encoding with |
| 57 | offset % VEC_SIZE == 0. */ |
| 58 | vpcmpb $0, -(VEC_SIZE)(%rdi, %rdx), %VECMATCH, %k0 |
| 59 | kmovd %k0, %ecx |
| 60 | |
| 61 | /* Fall through for rdx (len) <= VEC_SIZE (expect small sizes). */ |
| 62 | cmpq $VEC_SIZE, %rdx |
| 63 | ja L(more_1x_vec) |
| 64 | L(ret_vec_x0_test): |
| 65 | |
| 66 | /* If ecx is zero (no matches) lzcnt will set it 32 (VEC_SIZE) which |
| 67 | will guarantee edx (len) is less than it. */ |
| 68 | lzcntl %ecx, %ecx |
| 69 | cmpl %ecx, %edx |
| 70 | jle L(zero_0) |
| 71 | subq %rcx, %rax |
| 72 | ret |
| 73 | |
| 74 | /* Fits in aligning bytes of first cache line. */ |
| 75 | L(zero_0): |
| 76 | xorl %eax, %eax |
| 77 | ret |
| 78 | |
| 79 | .p2align 4,, 9 |
| 80 | L(ret_vec_x0_dec): |
| 81 | decq %rax |
| 82 | L(ret_vec_x0): |
| 83 | lzcntl %ecx, %ecx |
| 84 | subq %rcx, %rax |
| 85 | ret |
| 86 | |
| 87 | .p2align 4,, 10 |
| 88 | L(more_1x_vec): |
| 89 | testl %ecx, %ecx |
| 90 | jnz L(ret_vec_x0) |
| 91 | |
| 92 | /* Align rax (pointer to string). */ |
| 93 | andq $-VEC_SIZE, %rax |
| 94 | |
| 95 | /* Recompute length after aligning. */ |
| 96 | movq %rax, %rdx |
| 97 | |
| 98 | /* Need no matter what. */ |
| 99 | vpcmpb $0, -(VEC_SIZE)(%rax), %VECMATCH, %k0 |
| 100 | kmovd %k0, %ecx |
| 101 | |
| 102 | subq %rdi, %rdx |
| 103 | |
| 104 | cmpq $(VEC_SIZE * 2), %rdx |
| 105 | ja L(more_2x_vec) |
| 106 | L(last_2x_vec): |
| 107 | |
| 108 | /* Must dec rax because L(ret_vec_x0_test) expects it. */ |
| 109 | decq %rax |
| 110 | cmpl $VEC_SIZE, %edx |
| 111 | jbe L(ret_vec_x0_test) |
| 112 | |
| 113 | testl %ecx, %ecx |
| 114 | jnz L(ret_vec_x0) |
| 115 | |
| 116 | /* Don't use rax for pointer here because EVEX has better encoding with |
| 117 | offset % VEC_SIZE == 0. */ |
| 118 | vpcmpb $0, -(VEC_SIZE * 2)(%rdi, %rdx), %VECMATCH, %k0 |
| 119 | kmovd %k0, %ecx |
| 120 | /* NB: 64-bit lzcnt. This will naturally add 32 to position. */ |
| 121 | lzcntq %rcx, %rcx |
| 122 | cmpl %ecx, %edx |
| 123 | jle L(zero_0) |
| 124 | subq %rcx, %rax |
| 125 | ret |
| 126 | |
| 127 | /* Inexpensive place to put this regarding code size / target alignments |
| 128 | / ICache NLP. Necessary for 2-byte encoding of jump to page cross |
| 129 | case which in turn is necessary for hot path (len <= VEC_SIZE) to fit |
| 130 | in first cache line. */ |
| 131 | L(page_cross): |
| 132 | movq %rax, %rsi |
| 133 | andq $-VEC_SIZE, %rsi |
| 134 | vpcmpb $0, (%rsi), %VECMATCH, %k0 |
| 135 | kmovd %k0, %r8d |
| 136 | /* Shift out negative alignment (because we are starting from endptr and |
| 137 | working backwards). */ |
| 138 | movl %eax, %ecx |
| 139 | /* notl because eax already has endptr - 1. (-x = ~(x - 1)). */ |
| 140 | notl %ecx |
| 141 | shlxl %ecx, %r8d, %ecx |
| 142 | cmpq %rdi, %rsi |
| 143 | ja L(more_1x_vec) |
| 144 | lzcntl %ecx, %ecx |
| 145 | cmpl %ecx, %edx |
| 146 | jle L(zero_1) |
| 147 | subq %rcx, %rax |
| 148 | ret |
| 149 | |
| 150 | /* Continue creating zero labels that fit in aligning bytes and get |
| 151 | 2-byte encoding / are in the same cache line as condition. */ |
| 152 | L(zero_1): |
| 153 | xorl %eax, %eax |
| 154 | ret |
| 155 | |
| 156 | .p2align 4,, 8 |
| 157 | L(ret_vec_x1): |
| 158 | /* This will naturally add 32 to position. */ |
| 159 | bsrl %ecx, %ecx |
| 160 | leaq -(VEC_SIZE * 2)(%rcx, %rax), %rax |
| 161 | ret |
| 162 | |
| 163 | .p2align 4,, 8 |
| 164 | L(more_2x_vec): |
| 165 | testl %ecx, %ecx |
| 166 | jnz L(ret_vec_x0_dec) |
| 167 | |
| 168 | vpcmpb $0, -(VEC_SIZE * 2)(%rax), %VECMATCH, %k0 |
| 169 | kmovd %k0, %ecx |
| 170 | testl %ecx, %ecx |
| 171 | jnz L(ret_vec_x1) |
| 172 | |
| 173 | /* Need no matter what. */ |
| 174 | vpcmpb $0, -(VEC_SIZE * 3)(%rax), %VECMATCH, %k0 |
| 175 | kmovd %k0, %ecx |
| 176 | |
| 177 | subq $(VEC_SIZE * 4), %rdx |
| 178 | ja L(more_4x_vec) |
| 179 | |
| 180 | cmpl $(VEC_SIZE * -1), %edx |
| 181 | jle L(ret_vec_x2_test) |
| 182 | L(last_vec): |
| 183 | testl %ecx, %ecx |
| 184 | jnz L(ret_vec_x2) |
| 185 | |
| 186 | |
| 187 | /* Need no matter what. */ |
| 188 | vpcmpb $0, -(VEC_SIZE * 4)(%rax), %VECMATCH, %k0 |
| 189 | kmovd %k0, %ecx |
| 190 | lzcntl %ecx, %ecx |
| 191 | subq $(VEC_SIZE * 3 + 1), %rax |
| 192 | subq %rcx, %rax |
| 193 | cmpq %rax, %rdi |
| 194 | ja L(zero_1) |
| 195 | ret |
| 196 | |
| 197 | .p2align 4,, 8 |
| 198 | L(ret_vec_x2_test): |
| 199 | lzcntl %ecx, %ecx |
| 200 | subq $(VEC_SIZE * 2 + 1), %rax |
| 201 | subq %rcx, %rax |
| 202 | cmpq %rax, %rdi |
| 203 | ja L(zero_1) |
| 204 | ret |
| 205 | |
| 206 | .p2align 4,, 8 |
| 207 | L(ret_vec_x2): |
| 208 | bsrl %ecx, %ecx |
| 209 | leaq -(VEC_SIZE * 3)(%rcx, %rax), %rax |
| 210 | ret |
| 211 | |
| 212 | .p2align 4,, 8 |
| 213 | L(ret_vec_x3): |
| 214 | bsrl %ecx, %ecx |
| 215 | leaq -(VEC_SIZE * 4)(%rcx, %rax), %rax |
| 216 | ret |
| 217 | |
| 218 | .p2align 4,, 8 |
| 219 | L(more_4x_vec): |
| 220 | testl %ecx, %ecx |
| 221 | jnz L(ret_vec_x2) |
| 222 | |
| 223 | vpcmpb $0, -(VEC_SIZE * 4)(%rax), %VECMATCH, %k0 |
| 224 | kmovd %k0, %ecx |
| 225 | |
| 226 | testl %ecx, %ecx |
| 227 | jnz L(ret_vec_x3) |
| 228 | |
| 229 | /* Check if near end before re-aligning (otherwise might do an |
| 230 | unnecessary loop iteration). */ |
| 231 | addq $-(VEC_SIZE * 4), %rax |
| 232 | cmpq $(VEC_SIZE * 4), %rdx |
| 233 | jbe L(last_4x_vec) |
| 234 | |
| 235 | decq %rax |
| 236 | andq $-(VEC_SIZE * 4), %rax |
| 237 | movq %rdi, %rdx |
| 238 | /* Get endptr for loop in rdx. NB: Can't just do while rax > rdi because |
| 239 | lengths that overflow can be valid and break the comparison. */ |
| 240 | andq $-(VEC_SIZE * 4), %rdx |
| 241 | |
| 242 | .p2align 4 |
| 243 | L(loop_4x_vec): |
| 244 | /* Store 1 were not-equals and 0 where equals in k1 (used to mask later |
| 245 | on). */ |
| 246 | vpcmpb $4, (VEC_SIZE * 3)(%rax), %VECMATCH, %k1 |
| 247 | |
| 248 | /* VEC(2/3) will have zero-byte where we found a CHAR. */ |
| 249 | vpxorq (VEC_SIZE * 2)(%rax), %VECMATCH, %VEC(2) |
| 250 | vpxorq (VEC_SIZE * 1)(%rax), %VECMATCH, %VEC(3) |
| 251 | vpcmpb $0, (VEC_SIZE * 0)(%rax), %VECMATCH, %k4 |
| 252 | |
| 253 | /* Combine VEC(2/3) with min and maskz with k1 (k1 has zero bit where |
| 254 | CHAR is found and VEC(2/3) have zero-byte where CHAR is found. */ |
| 255 | vpminub %VEC(2), %VEC(3), %VEC(3){%k1}{z} |
| 256 | vptestnmb %VEC(3), %VEC(3), %k2 |
| 257 | |
| 258 | /* Any 1s and we found CHAR. */ |
| 259 | kortestd %k2, %k4 |
| 260 | jnz L(loop_end) |
| 261 | |
| 262 | addq $-(VEC_SIZE * 4), %rax |
| 263 | cmpq %rdx, %rax |
| 264 | jne L(loop_4x_vec) |
| 265 | |
| 266 | /* Need to re-adjust rdx / rax for L(last_4x_vec). */ |
| 267 | subq $-(VEC_SIZE * 4), %rdx |
| 268 | movq %rdx, %rax |
| 269 | subl %edi, %edx |
| 270 | L(last_4x_vec): |
| 271 | |
| 272 | /* Used no matter what. */ |
| 273 | vpcmpb $0, (VEC_SIZE * -1)(%rax), %VECMATCH, %k0 |
| 274 | kmovd %k0, %ecx |
| 275 | |
| 276 | cmpl $(VEC_SIZE * 2), %edx |
| 277 | jbe L(last_2x_vec) |
| 278 | |
| 279 | testl %ecx, %ecx |
| 280 | jnz L(ret_vec_x0_dec) |
| 281 | |
| 282 | |
| 283 | vpcmpb $0, (VEC_SIZE * -2)(%rax), %VECMATCH, %k0 |
| 284 | kmovd %k0, %ecx |
| 285 | |
| 286 | testl %ecx, %ecx |
| 287 | jnz L(ret_vec_x1) |
| 288 | |
| 289 | /* Used no matter what. */ |
| 290 | vpcmpb $0, (VEC_SIZE * -3)(%rax), %VECMATCH, %k0 |
| 291 | kmovd %k0, %ecx |
| 292 | |
| 293 | cmpl $(VEC_SIZE * 3), %edx |
| 294 | ja L(last_vec) |
| 295 | |
| 296 | lzcntl %ecx, %ecx |
| 297 | subq $(VEC_SIZE * 2 + 1), %rax |
| 298 | subq %rcx, %rax |
| 299 | cmpq %rax, %rdi |
| 300 | jbe L(ret_1) |
| 301 | xorl %eax, %eax |
| 302 | L(ret_1): |
| 303 | ret |
| 304 | |
| 305 | .p2align 4,, 6 |
| 306 | L(loop_end): |
| 307 | kmovd %k1, %ecx |
| 308 | notl %ecx |
| 309 | testl %ecx, %ecx |
| 310 | jnz L(ret_vec_x0_end) |
| 311 | |
| 312 | vptestnmb %VEC(2), %VEC(2), %k0 |
| 313 | kmovd %k0, %ecx |
| 314 | testl %ecx, %ecx |
| 315 | jnz L(ret_vec_x1_end) |
| 316 | |
| 317 | kmovd %k2, %ecx |
| 318 | kmovd %k4, %esi |
| 319 | /* Combine last 2 VEC matches. If ecx (VEC3) is zero (no CHAR in VEC3) |
| 320 | then it won't affect the result in esi (VEC4). If ecx is non-zero |
| 321 | then CHAR in VEC3 and bsrq will use that position. */ |
| 322 | salq $32, %rcx |
| 323 | orq %rsi, %rcx |
| 324 | bsrq %rcx, %rcx |
| 325 | addq %rcx, %rax |
| 326 | ret |
| 327 | .p2align 4,, 4 |
| 328 | L(ret_vec_x0_end): |
| 329 | addq $(VEC_SIZE), %rax |
| 330 | L(ret_vec_x1_end): |
| 331 | bsrl %ecx, %ecx |
| 332 | leaq (VEC_SIZE * 2)(%rax, %rcx), %rax |
| 333 | ret |
| 334 | |
| 335 | END(MEMRCHR) |
| 336 | #endif |
| 337 | |