1 | /* memrchr optimized with 256-bit EVEX instructions. |
2 | Copyright (C) 2021-2022 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #include <isa-level.h> |
20 | |
21 | #if ISA_SHOULD_BUILD (4) |
22 | |
23 | # include <sysdep.h> |
24 | # include "evex256-vecs.h" |
25 | # if VEC_SIZE != 32 |
26 | # error "VEC_SIZE != 32 unimplemented" |
27 | # endif |
28 | |
29 | # ifndef MEMRCHR |
30 | # define MEMRCHR __memrchr_evex |
31 | # endif |
32 | |
33 | # define PAGE_SIZE 4096 |
34 | # define VECMATCH VEC(0) |
35 | |
36 | .section SECTION(.text), "ax" , @progbits |
37 | ENTRY_P2ALIGN(MEMRCHR, 6) |
38 | # ifdef __ILP32__ |
39 | /* Clear upper bits. */ |
40 | and %RDX_LP, %RDX_LP |
41 | # else |
42 | test %RDX_LP, %RDX_LP |
43 | # endif |
44 | jz L(zero_0) |
45 | |
46 | /* Get end pointer. Minus one for two reasons. 1) It is necessary for a |
47 | correct page cross check and 2) it correctly sets up end ptr to be |
48 | subtract by lzcnt aligned. */ |
49 | leaq -1(%rdi, %rdx), %rax |
50 | vpbroadcastb %esi, %VECMATCH |
51 | |
52 | /* Check if we can load 1x VEC without cross a page. */ |
53 | testl $(PAGE_SIZE - VEC_SIZE), %eax |
54 | jz L(page_cross) |
55 | |
56 | /* Don't use rax for pointer here because EVEX has better encoding with |
57 | offset % VEC_SIZE == 0. */ |
58 | vpcmpb $0, -(VEC_SIZE)(%rdi, %rdx), %VECMATCH, %k0 |
59 | kmovd %k0, %ecx |
60 | |
61 | /* Fall through for rdx (len) <= VEC_SIZE (expect small sizes). */ |
62 | cmpq $VEC_SIZE, %rdx |
63 | ja L(more_1x_vec) |
64 | L(ret_vec_x0_test): |
65 | |
66 | /* If ecx is zero (no matches) lzcnt will set it 32 (VEC_SIZE) which |
67 | will guarantee edx (len) is less than it. */ |
68 | lzcntl %ecx, %ecx |
69 | cmpl %ecx, %edx |
70 | jle L(zero_0) |
71 | subq %rcx, %rax |
72 | ret |
73 | |
74 | /* Fits in aligning bytes of first cache line. */ |
75 | L(zero_0): |
76 | xorl %eax, %eax |
77 | ret |
78 | |
79 | .p2align 4,, 9 |
80 | L(ret_vec_x0_dec): |
81 | decq %rax |
82 | L(ret_vec_x0): |
83 | lzcntl %ecx, %ecx |
84 | subq %rcx, %rax |
85 | ret |
86 | |
87 | .p2align 4,, 10 |
88 | L(more_1x_vec): |
89 | testl %ecx, %ecx |
90 | jnz L(ret_vec_x0) |
91 | |
92 | /* Align rax (pointer to string). */ |
93 | andq $-VEC_SIZE, %rax |
94 | |
95 | /* Recompute length after aligning. */ |
96 | movq %rax, %rdx |
97 | |
98 | /* Need no matter what. */ |
99 | vpcmpb $0, -(VEC_SIZE)(%rax), %VECMATCH, %k0 |
100 | kmovd %k0, %ecx |
101 | |
102 | subq %rdi, %rdx |
103 | |
104 | cmpq $(VEC_SIZE * 2), %rdx |
105 | ja L(more_2x_vec) |
106 | L(last_2x_vec): |
107 | |
108 | /* Must dec rax because L(ret_vec_x0_test) expects it. */ |
109 | decq %rax |
110 | cmpl $VEC_SIZE, %edx |
111 | jbe L(ret_vec_x0_test) |
112 | |
113 | testl %ecx, %ecx |
114 | jnz L(ret_vec_x0) |
115 | |
116 | /* Don't use rax for pointer here because EVEX has better encoding with |
117 | offset % VEC_SIZE == 0. */ |
118 | vpcmpb $0, -(VEC_SIZE * 2)(%rdi, %rdx), %VECMATCH, %k0 |
119 | kmovd %k0, %ecx |
120 | /* NB: 64-bit lzcnt. This will naturally add 32 to position. */ |
121 | lzcntq %rcx, %rcx |
122 | cmpl %ecx, %edx |
123 | jle L(zero_0) |
124 | subq %rcx, %rax |
125 | ret |
126 | |
127 | /* Inexpensive place to put this regarding code size / target alignments |
128 | / ICache NLP. Necessary for 2-byte encoding of jump to page cross |
129 | case which in turn is necessary for hot path (len <= VEC_SIZE) to fit |
130 | in first cache line. */ |
131 | L(page_cross): |
132 | movq %rax, %rsi |
133 | andq $-VEC_SIZE, %rsi |
134 | vpcmpb $0, (%rsi), %VECMATCH, %k0 |
135 | kmovd %k0, %r8d |
136 | /* Shift out negative alignment (because we are starting from endptr and |
137 | working backwards). */ |
138 | movl %eax, %ecx |
139 | /* notl because eax already has endptr - 1. (-x = ~(x - 1)). */ |
140 | notl %ecx |
141 | shlxl %ecx, %r8d, %ecx |
142 | cmpq %rdi, %rsi |
143 | ja L(more_1x_vec) |
144 | lzcntl %ecx, %ecx |
145 | cmpl %ecx, %edx |
146 | jle L(zero_1) |
147 | subq %rcx, %rax |
148 | ret |
149 | |
150 | /* Continue creating zero labels that fit in aligning bytes and get |
151 | 2-byte encoding / are in the same cache line as condition. */ |
152 | L(zero_1): |
153 | xorl %eax, %eax |
154 | ret |
155 | |
156 | .p2align 4,, 8 |
157 | L(ret_vec_x1): |
158 | /* This will naturally add 32 to position. */ |
159 | bsrl %ecx, %ecx |
160 | leaq -(VEC_SIZE * 2)(%rcx, %rax), %rax |
161 | ret |
162 | |
163 | .p2align 4,, 8 |
164 | L(more_2x_vec): |
165 | testl %ecx, %ecx |
166 | jnz L(ret_vec_x0_dec) |
167 | |
168 | vpcmpb $0, -(VEC_SIZE * 2)(%rax), %VECMATCH, %k0 |
169 | kmovd %k0, %ecx |
170 | testl %ecx, %ecx |
171 | jnz L(ret_vec_x1) |
172 | |
173 | /* Need no matter what. */ |
174 | vpcmpb $0, -(VEC_SIZE * 3)(%rax), %VECMATCH, %k0 |
175 | kmovd %k0, %ecx |
176 | |
177 | subq $(VEC_SIZE * 4), %rdx |
178 | ja L(more_4x_vec) |
179 | |
180 | cmpl $(VEC_SIZE * -1), %edx |
181 | jle L(ret_vec_x2_test) |
182 | L(last_vec): |
183 | testl %ecx, %ecx |
184 | jnz L(ret_vec_x2) |
185 | |
186 | |
187 | /* Need no matter what. */ |
188 | vpcmpb $0, -(VEC_SIZE * 4)(%rax), %VECMATCH, %k0 |
189 | kmovd %k0, %ecx |
190 | lzcntl %ecx, %ecx |
191 | subq $(VEC_SIZE * 3 + 1), %rax |
192 | subq %rcx, %rax |
193 | cmpq %rax, %rdi |
194 | ja L(zero_1) |
195 | ret |
196 | |
197 | .p2align 4,, 8 |
198 | L(ret_vec_x2_test): |
199 | lzcntl %ecx, %ecx |
200 | subq $(VEC_SIZE * 2 + 1), %rax |
201 | subq %rcx, %rax |
202 | cmpq %rax, %rdi |
203 | ja L(zero_1) |
204 | ret |
205 | |
206 | .p2align 4,, 8 |
207 | L(ret_vec_x2): |
208 | bsrl %ecx, %ecx |
209 | leaq -(VEC_SIZE * 3)(%rcx, %rax), %rax |
210 | ret |
211 | |
212 | .p2align 4,, 8 |
213 | L(ret_vec_x3): |
214 | bsrl %ecx, %ecx |
215 | leaq -(VEC_SIZE * 4)(%rcx, %rax), %rax |
216 | ret |
217 | |
218 | .p2align 4,, 8 |
219 | L(more_4x_vec): |
220 | testl %ecx, %ecx |
221 | jnz L(ret_vec_x2) |
222 | |
223 | vpcmpb $0, -(VEC_SIZE * 4)(%rax), %VECMATCH, %k0 |
224 | kmovd %k0, %ecx |
225 | |
226 | testl %ecx, %ecx |
227 | jnz L(ret_vec_x3) |
228 | |
229 | /* Check if near end before re-aligning (otherwise might do an |
230 | unnecessary loop iteration). */ |
231 | addq $-(VEC_SIZE * 4), %rax |
232 | cmpq $(VEC_SIZE * 4), %rdx |
233 | jbe L(last_4x_vec) |
234 | |
235 | decq %rax |
236 | andq $-(VEC_SIZE * 4), %rax |
237 | movq %rdi, %rdx |
238 | /* Get endptr for loop in rdx. NB: Can't just do while rax > rdi because |
239 | lengths that overflow can be valid and break the comparison. */ |
240 | andq $-(VEC_SIZE * 4), %rdx |
241 | |
242 | .p2align 4 |
243 | L(loop_4x_vec): |
244 | /* Store 1 were not-equals and 0 where equals in k1 (used to mask later |
245 | on). */ |
246 | vpcmpb $4, (VEC_SIZE * 3)(%rax), %VECMATCH, %k1 |
247 | |
248 | /* VEC(2/3) will have zero-byte where we found a CHAR. */ |
249 | vpxorq (VEC_SIZE * 2)(%rax), %VECMATCH, %VEC(2) |
250 | vpxorq (VEC_SIZE * 1)(%rax), %VECMATCH, %VEC(3) |
251 | vpcmpb $0, (VEC_SIZE * 0)(%rax), %VECMATCH, %k4 |
252 | |
253 | /* Combine VEC(2/3) with min and maskz with k1 (k1 has zero bit where |
254 | CHAR is found and VEC(2/3) have zero-byte where CHAR is found. */ |
255 | vpminub %VEC(2), %VEC(3), %VEC(3){%k1}{z} |
256 | vptestnmb %VEC(3), %VEC(3), %k2 |
257 | |
258 | /* Any 1s and we found CHAR. */ |
259 | kortestd %k2, %k4 |
260 | jnz L(loop_end) |
261 | |
262 | addq $-(VEC_SIZE * 4), %rax |
263 | cmpq %rdx, %rax |
264 | jne L(loop_4x_vec) |
265 | |
266 | /* Need to re-adjust rdx / rax for L(last_4x_vec). */ |
267 | subq $-(VEC_SIZE * 4), %rdx |
268 | movq %rdx, %rax |
269 | subl %edi, %edx |
270 | L(last_4x_vec): |
271 | |
272 | /* Used no matter what. */ |
273 | vpcmpb $0, (VEC_SIZE * -1)(%rax), %VECMATCH, %k0 |
274 | kmovd %k0, %ecx |
275 | |
276 | cmpl $(VEC_SIZE * 2), %edx |
277 | jbe L(last_2x_vec) |
278 | |
279 | testl %ecx, %ecx |
280 | jnz L(ret_vec_x0_dec) |
281 | |
282 | |
283 | vpcmpb $0, (VEC_SIZE * -2)(%rax), %VECMATCH, %k0 |
284 | kmovd %k0, %ecx |
285 | |
286 | testl %ecx, %ecx |
287 | jnz L(ret_vec_x1) |
288 | |
289 | /* Used no matter what. */ |
290 | vpcmpb $0, (VEC_SIZE * -3)(%rax), %VECMATCH, %k0 |
291 | kmovd %k0, %ecx |
292 | |
293 | cmpl $(VEC_SIZE * 3), %edx |
294 | ja L(last_vec) |
295 | |
296 | lzcntl %ecx, %ecx |
297 | subq $(VEC_SIZE * 2 + 1), %rax |
298 | subq %rcx, %rax |
299 | cmpq %rax, %rdi |
300 | jbe L(ret_1) |
301 | xorl %eax, %eax |
302 | L(ret_1): |
303 | ret |
304 | |
305 | .p2align 4,, 6 |
306 | L(loop_end): |
307 | kmovd %k1, %ecx |
308 | notl %ecx |
309 | testl %ecx, %ecx |
310 | jnz L(ret_vec_x0_end) |
311 | |
312 | vptestnmb %VEC(2), %VEC(2), %k0 |
313 | kmovd %k0, %ecx |
314 | testl %ecx, %ecx |
315 | jnz L(ret_vec_x1_end) |
316 | |
317 | kmovd %k2, %ecx |
318 | kmovd %k4, %esi |
319 | /* Combine last 2 VEC matches. If ecx (VEC3) is zero (no CHAR in VEC3) |
320 | then it won't affect the result in esi (VEC4). If ecx is non-zero |
321 | then CHAR in VEC3 and bsrq will use that position. */ |
322 | salq $32, %rcx |
323 | orq %rsi, %rcx |
324 | bsrq %rcx, %rcx |
325 | addq %rcx, %rax |
326 | ret |
327 | .p2align 4,, 4 |
328 | L(ret_vec_x0_end): |
329 | addq $(VEC_SIZE), %rax |
330 | L(ret_vec_x1_end): |
331 | bsrl %ecx, %ecx |
332 | leaq (VEC_SIZE * 2)(%rax, %rcx), %rax |
333 | ret |
334 | |
335 | END(MEMRCHR) |
336 | #endif |
337 | |