| 1 | /* Compute x * y + z as ternary operation. |
| 2 | Copyright (C) 2010-2022 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #define NO_MATH_REDIRECT |
| 20 | #include <float.h> |
| 21 | #define f64xfmaf128 __hide_f64xfmaf128 |
| 22 | #include <math.h> |
| 23 | #undef f64xfmaf128 |
| 24 | #include <fenv.h> |
| 25 | #include <ieee754.h> |
| 26 | #include <math-barriers.h> |
| 27 | #include <math_private.h> |
| 28 | #include <libm-alias-ldouble.h> |
| 29 | #include <math-narrow-alias.h> |
| 30 | #include <tininess.h> |
| 31 | #include <math-use-builtins.h> |
| 32 | |
| 33 | /* This implementation uses rounding to odd to avoid problems with |
| 34 | double rounding. See a paper by Boldo and Melquiond: |
| 35 | http://www.lri.fr/~melquion/doc/08-tc.pdf */ |
| 36 | |
| 37 | _Float128 |
| 38 | __fmal (_Float128 x, _Float128 y, _Float128 z) |
| 39 | { |
| 40 | #if USE_FMAL_BUILTIN |
| 41 | return __builtin_fmal (x, y, z); |
| 42 | #else |
| 43 | union ieee854_long_double u, v, w; |
| 44 | int adjust = 0; |
| 45 | u.d = x; |
| 46 | v.d = y; |
| 47 | w.d = z; |
| 48 | if (__builtin_expect (u.ieee.exponent + v.ieee.exponent |
| 49 | >= 0x7fff + IEEE854_LONG_DOUBLE_BIAS |
| 50 | - LDBL_MANT_DIG, 0) |
| 51 | || __builtin_expect (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0) |
| 52 | || __builtin_expect (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0) |
| 53 | || __builtin_expect (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0) |
| 54 | || __builtin_expect (u.ieee.exponent + v.ieee.exponent |
| 55 | <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG, 0)) |
| 56 | { |
| 57 | /* If z is Inf, but x and y are finite, the result should be |
| 58 | z rather than NaN. */ |
| 59 | if (w.ieee.exponent == 0x7fff |
| 60 | && u.ieee.exponent != 0x7fff |
| 61 | && v.ieee.exponent != 0x7fff) |
| 62 | return (z + x) + y; |
| 63 | /* If z is zero and x are y are nonzero, compute the result |
| 64 | as x * y to avoid the wrong sign of a zero result if x * y |
| 65 | underflows to 0. */ |
| 66 | if (z == 0 && x != 0 && y != 0) |
| 67 | return x * y; |
| 68 | /* If x or y or z is Inf/NaN, or if x * y is zero, compute as |
| 69 | x * y + z. */ |
| 70 | if (u.ieee.exponent == 0x7fff |
| 71 | || v.ieee.exponent == 0x7fff |
| 72 | || w.ieee.exponent == 0x7fff |
| 73 | || x == 0 |
| 74 | || y == 0) |
| 75 | return x * y + z; |
| 76 | /* If fma will certainly overflow, compute as x * y. */ |
| 77 | if (u.ieee.exponent + v.ieee.exponent |
| 78 | > 0x7fff + IEEE854_LONG_DOUBLE_BIAS) |
| 79 | return x * y; |
| 80 | /* If x * y is less than 1/4 of LDBL_TRUE_MIN, neither the |
| 81 | result nor whether there is underflow depends on its exact |
| 82 | value, only on its sign. */ |
| 83 | if (u.ieee.exponent + v.ieee.exponent |
| 84 | < IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG - 2) |
| 85 | { |
| 86 | int neg = u.ieee.negative ^ v.ieee.negative; |
| 87 | _Float128 tiny = neg ? L(-0x1p-16494) : L(0x1p-16494); |
| 88 | if (w.ieee.exponent >= 3) |
| 89 | return tiny + z; |
| 90 | /* Scaling up, adding TINY and scaling down produces the |
| 91 | correct result, because in round-to-nearest mode adding |
| 92 | TINY has no effect and in other modes double rounding is |
| 93 | harmless. But it may not produce required underflow |
| 94 | exceptions. */ |
| 95 | v.d = z * L(0x1p114) + tiny; |
| 96 | if (TININESS_AFTER_ROUNDING |
| 97 | ? v.ieee.exponent < 115 |
| 98 | : (w.ieee.exponent == 0 |
| 99 | || (w.ieee.exponent == 1 |
| 100 | && w.ieee.negative != neg |
| 101 | && w.ieee.mantissa3 == 0 |
| 102 | && w.ieee.mantissa2 == 0 |
| 103 | && w.ieee.mantissa1 == 0 |
| 104 | && w.ieee.mantissa0 == 0))) |
| 105 | { |
| 106 | _Float128 force_underflow = x * y; |
| 107 | math_force_eval (force_underflow); |
| 108 | } |
| 109 | return v.d * L(0x1p-114); |
| 110 | } |
| 111 | if (u.ieee.exponent + v.ieee.exponent |
| 112 | >= 0x7fff + IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG) |
| 113 | { |
| 114 | /* Compute 1p-113 times smaller result and multiply |
| 115 | at the end. */ |
| 116 | if (u.ieee.exponent > v.ieee.exponent) |
| 117 | u.ieee.exponent -= LDBL_MANT_DIG; |
| 118 | else |
| 119 | v.ieee.exponent -= LDBL_MANT_DIG; |
| 120 | /* If x + y exponent is very large and z exponent is very small, |
| 121 | it doesn't matter if we don't adjust it. */ |
| 122 | if (w.ieee.exponent > LDBL_MANT_DIG) |
| 123 | w.ieee.exponent -= LDBL_MANT_DIG; |
| 124 | adjust = 1; |
| 125 | } |
| 126 | else if (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG) |
| 127 | { |
| 128 | /* Similarly. |
| 129 | If z exponent is very large and x and y exponents are |
| 130 | very small, adjust them up to avoid spurious underflows, |
| 131 | rather than down. */ |
| 132 | if (u.ieee.exponent + v.ieee.exponent |
| 133 | <= IEEE854_LONG_DOUBLE_BIAS + 2 * LDBL_MANT_DIG) |
| 134 | { |
| 135 | if (u.ieee.exponent > v.ieee.exponent) |
| 136 | u.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
| 137 | else |
| 138 | v.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
| 139 | } |
| 140 | else if (u.ieee.exponent > v.ieee.exponent) |
| 141 | { |
| 142 | if (u.ieee.exponent > LDBL_MANT_DIG) |
| 143 | u.ieee.exponent -= LDBL_MANT_DIG; |
| 144 | } |
| 145 | else if (v.ieee.exponent > LDBL_MANT_DIG) |
| 146 | v.ieee.exponent -= LDBL_MANT_DIG; |
| 147 | w.ieee.exponent -= LDBL_MANT_DIG; |
| 148 | adjust = 1; |
| 149 | } |
| 150 | else if (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG) |
| 151 | { |
| 152 | u.ieee.exponent -= LDBL_MANT_DIG; |
| 153 | if (v.ieee.exponent) |
| 154 | v.ieee.exponent += LDBL_MANT_DIG; |
| 155 | else |
| 156 | v.d *= L(0x1p113); |
| 157 | } |
| 158 | else if (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG) |
| 159 | { |
| 160 | v.ieee.exponent -= LDBL_MANT_DIG; |
| 161 | if (u.ieee.exponent) |
| 162 | u.ieee.exponent += LDBL_MANT_DIG; |
| 163 | else |
| 164 | u.d *= L(0x1p113); |
| 165 | } |
| 166 | else /* if (u.ieee.exponent + v.ieee.exponent |
| 167 | <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG) */ |
| 168 | { |
| 169 | if (u.ieee.exponent > v.ieee.exponent) |
| 170 | u.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
| 171 | else |
| 172 | v.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
| 173 | if (w.ieee.exponent <= 4 * LDBL_MANT_DIG + 6) |
| 174 | { |
| 175 | if (w.ieee.exponent) |
| 176 | w.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
| 177 | else |
| 178 | w.d *= L(0x1p228); |
| 179 | adjust = -1; |
| 180 | } |
| 181 | /* Otherwise x * y should just affect inexact |
| 182 | and nothing else. */ |
| 183 | } |
| 184 | x = u.d; |
| 185 | y = v.d; |
| 186 | z = w.d; |
| 187 | } |
| 188 | |
| 189 | /* Ensure correct sign of exact 0 + 0. */ |
| 190 | if (__glibc_unlikely ((x == 0 || y == 0) && z == 0)) |
| 191 | { |
| 192 | x = math_opt_barrier (x); |
| 193 | return x * y + z; |
| 194 | } |
| 195 | |
| 196 | fenv_t env; |
| 197 | feholdexcept (&env); |
| 198 | fesetround (FE_TONEAREST); |
| 199 | |
| 200 | /* Multiplication m1 + m2 = x * y using Dekker's algorithm. */ |
| 201 | #define C ((1LL << (LDBL_MANT_DIG + 1) / 2) + 1) |
| 202 | _Float128 x1 = x * C; |
| 203 | _Float128 y1 = y * C; |
| 204 | _Float128 m1 = x * y; |
| 205 | x1 = (x - x1) + x1; |
| 206 | y1 = (y - y1) + y1; |
| 207 | _Float128 x2 = x - x1; |
| 208 | _Float128 y2 = y - y1; |
| 209 | _Float128 m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2; |
| 210 | |
| 211 | /* Addition a1 + a2 = z + m1 using Knuth's algorithm. */ |
| 212 | _Float128 a1 = z + m1; |
| 213 | _Float128 t1 = a1 - z; |
| 214 | _Float128 t2 = a1 - t1; |
| 215 | t1 = m1 - t1; |
| 216 | t2 = z - t2; |
| 217 | _Float128 a2 = t1 + t2; |
| 218 | /* Ensure the arithmetic is not scheduled after feclearexcept call. */ |
| 219 | math_force_eval (m2); |
| 220 | math_force_eval (a2); |
| 221 | feclearexcept (FE_INEXACT); |
| 222 | |
| 223 | /* If the result is an exact zero, ensure it has the correct sign. */ |
| 224 | if (a1 == 0 && m2 == 0) |
| 225 | { |
| 226 | feupdateenv (&env); |
| 227 | /* Ensure that round-to-nearest value of z + m1 is not reused. */ |
| 228 | z = math_opt_barrier (z); |
| 229 | return z + m1; |
| 230 | } |
| 231 | |
| 232 | fesetround (FE_TOWARDZERO); |
| 233 | /* Perform m2 + a2 addition with round to odd. */ |
| 234 | u.d = a2 + m2; |
| 235 | |
| 236 | if (__glibc_likely (adjust == 0)) |
| 237 | { |
| 238 | if ((u.ieee.mantissa3 & 1) == 0 && u.ieee.exponent != 0x7fff) |
| 239 | u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0; |
| 240 | feupdateenv (&env); |
| 241 | /* Result is a1 + u.d. */ |
| 242 | return a1 + u.d; |
| 243 | } |
| 244 | else if (__glibc_likely (adjust > 0)) |
| 245 | { |
| 246 | if ((u.ieee.mantissa3 & 1) == 0 && u.ieee.exponent != 0x7fff) |
| 247 | u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0; |
| 248 | feupdateenv (&env); |
| 249 | /* Result is a1 + u.d, scaled up. */ |
| 250 | return (a1 + u.d) * L(0x1p113); |
| 251 | } |
| 252 | else |
| 253 | { |
| 254 | if ((u.ieee.mantissa3 & 1) == 0) |
| 255 | u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0; |
| 256 | v.d = a1 + u.d; |
| 257 | /* Ensure the addition is not scheduled after fetestexcept call. */ |
| 258 | math_force_eval (v.d); |
| 259 | int j = fetestexcept (FE_INEXACT) != 0; |
| 260 | feupdateenv (&env); |
| 261 | /* Ensure the following computations are performed in default rounding |
| 262 | mode instead of just reusing the round to zero computation. */ |
| 263 | asm volatile ("" : "=m" (u) : "m" (u)); |
| 264 | /* If a1 + u.d is exact, the only rounding happens during |
| 265 | scaling down. */ |
| 266 | if (j == 0) |
| 267 | return v.d * L(0x1p-228); |
| 268 | /* If result rounded to zero is not subnormal, no double |
| 269 | rounding will occur. */ |
| 270 | if (v.ieee.exponent > 228) |
| 271 | return (a1 + u.d) * L(0x1p-228); |
| 272 | /* If v.d * 0x1p-228L with round to zero is a subnormal above |
| 273 | or equal to LDBL_MIN / 2, then v.d * 0x1p-228L shifts mantissa |
| 274 | down just by 1 bit, which means v.ieee.mantissa3 |= j would |
| 275 | change the round bit, not sticky or guard bit. |
| 276 | v.d * 0x1p-228L never normalizes by shifting up, |
| 277 | so round bit plus sticky bit should be already enough |
| 278 | for proper rounding. */ |
| 279 | if (v.ieee.exponent == 228) |
| 280 | { |
| 281 | /* If the exponent would be in the normal range when |
| 282 | rounding to normal precision with unbounded exponent |
| 283 | range, the exact result is known and spurious underflows |
| 284 | must be avoided on systems detecting tininess after |
| 285 | rounding. */ |
| 286 | if (TININESS_AFTER_ROUNDING) |
| 287 | { |
| 288 | w.d = a1 + u.d; |
| 289 | if (w.ieee.exponent == 229) |
| 290 | return w.d * L(0x1p-228); |
| 291 | } |
| 292 | /* v.ieee.mantissa3 & 2 is LSB bit of the result before rounding, |
| 293 | v.ieee.mantissa3 & 1 is the round bit and j is our sticky |
| 294 | bit. */ |
| 295 | w.d = 0; |
| 296 | w.ieee.mantissa3 = ((v.ieee.mantissa3 & 3) << 1) | j; |
| 297 | w.ieee.negative = v.ieee.negative; |
| 298 | v.ieee.mantissa3 &= ~3U; |
| 299 | v.d *= L(0x1p-228); |
| 300 | w.d *= L(0x1p-2); |
| 301 | return v.d + w.d; |
| 302 | } |
| 303 | v.ieee.mantissa3 |= j; |
| 304 | return v.d * L(0x1p-228); |
| 305 | } |
| 306 | #endif /* ! USE_FMAL_BUILTIN */ |
| 307 | } |
| 308 | libm_alias_ldouble (__fma, fma) |
| 309 | libm_alias_ldouble_narrow (__fma, fma) |
| 310 | |