1 | /* |
2 | * IBM Accurate Mathematical Library |
3 | * written by International Business Machines Corp. |
4 | * Copyright (C) 2001-2022 Free Software Foundation, Inc. |
5 | * |
6 | * This program is free software; you can redistribute it and/or modify |
7 | * it under the terms of the GNU Lesser General Public License as published by |
8 | * the Free Software Foundation; either version 2.1 of the License, or |
9 | * (at your option) any later version. |
10 | * |
11 | * This program is distributed in the hope that it will be useful, |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | * GNU Lesser General Public License for more details. |
15 | * |
16 | * You should have received a copy of the GNU Lesser General Public License |
17 | * along with this program; if not, see <https://www.gnu.org/licenses/>. |
18 | */ |
19 | /****************************************************************************/ |
20 | /* */ |
21 | /* MODULE_NAME:usncs.c */ |
22 | /* */ |
23 | /* FUNCTIONS: usin */ |
24 | /* ucos */ |
25 | /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h usncs.h */ |
26 | /* branred.c sincos.tbl */ |
27 | /* */ |
28 | /* An ultimate sin and cos routine. Given an IEEE double machine number x */ |
29 | /* it computes sin(x) or cos(x) with ~0.55 ULP. */ |
30 | /* Assumption: Machine arithmetic operations are performed in */ |
31 | /* round to nearest mode of IEEE 754 standard. */ |
32 | /* */ |
33 | /****************************************************************************/ |
34 | |
35 | |
36 | #include <errno.h> |
37 | #include <float.h> |
38 | #include "endian.h" |
39 | #include "mydefs.h" |
40 | #include "usncs.h" |
41 | #include <math.h> |
42 | #include <math_private.h> |
43 | #include <fenv_private.h> |
44 | #include <math-underflow.h> |
45 | #include <libm-alias-double.h> |
46 | #include <fenv.h> |
47 | |
48 | /* Helper macros to compute sin of the input values. */ |
49 | #define POLYNOMIAL2(xx) ((((s5 * (xx) + s4) * (xx) + s3) * (xx) + s2) * (xx)) |
50 | |
51 | #define POLYNOMIAL(xx) (POLYNOMIAL2 (xx) + s1) |
52 | |
53 | /* The computed polynomial is a variation of the Taylor series expansion for |
54 | sin(x): |
55 | |
56 | x - x^3/3! + x^5/5! - x^7/7! + x^9/9! - dx*x^2/2 + dx |
57 | |
58 | The constants s1, s2, s3, etc. are pre-computed values of 1/3!, 1/5! and so |
59 | on. The result is returned to LHS. */ |
60 | #define TAYLOR_SIN(xx, x, dx) \ |
61 | ({ \ |
62 | double t = ((POLYNOMIAL (xx) * (x) - 0.5 * (dx)) * (xx) + (dx)); \ |
63 | double res = (x) + t; \ |
64 | res; \ |
65 | }) |
66 | |
67 | #define SINCOS_TABLE_LOOKUP(u, sn, ssn, cs, ccs) \ |
68 | ({ \ |
69 | int4 k = u.i[LOW_HALF] << 2; \ |
70 | sn = __sincostab.x[k]; \ |
71 | ssn = __sincostab.x[k + 1]; \ |
72 | cs = __sincostab.x[k + 2]; \ |
73 | ccs = __sincostab.x[k + 3]; \ |
74 | }) |
75 | |
76 | #ifndef SECTION |
77 | # define SECTION |
78 | #endif |
79 | |
80 | extern const union |
81 | { |
82 | int4 i[880]; |
83 | double x[440]; |
84 | } __sincostab attribute_hidden; |
85 | |
86 | static const double |
87 | sn3 = -1.66666666666664880952546298448555E-01, |
88 | sn5 = 8.33333214285722277379541354343671E-03, |
89 | cs2 = 4.99999999999999999999950396842453E-01, |
90 | cs4 = -4.16666666666664434524222570944589E-02, |
91 | cs6 = 1.38888874007937613028114285595617E-03; |
92 | |
93 | int __branred (double x, double *a, double *aa); |
94 | |
95 | /* Given a number partitioned into X and DX, this function computes the cosine |
96 | of the number by combining the sin and cos of X (as computed by a variation |
97 | of the Taylor series) with the values looked up from the sin/cos table to |
98 | get the result. */ |
99 | static __always_inline double |
100 | do_cos (double x, double dx) |
101 | { |
102 | mynumber u; |
103 | |
104 | if (x < 0) |
105 | dx = -dx; |
106 | |
107 | u.x = big + fabs (x); |
108 | x = fabs (x) - (u.x - big) + dx; |
109 | |
110 | double xx, s, sn, ssn, c, cs, ccs, cor; |
111 | xx = x * x; |
112 | s = x + x * xx * (sn3 + xx * sn5); |
113 | c = xx * (cs2 + xx * (cs4 + xx * cs6)); |
114 | SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs); |
115 | cor = (ccs - s * ssn - cs * c) - sn * s; |
116 | return cs + cor; |
117 | } |
118 | |
119 | /* Given a number partitioned into X and DX, this function computes the sine of |
120 | the number by combining the sin and cos of X (as computed by a variation of |
121 | the Taylor series) with the values looked up from the sin/cos table to get |
122 | the result. */ |
123 | static __always_inline double |
124 | do_sin (double x, double dx) |
125 | { |
126 | double xold = x; |
127 | /* Max ULP is 0.501 if |x| < 0.126, otherwise ULP is 0.518. */ |
128 | if (fabs (x) < 0.126) |
129 | return TAYLOR_SIN (x * x, x, dx); |
130 | |
131 | mynumber u; |
132 | |
133 | if (x <= 0) |
134 | dx = -dx; |
135 | u.x = big + fabs (x); |
136 | x = fabs (x) - (u.x - big); |
137 | |
138 | double xx, s, sn, ssn, c, cs, ccs, cor; |
139 | xx = x * x; |
140 | s = x + (dx + x * xx * (sn3 + xx * sn5)); |
141 | c = x * dx + xx * (cs2 + xx * (cs4 + xx * cs6)); |
142 | SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs); |
143 | cor = (ssn + s * ccs - sn * c) + cs * s; |
144 | return copysign (sn + cor, xold); |
145 | } |
146 | |
147 | /* Reduce range of x to within PI/2 with abs (x) < 105414350. The high part |
148 | is written to *a, the low part to *da. Range reduction is accurate to 136 |
149 | bits so that when x is large and *a very close to zero, all 53 bits of *a |
150 | are correct. */ |
151 | static __always_inline int4 |
152 | reduce_sincos (double x, double *a, double *da) |
153 | { |
154 | mynumber v; |
155 | |
156 | double t = (x * hpinv + toint); |
157 | double xn = t - toint; |
158 | v.x = t; |
159 | double y = (x - xn * mp1) - xn * mp2; |
160 | int4 n = v.i[LOW_HALF] & 3; |
161 | |
162 | double b, db, t1, t2; |
163 | t1 = xn * pp3; |
164 | t2 = y - t1; |
165 | db = (y - t2) - t1; |
166 | |
167 | t1 = xn * pp4; |
168 | b = t2 - t1; |
169 | db += (t2 - b) - t1; |
170 | |
171 | *a = b; |
172 | *da = db; |
173 | return n; |
174 | } |
175 | |
176 | /* Compute sin or cos (A + DA) for the given quadrant N. */ |
177 | static __always_inline double |
178 | do_sincos (double a, double da, int4 n) |
179 | { |
180 | double retval; |
181 | |
182 | if (n & 1) |
183 | /* Max ULP is 0.513. */ |
184 | retval = do_cos (a, da); |
185 | else |
186 | /* Max ULP is 0.501 if xx < 0.01588, otherwise ULP is 0.518. */ |
187 | retval = do_sin (a, da); |
188 | |
189 | return (n & 2) ? -retval : retval; |
190 | } |
191 | |
192 | |
193 | /*******************************************************************/ |
194 | /* An ultimate sin routine. Given an IEEE double machine number x */ |
195 | /* it computes the rounded value of sin(x). */ |
196 | /*******************************************************************/ |
197 | #ifndef IN_SINCOS |
198 | double |
199 | SECTION |
200 | __sin (double x) |
201 | { |
202 | double t, a, da; |
203 | mynumber u; |
204 | int4 k, m, n; |
205 | double retval = 0; |
206 | |
207 | SET_RESTORE_ROUND_53BIT (FE_TONEAREST); |
208 | |
209 | u.x = x; |
210 | m = u.i[HIGH_HALF]; |
211 | k = 0x7fffffff & m; /* no sign */ |
212 | if (k < 0x3e500000) /* if x->0 =>sin(x)=x */ |
213 | { |
214 | math_check_force_underflow (x); |
215 | retval = x; |
216 | } |
217 | /*--------------------------- 2^-26<|x|< 0.855469---------------------- */ |
218 | else if (k < 0x3feb6000) |
219 | { |
220 | /* Max ULP is 0.548. */ |
221 | retval = do_sin (x, 0); |
222 | } /* else if (k < 0x3feb6000) */ |
223 | |
224 | /*----------------------- 0.855469 <|x|<2.426265 ----------------------*/ |
225 | else if (k < 0x400368fd) |
226 | { |
227 | t = hp0 - fabs (x); |
228 | /* Max ULP is 0.51. */ |
229 | retval = copysign (do_cos (t, hp1), x); |
230 | } /* else if (k < 0x400368fd) */ |
231 | |
232 | /*-------------------------- 2.426265<|x|< 105414350 ----------------------*/ |
233 | else if (k < 0x419921FB) |
234 | { |
235 | n = reduce_sincos (x, &a, &da); |
236 | retval = do_sincos (a, da, n); |
237 | } /* else if (k < 0x419921FB ) */ |
238 | |
239 | /* --------------------105414350 <|x| <2^1024------------------------------*/ |
240 | else if (k < 0x7ff00000) |
241 | { |
242 | n = __branred (x, &a, &da); |
243 | retval = do_sincos (a, da, n); |
244 | } |
245 | /*--------------------- |x| > 2^1024 ----------------------------------*/ |
246 | else |
247 | { |
248 | if (k == 0x7ff00000 && u.i[LOW_HALF] == 0) |
249 | __set_errno (EDOM); |
250 | retval = x / x; |
251 | } |
252 | |
253 | return retval; |
254 | } |
255 | |
256 | |
257 | /*******************************************************************/ |
258 | /* An ultimate cos routine. Given an IEEE double machine number x */ |
259 | /* it computes the rounded value of cos(x). */ |
260 | /*******************************************************************/ |
261 | |
262 | double |
263 | SECTION |
264 | __cos (double x) |
265 | { |
266 | double y, a, da; |
267 | mynumber u; |
268 | int4 k, m, n; |
269 | |
270 | double retval = 0; |
271 | |
272 | SET_RESTORE_ROUND_53BIT (FE_TONEAREST); |
273 | |
274 | u.x = x; |
275 | m = u.i[HIGH_HALF]; |
276 | k = 0x7fffffff & m; |
277 | |
278 | /* |x|<2^-27 => cos(x)=1 */ |
279 | if (k < 0x3e400000) |
280 | retval = 1.0; |
281 | |
282 | else if (k < 0x3feb6000) |
283 | { /* 2^-27 < |x| < 0.855469 */ |
284 | /* Max ULP is 0.51. */ |
285 | retval = do_cos (x, 0); |
286 | } /* else if (k < 0x3feb6000) */ |
287 | |
288 | else if (k < 0x400368fd) |
289 | { /* 0.855469 <|x|<2.426265 */ ; |
290 | y = hp0 - fabs (x); |
291 | a = y + hp1; |
292 | da = (y - a) + hp1; |
293 | /* Max ULP is 0.501 if xx < 0.01588 or 0.518 otherwise. |
294 | Range reduction uses 106 bits here which is sufficient. */ |
295 | retval = do_sin (a, da); |
296 | } /* else if (k < 0x400368fd) */ |
297 | |
298 | else if (k < 0x419921FB) |
299 | { /* 2.426265<|x|< 105414350 */ |
300 | n = reduce_sincos (x, &a, &da); |
301 | retval = do_sincos (a, da, n + 1); |
302 | } /* else if (k < 0x419921FB ) */ |
303 | |
304 | /* 105414350 <|x| <2^1024 */ |
305 | else if (k < 0x7ff00000) |
306 | { |
307 | n = __branred (x, &a, &da); |
308 | retval = do_sincos (a, da, n + 1); |
309 | } |
310 | |
311 | else |
312 | { |
313 | if (k == 0x7ff00000 && u.i[LOW_HALF] == 0) |
314 | __set_errno (EDOM); |
315 | retval = x / x; /* |x| > 2^1024 */ |
316 | } |
317 | |
318 | return retval; |
319 | } |
320 | |
321 | #ifndef __cos |
322 | libm_alias_double (__cos, cos) |
323 | #endif |
324 | #ifndef __sin |
325 | libm_alias_double (__sin, sin) |
326 | #endif |
327 | |
328 | #endif |
329 | |