| 1 | /* Euclidean distance function. Double/Binary64 version. |
| 2 | Copyright (C) 2021-2022 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | /* The implementation uses a correction based on 'An Improved Algorithm for |
| 20 | hypot(a,b)' by Carlos F. Borges [1] usingthe MyHypot3 with the following |
| 21 | changes: |
| 22 | |
| 23 | - Handle qNaN and sNaN. |
| 24 | - Tune the 'widely varying operands' to avoid spurious underflow |
| 25 | due the multiplication and fix the return value for upwards |
| 26 | rounding mode. |
| 27 | - Handle required underflow exception for subnormal results. |
| 28 | |
| 29 | The expected ULP is ~0.792 or ~0.948 if FMA is used. For FMA, the |
| 30 | correction is not used and the error of sqrt (x^2 + y^2) is below 1 ULP |
| 31 | if x^2 + y^2 is computed with less than 0.707 ULP error. If |x| >= |2y|, |
| 32 | fma (x, x, y^2) has ~0.625 ULP. If |x| < |2y|, fma (|2x|, |y|, (x - y)^2) |
| 33 | has ~0.625 ULP. |
| 34 | |
| 35 | [1] https://arxiv.org/pdf/1904.09481.pdf */ |
| 36 | |
| 37 | #include <errno.h> |
| 38 | #include <math.h> |
| 39 | #include <math_private.h> |
| 40 | #include <math-underflow.h> |
| 41 | #include <math-narrow-eval.h> |
| 42 | #include <math-use-builtins.h> |
| 43 | #include <math-svid-compat.h> |
| 44 | #include <libm-alias-finite.h> |
| 45 | #include <libm-alias-double.h> |
| 46 | #include "math_config.h" |
| 47 | |
| 48 | #define SCALE 0x1p-600 |
| 49 | #define LARGE_VAL 0x1p+511 |
| 50 | #define TINY_VAL 0x1p-459 |
| 51 | #define EPS 0x1p-54 |
| 52 | |
| 53 | static inline double |
| 54 | handle_errno (double r) |
| 55 | { |
| 56 | if (isinf (r)) |
| 57 | __set_errno (ERANGE); |
| 58 | return r; |
| 59 | } |
| 60 | |
| 61 | /* Hypot kernel. The inputs must be adjusted so that ax >= ay >= 0 |
| 62 | and squaring ax, ay and (ax - ay) does not overflow or underflow. */ |
| 63 | static inline double |
| 64 | kernel (double ax, double ay) |
| 65 | { |
| 66 | double t1, t2; |
| 67 | #ifdef __FP_FAST_FMA |
| 68 | t1 = ay + ay; |
| 69 | t2 = ax - ay; |
| 70 | |
| 71 | if (t1 >= ax) |
| 72 | return sqrt (fma (t1, ax, t2 * t2)); |
| 73 | else |
| 74 | return sqrt (fma (ax, ax, ay * ay)); |
| 75 | |
| 76 | #else |
| 77 | double h = sqrt (ax * ax + ay * ay); |
| 78 | if (h <= 2.0 * ay) |
| 79 | { |
| 80 | double delta = h - ay; |
| 81 | t1 = ax * (2.0 * delta - ax); |
| 82 | t2 = (delta - 2.0 * (ax - ay)) * delta; |
| 83 | } |
| 84 | else |
| 85 | { |
| 86 | double delta = h - ax; |
| 87 | t1 = 2.0 * delta * (ax - 2.0 * ay); |
| 88 | t2 = (4.0 * delta - ay) * ay + delta * delta; |
| 89 | } |
| 90 | |
| 91 | h -= (t1 + t2) / (2.0 * h); |
| 92 | return h; |
| 93 | #endif |
| 94 | } |
| 95 | |
| 96 | double |
| 97 | __hypot (double x, double y) |
| 98 | { |
| 99 | if (!isfinite(x) || !isfinite(y)) |
| 100 | { |
| 101 | if ((isinf (x) || isinf (y)) |
| 102 | && !issignaling_inline (x) && !issignaling_inline (y)) |
| 103 | return INFINITY; |
| 104 | return x + y; |
| 105 | } |
| 106 | |
| 107 | x = fabs (x); |
| 108 | y = fabs (y); |
| 109 | |
| 110 | double ax = USE_FMAX_BUILTIN ? fmax (x, y) : (x < y ? y : x); |
| 111 | double ay = USE_FMIN_BUILTIN ? fmin (x, y) : (x < y ? x : y); |
| 112 | |
| 113 | /* If ax is huge, scale both inputs down. */ |
| 114 | if (__glibc_unlikely (ax > LARGE_VAL)) |
| 115 | { |
| 116 | if (__glibc_unlikely (ay <= ax * EPS)) |
| 117 | return handle_errno (math_narrow_eval (ax + ay)); |
| 118 | |
| 119 | return handle_errno (math_narrow_eval (kernel (ax * SCALE, ay * SCALE) |
| 120 | / SCALE)); |
| 121 | } |
| 122 | |
| 123 | /* If ay is tiny, scale both inputs up. */ |
| 124 | if (__glibc_unlikely (ay < TINY_VAL)) |
| 125 | { |
| 126 | if (__glibc_unlikely (ax >= ay / EPS)) |
| 127 | return math_narrow_eval (ax + ay); |
| 128 | |
| 129 | ax = math_narrow_eval (kernel (ax / SCALE, ay / SCALE) * SCALE); |
| 130 | math_check_force_underflow_nonneg (ax); |
| 131 | return ax; |
| 132 | } |
| 133 | |
| 134 | /* Common case: ax is not huge and ay is not tiny. */ |
| 135 | if (__glibc_unlikely (ay <= ax * EPS)) |
| 136 | return ax + ay; |
| 137 | |
| 138 | return kernel (ax, ay); |
| 139 | } |
| 140 | strong_alias (__hypot, __ieee754_hypot) |
| 141 | libm_alias_finite (__ieee754_hypot, __hypot) |
| 142 | #if LIBM_SVID_COMPAT |
| 143 | versioned_symbol (libm, __hypot, hypot, GLIBC_2_35); |
| 144 | libm_alias_double_other (__hypot, hypot) |
| 145 | #else |
| 146 | libm_alias_double (__hypot, hypot) |
| 147 | #endif |
| 148 | |