| 1 | /* |
| 2 | * IBM Accurate Mathematical Library |
| 3 | * written by International Business Machines Corp. |
| 4 | * Copyright (C) 2001-2022 Free Software Foundation, Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU Lesser General Public License as published by |
| 8 | * the Free Software Foundation; either version 2.1 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU Lesser General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU Lesser General Public License |
| 17 | * along with this program; if not, see <https://www.gnu.org/licenses/>. |
| 18 | */ |
| 19 | /************************************************************************/ |
| 20 | /* MODULE_NAME: atnat2.c */ |
| 21 | /* */ |
| 22 | /* FUNCTIONS: uatan2 */ |
| 23 | /* signArctan2 */ |
| 24 | /* */ |
| 25 | /* FILES NEEDED: dla.h endian.h mydefs.h atnat2.h */ |
| 26 | /* uatan.tbl */ |
| 27 | /* */ |
| 28 | /************************************************************************/ |
| 29 | |
| 30 | #include <dla.h> |
| 31 | #include "mydefs.h" |
| 32 | #include "uatan.tbl" |
| 33 | #include "atnat2.h" |
| 34 | #include <fenv.h> |
| 35 | #include <float.h> |
| 36 | #include <math.h> |
| 37 | #include <math-barriers.h> |
| 38 | #include <math_private.h> |
| 39 | #include <fenv_private.h> |
| 40 | #include <libm-alias-finite.h> |
| 41 | |
| 42 | #ifndef SECTION |
| 43 | # define SECTION |
| 44 | #endif |
| 45 | |
| 46 | #define TWO52 0x1.0p52 |
| 47 | #define TWOM1022 0x1.0p-1022 |
| 48 | |
| 49 | /* Fix the sign and return after stage 1 or stage 2 */ |
| 50 | static double |
| 51 | signArctan2 (double y, double z) |
| 52 | { |
| 53 | return copysign (z, y); |
| 54 | } |
| 55 | |
| 56 | /* atan2 with max ULP of ~0.524 based on random sampling. */ |
| 57 | double |
| 58 | SECTION |
| 59 | __ieee754_atan2 (double y, double x) |
| 60 | { |
| 61 | int i, de, ux, dx, uy, dy; |
| 62 | double ax, ay, u, du, v, vv, dv, t1, t2, t3, |
| 63 | z, zz, cor; |
| 64 | mynumber num; |
| 65 | |
| 66 | static const int ep = 59768832, /* 57*16**5 */ |
| 67 | em = -59768832; /* -57*16**5 */ |
| 68 | |
| 69 | /* x=NaN or y=NaN */ |
| 70 | num.d = x; |
| 71 | ux = num.i[HIGH_HALF]; |
| 72 | dx = num.i[LOW_HALF]; |
| 73 | if ((ux & 0x7ff00000) == 0x7ff00000) |
| 74 | { |
| 75 | if (((ux & 0x000fffff) | dx) != 0x00000000) |
| 76 | return x + y; |
| 77 | } |
| 78 | num.d = y; |
| 79 | uy = num.i[HIGH_HALF]; |
| 80 | dy = num.i[LOW_HALF]; |
| 81 | if ((uy & 0x7ff00000) == 0x7ff00000) |
| 82 | { |
| 83 | if (((uy & 0x000fffff) | dy) != 0x00000000) |
| 84 | return y + y; |
| 85 | } |
| 86 | |
| 87 | /* y=+-0 */ |
| 88 | if (uy == 0x00000000) |
| 89 | { |
| 90 | if (dy == 0x00000000) |
| 91 | { |
| 92 | if ((ux & 0x80000000) == 0x00000000) |
| 93 | return 0; |
| 94 | else |
| 95 | return opi.d; |
| 96 | } |
| 97 | } |
| 98 | else if (uy == 0x80000000) |
| 99 | { |
| 100 | if (dy == 0x00000000) |
| 101 | { |
| 102 | if ((ux & 0x80000000) == 0x00000000) |
| 103 | return -0.0; |
| 104 | else |
| 105 | return mopi.d; |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | /* x=+-0 */ |
| 110 | if (x == 0) |
| 111 | { |
| 112 | if ((uy & 0x80000000) == 0x00000000) |
| 113 | return hpi.d; |
| 114 | else |
| 115 | return mhpi.d; |
| 116 | } |
| 117 | |
| 118 | /* x=+-INF */ |
| 119 | if (ux == 0x7ff00000) |
| 120 | { |
| 121 | if (dx == 0x00000000) |
| 122 | { |
| 123 | if (uy == 0x7ff00000) |
| 124 | { |
| 125 | if (dy == 0x00000000) |
| 126 | return qpi.d; |
| 127 | } |
| 128 | else if (uy == 0xfff00000) |
| 129 | { |
| 130 | if (dy == 0x00000000) |
| 131 | return mqpi.d; |
| 132 | } |
| 133 | else |
| 134 | { |
| 135 | if ((uy & 0x80000000) == 0x00000000) |
| 136 | return 0; |
| 137 | else |
| 138 | return -0.0; |
| 139 | } |
| 140 | } |
| 141 | } |
| 142 | else if (ux == 0xfff00000) |
| 143 | { |
| 144 | if (dx == 0x00000000) |
| 145 | { |
| 146 | if (uy == 0x7ff00000) |
| 147 | { |
| 148 | if (dy == 0x00000000) |
| 149 | return tqpi.d; |
| 150 | } |
| 151 | else if (uy == 0xfff00000) |
| 152 | { |
| 153 | if (dy == 0x00000000) |
| 154 | return mtqpi.d; |
| 155 | } |
| 156 | else |
| 157 | { |
| 158 | if ((uy & 0x80000000) == 0x00000000) |
| 159 | return opi.d; |
| 160 | else |
| 161 | return mopi.d; |
| 162 | } |
| 163 | } |
| 164 | } |
| 165 | |
| 166 | /* y=+-INF */ |
| 167 | if (uy == 0x7ff00000) |
| 168 | { |
| 169 | if (dy == 0x00000000) |
| 170 | return hpi.d; |
| 171 | } |
| 172 | else if (uy == 0xfff00000) |
| 173 | { |
| 174 | if (dy == 0x00000000) |
| 175 | return mhpi.d; |
| 176 | } |
| 177 | |
| 178 | SET_RESTORE_ROUND (FE_TONEAREST); |
| 179 | /* either x/y or y/x is very close to zero */ |
| 180 | ax = (x < 0) ? -x : x; |
| 181 | ay = (y < 0) ? -y : y; |
| 182 | de = (uy & 0x7ff00000) - (ux & 0x7ff00000); |
| 183 | if (de >= ep) |
| 184 | { |
| 185 | return ((y > 0) ? hpi.d : mhpi.d); |
| 186 | } |
| 187 | else if (de <= em) |
| 188 | { |
| 189 | if (x > 0) |
| 190 | { |
| 191 | double ret; |
| 192 | z = ay / ax; |
| 193 | ret = signArctan2 (y, z); |
| 194 | if (fabs (ret) < DBL_MIN) |
| 195 | { |
| 196 | double vret = ret ? ret : DBL_MIN; |
| 197 | double force_underflow = vret * vret; |
| 198 | math_force_eval (force_underflow); |
| 199 | } |
| 200 | return ret; |
| 201 | } |
| 202 | else |
| 203 | { |
| 204 | return ((y > 0) ? opi.d : mopi.d); |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | /* if either x or y is extremely close to zero, scale abs(x), abs(y). */ |
| 209 | if (ax < twom500.d || ay < twom500.d) |
| 210 | { |
| 211 | ax *= two500.d; |
| 212 | ay *= two500.d; |
| 213 | } |
| 214 | |
| 215 | /* Likewise for large x and y. */ |
| 216 | if (ax > two500.d || ay > two500.d) |
| 217 | { |
| 218 | ax *= twom500.d; |
| 219 | ay *= twom500.d; |
| 220 | } |
| 221 | |
| 222 | /* x,y which are neither special nor extreme */ |
| 223 | if (ay < ax) |
| 224 | { |
| 225 | u = ay / ax; |
| 226 | EMULV (ax, u, v, vv); |
| 227 | du = ((ay - v) - vv) / ax; |
| 228 | } |
| 229 | else |
| 230 | { |
| 231 | u = ax / ay; |
| 232 | EMULV (ay, u, v, vv); |
| 233 | du = ((ax - v) - vv) / ay; |
| 234 | } |
| 235 | |
| 236 | if (x > 0) |
| 237 | { |
| 238 | /* (i) x>0, abs(y)< abs(x): atan(ay/ax) */ |
| 239 | if (ay < ax) |
| 240 | { |
| 241 | if (u < inv16.d) |
| 242 | { |
| 243 | v = u * u; |
| 244 | |
| 245 | zz = du + u * v * (d3.d |
| 246 | + v * (d5.d |
| 247 | + v * (d7.d |
| 248 | + v * (d9.d |
| 249 | + v * (d11.d |
| 250 | + v * d13.d))))); |
| 251 | |
| 252 | z = u + zz; |
| 253 | /* Max ULP is 0.504. */ |
| 254 | return signArctan2 (y, z); |
| 255 | } |
| 256 | |
| 257 | i = (TWO52 + 256 * u) - TWO52; |
| 258 | i -= 16; |
| 259 | t3 = u - cij[i][0].d; |
| 260 | EADD (t3, du, v, dv); |
| 261 | t1 = cij[i][1].d; |
| 262 | t2 = cij[i][2].d; |
| 263 | zz = v * t2 + (dv * t2 |
| 264 | + v * v * (cij[i][3].d |
| 265 | + v * (cij[i][4].d |
| 266 | + v * (cij[i][5].d |
| 267 | + v * cij[i][6].d)))); |
| 268 | z = t1 + zz; |
| 269 | /* Max ULP is 0.56. */ |
| 270 | return signArctan2 (y, z); |
| 271 | } |
| 272 | |
| 273 | /* (ii) x>0, abs(x)<=abs(y): pi/2-atan(ax/ay) */ |
| 274 | if (u < inv16.d) |
| 275 | { |
| 276 | v = u * u; |
| 277 | zz = u * v * (d3.d |
| 278 | + v * (d5.d |
| 279 | + v * (d7.d |
| 280 | + v * (d9.d |
| 281 | + v * (d11.d |
| 282 | + v * d13.d))))); |
| 283 | ESUB (hpi.d, u, t2, cor); |
| 284 | t3 = ((hpi1.d + cor) - du) - zz; |
| 285 | z = t2 + t3; |
| 286 | /* Max ULP is 0.501. */ |
| 287 | return signArctan2 (y, z); |
| 288 | } |
| 289 | |
| 290 | i = (TWO52 + 256 * u) - TWO52; |
| 291 | i -= 16; |
| 292 | v = (u - cij[i][0].d) + du; |
| 293 | |
| 294 | zz = hpi1.d - v * (cij[i][2].d |
| 295 | + v * (cij[i][3].d |
| 296 | + v * (cij[i][4].d |
| 297 | + v * (cij[i][5].d |
| 298 | + v * cij[i][6].d)))); |
| 299 | t1 = hpi.d - cij[i][1].d; |
| 300 | z = t1 + zz; |
| 301 | /* Max ULP is 0.503. */ |
| 302 | return signArctan2 (y, z); |
| 303 | } |
| 304 | |
| 305 | /* (iii) x<0, abs(x)< abs(y): pi/2+atan(ax/ay) */ |
| 306 | if (ax < ay) |
| 307 | { |
| 308 | if (u < inv16.d) |
| 309 | { |
| 310 | v = u * u; |
| 311 | zz = u * v * (d3.d |
| 312 | + v * (d5.d |
| 313 | + v * (d7.d |
| 314 | + v * (d9.d |
| 315 | + v * (d11.d + v * d13.d))))); |
| 316 | EADD (hpi.d, u, t2, cor); |
| 317 | t3 = ((hpi1.d + cor) + du) + zz; |
| 318 | z = t2 + t3; |
| 319 | /* Max ULP is 0.501. */ |
| 320 | return signArctan2 (y, z); |
| 321 | } |
| 322 | |
| 323 | i = (TWO52 + 256 * u) - TWO52; |
| 324 | i -= 16; |
| 325 | v = (u - cij[i][0].d) + du; |
| 326 | zz = hpi1.d + v * (cij[i][2].d |
| 327 | + v * (cij[i][3].d |
| 328 | + v * (cij[i][4].d |
| 329 | + v * (cij[i][5].d |
| 330 | + v * cij[i][6].d)))); |
| 331 | t1 = hpi.d + cij[i][1].d; |
| 332 | z = t1 + zz; |
| 333 | /* Max ULP is 0.503. */ |
| 334 | return signArctan2 (y, z); |
| 335 | } |
| 336 | |
| 337 | /* (iv) x<0, abs(y)<=abs(x): pi-atan(ax/ay) */ |
| 338 | if (u < inv16.d) |
| 339 | { |
| 340 | v = u * u; |
| 341 | zz = u * v * (d3.d |
| 342 | + v * (d5.d |
| 343 | + v * (d7.d |
| 344 | + v * (d9.d + v * (d11.d + v * d13.d))))); |
| 345 | ESUB (opi.d, u, t2, cor); |
| 346 | t3 = ((opi1.d + cor) - du) - zz; |
| 347 | z = t2 + t3; |
| 348 | /* Max ULP is 0.501. */ |
| 349 | return signArctan2 (y, z); |
| 350 | } |
| 351 | |
| 352 | i = (TWO52 + 256 * u) - TWO52; |
| 353 | i -= 16; |
| 354 | v = (u - cij[i][0].d) + du; |
| 355 | zz = opi1.d - v * (cij[i][2].d |
| 356 | + v * (cij[i][3].d |
| 357 | + v * (cij[i][4].d |
| 358 | + v * (cij[i][5].d + v * cij[i][6].d)))); |
| 359 | t1 = opi.d - cij[i][1].d; |
| 360 | z = t1 + zz; |
| 361 | /* Max ULP is 0.502. */ |
| 362 | return signArctan2 (y, z); |
| 363 | } |
| 364 | |
| 365 | #ifndef __ieee754_atan2 |
| 366 | libm_alias_finite (__ieee754_atan2, __atan2) |
| 367 | #endif |
| 368 | |