1 | /* |
2 | * IBM Accurate Mathematical Library |
3 | * Copyright (C) 2001-2022 Free Software Foundation, Inc. |
4 | * |
5 | * This program is free software; you can redistribute it and/or modify |
6 | * it under the terms of the GNU Lesser General Public License as published by |
7 | * the Free Software Foundation; either version 2.1 of the License, or |
8 | * (at your option) any later version. |
9 | * |
10 | * This program is distributed in the hope that it will be useful, |
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | * GNU Lesser General Public License for more details. |
14 | * |
15 | * You should have received a copy of the GNU Lesser General Public License |
16 | * along with this program; if not, see <https://www.gnu.org/licenses/>. |
17 | */ |
18 | /*******************************************************************/ |
19 | /* */ |
20 | /* MODULE_NAME: branred.c */ |
21 | /* */ |
22 | /* FUNCTIONS: branred */ |
23 | /* */ |
24 | /* FILES NEEDED: branred.h mydefs.h endian.h mpa.h */ |
25 | /* mha.c */ |
26 | /* */ |
27 | /* Routine branred() performs range reduction of a double number */ |
28 | /* x into Double length number a+aa,such that */ |
29 | /* x=n*pi/2+(a+aa), abs(a+aa)<pi/4, n=0,+-1,+-2,.... */ |
30 | /* Routine returns the integer (n mod 4) of the above description */ |
31 | /* of x. */ |
32 | /*******************************************************************/ |
33 | |
34 | #include "endian.h" |
35 | #include "mydefs.h" |
36 | #include "branred.h" |
37 | #include <math.h> |
38 | #include <math_private.h> |
39 | |
40 | #ifndef SECTION |
41 | # define SECTION |
42 | #endif |
43 | |
44 | |
45 | /*******************************************************************/ |
46 | /* Routine branred() performs range reduction of a double number */ |
47 | /* x into Double length number a+aa,such that */ |
48 | /* x=n*pi/2+(a+aa), abs(a+aa)<pi/4, n=0,+-1,+-2,.... */ |
49 | /* Routine return integer (n mod 4) */ |
50 | /*******************************************************************/ |
51 | int |
52 | SECTION |
53 | __branred(double x, double *a, double *aa) |
54 | { |
55 | int i,k; |
56 | mynumber u,gor; |
57 | double r[6],s,t,sum,b,bb,sum1,sum2,b1,bb1,b2,bb2,x1,x2,t1,t2; |
58 | |
59 | x*=tm600.x; |
60 | t=x*split; /* split x to two numbers */ |
61 | x1=t-(t-x); |
62 | x2=x-x1; |
63 | sum=0; |
64 | u.x = x1; |
65 | k = (u.i[HIGH_HALF]>>20)&2047; |
66 | k = (k-450)/24; |
67 | if (k<0) |
68 | k=0; |
69 | gor.x = t576.x; |
70 | gor.i[HIGH_HALF] -= ((k*24)<<20); |
71 | for (i=0;i<6;i++) |
72 | { r[i] = x1*toverp[k+i]*gor.x; gor.x *= tm24.x; } |
73 | for (i=0;i<3;i++) { |
74 | s=(r[i]+big.x)-big.x; |
75 | sum+=s; |
76 | r[i]-=s; |
77 | } |
78 | t=0; |
79 | for (i=0;i<6;i++) |
80 | t+=r[5-i]; |
81 | bb=(((((r[0]-t)+r[1])+r[2])+r[3])+r[4])+r[5]; |
82 | s=(t+big.x)-big.x; |
83 | sum+=s; |
84 | t-=s; |
85 | b=t+bb; |
86 | bb=(t-b)+bb; |
87 | s=(sum+big1.x)-big1.x; |
88 | sum-=s; |
89 | b1=b; |
90 | bb1=bb; |
91 | sum1=sum; |
92 | sum=0; |
93 | |
94 | u.x = x2; |
95 | k = (u.i[HIGH_HALF]>>20)&2047; |
96 | k = (k-450)/24; |
97 | if (k<0) |
98 | k=0; |
99 | gor.x = t576.x; |
100 | gor.i[HIGH_HALF] -= ((k*24)<<20); |
101 | for (i=0;i<6;i++) |
102 | { r[i] = x2*toverp[k+i]*gor.x; gor.x *= tm24.x; } |
103 | for (i=0;i<3;i++) { |
104 | s=(r[i]+big.x)-big.x; |
105 | sum+=s; |
106 | r[i]-=s; |
107 | } |
108 | t=0; |
109 | for (i=0;i<6;i++) |
110 | t+=r[5-i]; |
111 | bb=(((((r[0]-t)+r[1])+r[2])+r[3])+r[4])+r[5]; |
112 | s=(t+big.x)-big.x; |
113 | sum+=s; |
114 | t-=s; |
115 | b=t+bb; |
116 | bb=(t-b)+bb; |
117 | s=(sum+big1.x)-big1.x; |
118 | sum-=s; |
119 | |
120 | b2=b; |
121 | bb2=bb; |
122 | sum2=sum; |
123 | |
124 | sum=sum1+sum2; |
125 | b=b1+b2; |
126 | bb = (fabs(b1)>fabs(b2))? (b1-b)+b2 : (b2-b)+b1; |
127 | if (b > 0.5) |
128 | {b-=1.0; sum+=1.0;} |
129 | else if (b < -0.5) |
130 | {b+=1.0; sum-=1.0;} |
131 | s=b+(bb+bb1+bb2); |
132 | t=((b-s)+bb)+(bb1+bb2); |
133 | b=s*split; |
134 | t1=b-(b-s); |
135 | t2=s-t1; |
136 | b=s*hp0.x; |
137 | bb=(((t1*mp1.x-b)+t1*mp2.x)+t2*mp1.x)+(t2*mp2.x+s*hp1.x+t*hp0.x); |
138 | s=b+bb; |
139 | t=(b-s)+bb; |
140 | *a=s; |
141 | *aa=t; |
142 | return ((int) sum)&3; /* return quater of unit circle */ |
143 | } |
144 | |