1 | /* Load the dependencies of a mapped object. |
2 | Copyright (C) 1996-2022 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #include <atomic.h> |
20 | #include <assert.h> |
21 | #include <dlfcn.h> |
22 | #include <errno.h> |
23 | #include <libintl.h> |
24 | #include <stddef.h> |
25 | #include <stdlib.h> |
26 | #include <string.h> |
27 | #include <unistd.h> |
28 | #include <sys/param.h> |
29 | #include <ldsodefs.h> |
30 | #include <scratch_buffer.h> |
31 | |
32 | #include <dl-dst.h> |
33 | |
34 | /* Whether an shared object references one or more auxiliary objects |
35 | is signaled by the AUXTAG entry in l_info. */ |
36 | #define AUXTAG (DT_NUM + DT_THISPROCNUM + DT_VERSIONTAGNUM \ |
37 | + DT_EXTRATAGIDX (DT_AUXILIARY)) |
38 | /* Whether an shared object references one or more auxiliary objects |
39 | is signaled by the AUXTAG entry in l_info. */ |
40 | #define FILTERTAG (DT_NUM + DT_THISPROCNUM + DT_VERSIONTAGNUM \ |
41 | + DT_EXTRATAGIDX (DT_FILTER)) |
42 | |
43 | |
44 | /* When loading auxiliary objects we must ignore errors. It's ok if |
45 | an object is missing. */ |
46 | struct openaux_args |
47 | { |
48 | /* The arguments to openaux. */ |
49 | struct link_map *map; |
50 | int trace_mode; |
51 | int open_mode; |
52 | const char *strtab; |
53 | const char *name; |
54 | |
55 | /* The return value of openaux. */ |
56 | struct link_map *aux; |
57 | }; |
58 | |
59 | static void |
60 | openaux (void *a) |
61 | { |
62 | struct openaux_args *args = (struct openaux_args *) a; |
63 | |
64 | args->aux = _dl_map_object (args->map, args->name, |
65 | (args->map->l_type == lt_executable |
66 | ? lt_library : args->map->l_type), |
67 | args->trace_mode, args->open_mode, |
68 | args->map->l_ns); |
69 | } |
70 | |
71 | /* We use a very special kind of list to track the path |
72 | through the list of loaded shared objects. We have to |
73 | produce a flat list with unique members of all involved objects. |
74 | */ |
75 | struct list |
76 | { |
77 | int done; /* Nonzero if this map was processed. */ |
78 | struct link_map *map; /* The data. */ |
79 | struct list *next; /* Elements for normal list. */ |
80 | }; |
81 | |
82 | |
83 | /* Macro to expand DST. It is an macro since we use `alloca'. */ |
84 | #define expand_dst(l, str, fatal) \ |
85 | ({ \ |
86 | const char *__str = (str); \ |
87 | const char *__result = __str; \ |
88 | size_t __dst_cnt = _dl_dst_count (__str); \ |
89 | \ |
90 | if (__dst_cnt != 0) \ |
91 | { \ |
92 | char *__newp; \ |
93 | \ |
94 | /* DST must not appear in SUID/SGID programs. */ \ |
95 | if (__libc_enable_secure) \ |
96 | _dl_signal_error (0, __str, NULL, N_("\ |
97 | DST not allowed in SUID/SGID programs")); \ |
98 | \ |
99 | __newp = (char *) alloca (DL_DST_REQUIRED (l, __str, strlen (__str), \ |
100 | __dst_cnt)); \ |
101 | \ |
102 | __result = _dl_dst_substitute (l, __str, __newp); \ |
103 | \ |
104 | if (*__result == '\0') \ |
105 | { \ |
106 | /* The replacement for the DST is not known. We can't \ |
107 | processed. */ \ |
108 | if (fatal) \ |
109 | _dl_signal_error (0, __str, NULL, N_("\ |
110 | empty dynamic string token substitution")); \ |
111 | else \ |
112 | { \ |
113 | /* This is for DT_AUXILIARY. */ \ |
114 | if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_LIBS)) \ |
115 | _dl_debug_printf (N_("\ |
116 | cannot load auxiliary `%s' because of empty dynamic string token " \ |
117 | "substitution\n"), __str); \ |
118 | continue; \ |
119 | } \ |
120 | } \ |
121 | } \ |
122 | \ |
123 | __result; }) |
124 | |
125 | static void |
126 | preload (struct list *known, unsigned int *nlist, struct link_map *map) |
127 | { |
128 | known[*nlist].done = 0; |
129 | known[*nlist].map = map; |
130 | known[*nlist].next = &known[*nlist + 1]; |
131 | |
132 | ++*nlist; |
133 | /* We use `l_reserved' as a mark bit to detect objects we have |
134 | already put in the search list and avoid adding duplicate |
135 | elements later in the list. */ |
136 | map->l_reserved = 1; |
137 | } |
138 | |
139 | void |
140 | _dl_map_object_deps (struct link_map *map, |
141 | struct link_map **preloads, unsigned int npreloads, |
142 | int trace_mode, int open_mode) |
143 | { |
144 | struct list *known = __alloca (sizeof *known * (1 + npreloads + 1)); |
145 | struct list *runp, *tail; |
146 | unsigned int nlist, i; |
147 | /* Object name. */ |
148 | const char *name; |
149 | int errno_saved; |
150 | int errno_reason; |
151 | struct dl_exception exception; |
152 | |
153 | /* No loaded object so far. */ |
154 | nlist = 0; |
155 | |
156 | /* First load MAP itself. */ |
157 | preload (known, &nlist, map); |
158 | |
159 | /* Add the preloaded items after MAP but before any of its dependencies. */ |
160 | for (i = 0; i < npreloads; ++i) |
161 | preload (known, &nlist, preloads[i]); |
162 | |
163 | /* Terminate the lists. */ |
164 | known[nlist - 1].next = NULL; |
165 | |
166 | /* Pointer to last unique object. */ |
167 | tail = &known[nlist - 1]; |
168 | |
169 | struct scratch_buffer needed_space; |
170 | scratch_buffer_init (&needed_space); |
171 | |
172 | /* Process each element of the search list, loading each of its |
173 | auxiliary objects and immediate dependencies. Auxiliary objects |
174 | will be added in the list before the object itself and |
175 | dependencies will be appended to the list as we step through it. |
176 | This produces a flat, ordered list that represents a |
177 | breadth-first search of the dependency tree. |
178 | |
179 | The whole process is complicated by the fact that we better |
180 | should use alloca for the temporary list elements. But using |
181 | alloca means we cannot use recursive function calls. */ |
182 | errno_saved = errno; |
183 | errno_reason = 0; |
184 | errno = 0; |
185 | name = NULL; |
186 | for (runp = known; runp; ) |
187 | { |
188 | struct link_map *l = runp->map; |
189 | struct link_map **needed = NULL; |
190 | unsigned int nneeded = 0; |
191 | |
192 | /* Unless otherwise stated, this object is handled. */ |
193 | runp->done = 1; |
194 | |
195 | /* Allocate a temporary record to contain the references to the |
196 | dependencies of this object. */ |
197 | if (l->l_searchlist.r_list == NULL && l->l_initfini == NULL |
198 | && l != map && l->l_ldnum > 0) |
199 | { |
200 | /* l->l_ldnum includes space for the terminating NULL. */ |
201 | if (!scratch_buffer_set_array_size |
202 | (&needed_space, l->l_ldnum, sizeof (struct link_map *))) |
203 | _dl_signal_error (ENOMEM, map->l_name, NULL, |
204 | N_("cannot allocate dependency buffer" )); |
205 | needed = needed_space.data; |
206 | } |
207 | |
208 | if (l->l_info[DT_NEEDED] || l->l_info[AUXTAG] || l->l_info[FILTERTAG]) |
209 | { |
210 | const char *strtab = (const void *) D_PTR (l, l_info[DT_STRTAB]); |
211 | struct openaux_args args; |
212 | struct list *orig; |
213 | const ElfW(Dyn) *d; |
214 | |
215 | args.strtab = strtab; |
216 | args.map = l; |
217 | args.trace_mode = trace_mode; |
218 | args.open_mode = open_mode; |
219 | orig = runp; |
220 | |
221 | for (d = l->l_ld; d->d_tag != DT_NULL; ++d) |
222 | if (__builtin_expect (d->d_tag, DT_NEEDED) == DT_NEEDED) |
223 | { |
224 | /* Map in the needed object. */ |
225 | struct link_map *dep; |
226 | |
227 | /* Recognize DSTs. */ |
228 | name = expand_dst (l, strtab + d->d_un.d_val, 0); |
229 | /* Store the tag in the argument structure. */ |
230 | args.name = name; |
231 | |
232 | int err = _dl_catch_exception (&exception, openaux, &args); |
233 | if (__glibc_unlikely (exception.errstring != NULL)) |
234 | { |
235 | if (err) |
236 | errno_reason = err; |
237 | else |
238 | errno_reason = -1; |
239 | goto out; |
240 | } |
241 | else |
242 | dep = args.aux; |
243 | |
244 | if (! dep->l_reserved) |
245 | { |
246 | /* Allocate new entry. */ |
247 | struct list *newp; |
248 | |
249 | newp = alloca (sizeof (struct list)); |
250 | |
251 | /* Append DEP to the list. */ |
252 | newp->map = dep; |
253 | newp->done = 0; |
254 | newp->next = NULL; |
255 | tail->next = newp; |
256 | tail = newp; |
257 | ++nlist; |
258 | /* Set the mark bit that says it's already in the list. */ |
259 | dep->l_reserved = 1; |
260 | } |
261 | |
262 | /* Remember this dependency. */ |
263 | if (needed != NULL) |
264 | needed[nneeded++] = dep; |
265 | } |
266 | else if (d->d_tag == DT_AUXILIARY || d->d_tag == DT_FILTER) |
267 | { |
268 | struct list *newp; |
269 | |
270 | /* Recognize DSTs. */ |
271 | name = expand_dst (l, strtab + d->d_un.d_val, |
272 | d->d_tag == DT_AUXILIARY); |
273 | /* Store the tag in the argument structure. */ |
274 | args.name = name; |
275 | |
276 | /* Say that we are about to load an auxiliary library. */ |
277 | if (__builtin_expect (GLRO(dl_debug_mask) & DL_DEBUG_LIBS, |
278 | 0)) |
279 | _dl_debug_printf ("load auxiliary object=%s" |
280 | " requested by file=%s\n" , |
281 | name, |
282 | DSO_FILENAME (l->l_name)); |
283 | |
284 | /* We must be prepared that the addressed shared |
285 | object is not available. For filter objects the dependency |
286 | must be available. */ |
287 | int err = _dl_catch_exception (&exception, openaux, &args); |
288 | if (__glibc_unlikely (exception.errstring != NULL)) |
289 | { |
290 | if (d->d_tag == DT_AUXILIARY) |
291 | { |
292 | /* We are not interested in the error message. */ |
293 | _dl_exception_free (&exception); |
294 | /* Simply ignore this error and continue the work. */ |
295 | continue; |
296 | } |
297 | else |
298 | { |
299 | if (err) |
300 | errno_reason = err; |
301 | else |
302 | errno_reason = -1; |
303 | goto out; |
304 | } |
305 | } |
306 | |
307 | /* The auxiliary object is actually available. |
308 | Incorporate the map in all the lists. */ |
309 | |
310 | /* Allocate new entry. This always has to be done. */ |
311 | newp = alloca (sizeof (struct list)); |
312 | |
313 | /* We want to insert the new map before the current one, |
314 | but we have no back links. So we copy the contents of |
315 | the current entry over. Note that ORIG and NEWP now |
316 | have switched their meanings. */ |
317 | memcpy (newp, orig, sizeof (*newp)); |
318 | |
319 | /* Initialize new entry. */ |
320 | orig->done = 0; |
321 | orig->map = args.aux; |
322 | |
323 | /* Remember this dependency. */ |
324 | if (needed != NULL) |
325 | needed[nneeded++] = args.aux; |
326 | |
327 | /* We must handle two situations here: the map is new, |
328 | so we must add it in all three lists. If the map |
329 | is already known, we have two further possibilities: |
330 | - if the object is before the current map in the |
331 | search list, we do nothing. It is already found |
332 | early |
333 | - if the object is after the current one, we must |
334 | move it just before the current map to make sure |
335 | the symbols are found early enough |
336 | */ |
337 | if (args.aux->l_reserved) |
338 | { |
339 | /* The object is already somewhere in the list. |
340 | Locate it first. */ |
341 | struct list *late; |
342 | |
343 | /* This object is already in the search list we |
344 | are building. Don't add a duplicate pointer. |
345 | Just added by _dl_map_object. */ |
346 | for (late = newp; late->next != NULL; late = late->next) |
347 | if (late->next->map == args.aux) |
348 | break; |
349 | |
350 | if (late->next != NULL) |
351 | { |
352 | /* The object is somewhere behind the current |
353 | position in the search path. We have to |
354 | move it to this earlier position. */ |
355 | orig->next = newp; |
356 | |
357 | /* Now remove the later entry from the list |
358 | and adjust the tail pointer. */ |
359 | if (tail == late->next) |
360 | tail = late; |
361 | late->next = late->next->next; |
362 | |
363 | /* We must move the object earlier in the chain. */ |
364 | if (args.aux->l_prev != NULL) |
365 | args.aux->l_prev->l_next = args.aux->l_next; |
366 | if (args.aux->l_next != NULL) |
367 | args.aux->l_next->l_prev = args.aux->l_prev; |
368 | |
369 | args.aux->l_prev = newp->map->l_prev; |
370 | newp->map->l_prev = args.aux; |
371 | if (args.aux->l_prev != NULL) |
372 | args.aux->l_prev->l_next = args.aux; |
373 | args.aux->l_next = newp->map; |
374 | } |
375 | else |
376 | { |
377 | /* The object must be somewhere earlier in the |
378 | list. Undo to the current list element what |
379 | we did above. */ |
380 | memcpy (orig, newp, sizeof (*newp)); |
381 | continue; |
382 | } |
383 | } |
384 | else |
385 | { |
386 | /* This is easy. We just add the symbol right here. */ |
387 | orig->next = newp; |
388 | ++nlist; |
389 | /* Set the mark bit that says it's already in the list. */ |
390 | args.aux->l_reserved = 1; |
391 | |
392 | /* The only problem is that in the double linked |
393 | list of all objects we don't have this new |
394 | object at the correct place. Correct this here. */ |
395 | if (args.aux->l_prev) |
396 | args.aux->l_prev->l_next = args.aux->l_next; |
397 | if (args.aux->l_next) |
398 | args.aux->l_next->l_prev = args.aux->l_prev; |
399 | |
400 | args.aux->l_prev = newp->map->l_prev; |
401 | newp->map->l_prev = args.aux; |
402 | if (args.aux->l_prev != NULL) |
403 | args.aux->l_prev->l_next = args.aux; |
404 | args.aux->l_next = newp->map; |
405 | } |
406 | |
407 | /* Move the tail pointer if necessary. */ |
408 | if (orig == tail) |
409 | tail = newp; |
410 | |
411 | /* Move on the insert point. */ |
412 | orig = newp; |
413 | } |
414 | } |
415 | |
416 | /* Terminate the list of dependencies and store the array address. */ |
417 | if (needed != NULL) |
418 | { |
419 | needed[nneeded++] = NULL; |
420 | |
421 | struct link_map **l_initfini = (struct link_map **) |
422 | malloc ((2 * nneeded + 1) * sizeof needed[0]); |
423 | if (l_initfini == NULL) |
424 | { |
425 | scratch_buffer_free (&needed_space); |
426 | _dl_signal_error (ENOMEM, map->l_name, NULL, |
427 | N_("cannot allocate dependency list" )); |
428 | } |
429 | l_initfini[0] = l; |
430 | memcpy (&l_initfini[1], needed, nneeded * sizeof needed[0]); |
431 | memcpy (&l_initfini[nneeded + 1], l_initfini, |
432 | nneeded * sizeof needed[0]); |
433 | atomic_write_barrier (); |
434 | l->l_initfini = l_initfini; |
435 | l->l_free_initfini = 1; |
436 | } |
437 | |
438 | /* If we have no auxiliary objects just go on to the next map. */ |
439 | if (runp->done) |
440 | do |
441 | runp = runp->next; |
442 | while (runp != NULL && runp->done); |
443 | } |
444 | |
445 | out: |
446 | scratch_buffer_free (&needed_space); |
447 | |
448 | if (errno == 0 && errno_saved != 0) |
449 | __set_errno (errno_saved); |
450 | |
451 | struct link_map **old_l_initfini = NULL; |
452 | if (map->l_initfini != NULL && map->l_type == lt_loaded) |
453 | { |
454 | /* This object was previously loaded as a dependency and we have |
455 | a separate l_initfini list. We don't need it anymore. */ |
456 | assert (map->l_searchlist.r_list == NULL); |
457 | old_l_initfini = map->l_initfini; |
458 | } |
459 | |
460 | /* Store the search list we built in the object. It will be used for |
461 | searches in the scope of this object. */ |
462 | struct link_map **l_initfini = |
463 | (struct link_map **) malloc ((2 * nlist + 1) |
464 | * sizeof (struct link_map *)); |
465 | if (l_initfini == NULL) |
466 | _dl_signal_error (ENOMEM, map->l_name, NULL, |
467 | N_("cannot allocate symbol search list" )); |
468 | |
469 | |
470 | map->l_searchlist.r_list = &l_initfini[nlist + 1]; |
471 | map->l_searchlist.r_nlist = nlist; |
472 | unsigned int map_index = UINT_MAX; |
473 | |
474 | for (nlist = 0, runp = known; runp; runp = runp->next) |
475 | { |
476 | /* _dl_sort_maps ignores l_faked object, so it is safe to not consider |
477 | them for nlist. */ |
478 | if (__builtin_expect (trace_mode, 0) && runp->map->l_faked) |
479 | /* This can happen when we trace the loading. */ |
480 | --map->l_searchlist.r_nlist; |
481 | else |
482 | { |
483 | if (runp->map == map) |
484 | map_index = nlist; |
485 | map->l_searchlist.r_list[nlist++] = runp->map; |
486 | } |
487 | |
488 | /* Now clear all the mark bits we set in the objects on the search list |
489 | to avoid duplicates, so the next call starts fresh. */ |
490 | runp->map->l_reserved = 0; |
491 | } |
492 | |
493 | /* Maybe we can remove some relocation dependencies now. */ |
494 | struct link_map_reldeps *l_reldeps = NULL; |
495 | if (map->l_reldeps != NULL) |
496 | { |
497 | for (i = 0; i < nlist; ++i) |
498 | map->l_searchlist.r_list[i]->l_reserved = 1; |
499 | |
500 | /* Avoid removing relocation dependencies of the main binary. */ |
501 | map->l_reserved = 0; |
502 | struct link_map **list = &map->l_reldeps->list[0]; |
503 | for (i = 0; i < map->l_reldeps->act; ++i) |
504 | if (list[i]->l_reserved) |
505 | { |
506 | /* Need to allocate new array of relocation dependencies. */ |
507 | l_reldeps = malloc (sizeof (*l_reldeps) |
508 | + map->l_reldepsmax |
509 | * sizeof (struct link_map *)); |
510 | if (l_reldeps == NULL) |
511 | /* Bad luck, keep the reldeps duplicated between |
512 | map->l_reldeps->list and map->l_initfini lists. */ |
513 | ; |
514 | else |
515 | { |
516 | unsigned int j = i; |
517 | memcpy (&l_reldeps->list[0], &list[0], |
518 | i * sizeof (struct link_map *)); |
519 | for (i = i + 1; i < map->l_reldeps->act; ++i) |
520 | if (!list[i]->l_reserved) |
521 | l_reldeps->list[j++] = list[i]; |
522 | l_reldeps->act = j; |
523 | } |
524 | } |
525 | |
526 | for (i = 0; i < nlist; ++i) |
527 | map->l_searchlist.r_list[i]->l_reserved = 0; |
528 | } |
529 | |
530 | /* Sort the initializer list to take dependencies into account. Always |
531 | initialize the binary itself last. */ |
532 | assert (map_index < nlist); |
533 | if (map_index > 0) |
534 | { |
535 | /* Copy the binary into position 0. */ |
536 | l_initfini[0] = map->l_searchlist.r_list[map_index]; |
537 | |
538 | /* Copy the filtees. */ |
539 | for (i = 0; i < map_index; ++i) |
540 | l_initfini[i+1] = map->l_searchlist.r_list[i]; |
541 | |
542 | /* Copy the remainder. */ |
543 | for (i = map_index + 1; i < nlist; ++i) |
544 | l_initfini[i] = map->l_searchlist.r_list[i]; |
545 | } |
546 | else |
547 | memcpy (l_initfini, map->l_searchlist.r_list, |
548 | nlist * sizeof (struct link_map *)); |
549 | |
550 | /* If libc.so.6 is the main map, it participates in the sort, so |
551 | that the relocation order is correct regarding libc.so.6. */ |
552 | _dl_sort_maps (l_initfini, nlist, |
553 | (l_initfini[0] != GL (dl_ns)[l_initfini[0]->l_ns].libc_map), |
554 | false); |
555 | |
556 | /* Terminate the list of dependencies. */ |
557 | l_initfini[nlist] = NULL; |
558 | atomic_write_barrier (); |
559 | map->l_initfini = l_initfini; |
560 | map->l_free_initfini = 1; |
561 | if (l_reldeps != NULL) |
562 | { |
563 | atomic_write_barrier (); |
564 | void *old_l_reldeps = map->l_reldeps; |
565 | map->l_reldeps = l_reldeps; |
566 | _dl_scope_free (old_l_reldeps); |
567 | } |
568 | if (old_l_initfini != NULL) |
569 | _dl_scope_free (old_l_initfini); |
570 | |
571 | if (errno_reason) |
572 | _dl_signal_exception (errno_reason == -1 ? 0 : errno_reason, |
573 | &exception, NULL); |
574 | } |
575 | |