| 1 | /* memcmp/wmemcmp optimized with 256-bit EVEX instructions. |
| 2 | Copyright (C) 2021-2022 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #if IS_IN (libc) |
| 20 | |
| 21 | /* memcmp/wmemcmp is implemented as: |
| 22 | 1. Use ymm vector compares when possible. The only case where |
| 23 | vector compares is not possible for when size < CHAR_PER_VEC |
| 24 | and loading from either s1 or s2 would cause a page cross. |
| 25 | 2. For size from 2 to 7 bytes on page cross, load as big endian |
| 26 | with movbe and bswap to avoid branches. |
| 27 | 3. Use xmm vector compare when size >= 4 bytes for memcmp or |
| 28 | size >= 8 bytes for wmemcmp. |
| 29 | 4. Optimistically compare up to first 4 * CHAR_PER_VEC one at a |
| 30 | to check for early mismatches. Only do this if its guranteed the |
| 31 | work is not wasted. |
| 32 | 5. If size is 8 * VEC_SIZE or less, unroll the loop. |
| 33 | 6. Compare 4 * VEC_SIZE at a time with the aligned first memory |
| 34 | area. |
| 35 | 7. Use 2 vector compares when size is 2 * CHAR_PER_VEC or less. |
| 36 | 8. Use 4 vector compares when size is 4 * CHAR_PER_VEC or less. |
| 37 | 9. Use 8 vector compares when size is 8 * CHAR_PER_VEC or less. |
| 38 | |
| 39 | When possible the implementation tries to optimize for frontend in the |
| 40 | following ways: |
| 41 | Throughput: |
| 42 | 1. All code sections that fit are able to run optimally out of the |
| 43 | LSD. |
| 44 | 2. All code sections that fit are able to run optimally out of the |
| 45 | DSB |
| 46 | 3. Basic blocks are contained in minimum number of fetch blocks |
| 47 | necessary. |
| 48 | |
| 49 | Latency: |
| 50 | 1. Logically connected basic blocks are put in the same |
| 51 | cache-line. |
| 52 | 2. Logically connected basic blocks that do not fit in the same |
| 53 | cache-line are put in adjacent lines. This can get beneficial |
| 54 | L2 spatial prefetching and L1 next-line prefetching. */ |
| 55 | |
| 56 | # include <sysdep.h> |
| 57 | |
| 58 | # ifndef MEMCMP |
| 59 | # define MEMCMP __memcmp_evex_movbe |
| 60 | # endif |
| 61 | |
| 62 | # define VMOVU vmovdqu64 |
| 63 | |
| 64 | # ifdef USE_AS_WMEMCMP |
| 65 | # define VMOVU_MASK vmovdqu32 |
| 66 | # define CHAR_SIZE 4 |
| 67 | # define VPCMP vpcmpd |
| 68 | # define VPTEST vptestmd |
| 69 | # else |
| 70 | # define VMOVU_MASK vmovdqu8 |
| 71 | # define CHAR_SIZE 1 |
| 72 | # define VPCMP vpcmpub |
| 73 | # define VPTEST vptestmb |
| 74 | # endif |
| 75 | |
| 76 | |
| 77 | # define VEC_SIZE 32 |
| 78 | # define PAGE_SIZE 4096 |
| 79 | # define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE) |
| 80 | |
| 81 | # define XMM0 xmm16 |
| 82 | # define XMM1 xmm17 |
| 83 | # define XMM2 xmm18 |
| 84 | # define YMM0 ymm16 |
| 85 | # define XMM1 xmm17 |
| 86 | # define XMM2 xmm18 |
| 87 | # define YMM1 ymm17 |
| 88 | # define YMM2 ymm18 |
| 89 | # define YMM3 ymm19 |
| 90 | # define YMM4 ymm20 |
| 91 | # define YMM5 ymm21 |
| 92 | # define YMM6 ymm22 |
| 93 | |
| 94 | /* Warning! |
| 95 | wmemcmp has to use SIGNED comparison for elements. |
| 96 | memcmp has to use UNSIGNED comparison for elemnts. |
| 97 | */ |
| 98 | |
| 99 | .section .text.evex,"ax" ,@progbits |
| 100 | /* Cache align memcmp entry. This allows for much more thorough |
| 101 | frontend optimization. */ |
| 102 | ENTRY_P2ALIGN (MEMCMP, 6) |
| 103 | # ifdef __ILP32__ |
| 104 | /* Clear the upper 32 bits. */ |
| 105 | movl %edx, %edx |
| 106 | # endif |
| 107 | cmp $CHAR_PER_VEC, %RDX_LP |
| 108 | /* Fall through for [0, VEC_SIZE] as its the hottest. */ |
| 109 | ja L(more_1x_vec) |
| 110 | |
| 111 | /* Create mask for CHAR's we want to compare. This allows us to |
| 112 | avoid having to include page cross logic. */ |
| 113 | movl $-1, %ecx |
| 114 | bzhil %edx, %ecx, %ecx |
| 115 | kmovd %ecx, %k2 |
| 116 | |
| 117 | /* Safe to load full ymm with mask. */ |
| 118 | VMOVU_MASK (%rsi), %YMM2{%k2} |
| 119 | VPCMP $4,(%rdi), %YMM2, %k1{%k2} |
| 120 | kmovd %k1, %eax |
| 121 | testl %eax, %eax |
| 122 | jnz L(return_vec_0) |
| 123 | ret |
| 124 | |
| 125 | .p2align 4 |
| 126 | L(return_vec_0): |
| 127 | tzcntl %eax, %eax |
| 128 | # ifdef USE_AS_WMEMCMP |
| 129 | movl (%rdi, %rax, CHAR_SIZE), %ecx |
| 130 | xorl %edx, %edx |
| 131 | cmpl (%rsi, %rax, CHAR_SIZE), %ecx |
| 132 | /* NB: no partial register stall here because xorl zero idiom |
| 133 | above. */ |
| 134 | setg %dl |
| 135 | leal -1(%rdx, %rdx), %eax |
| 136 | # else |
| 137 | movzbl (%rsi, %rax), %ecx |
| 138 | movzbl (%rdi, %rax), %eax |
| 139 | subl %ecx, %eax |
| 140 | # endif |
| 141 | ret |
| 142 | |
| 143 | |
| 144 | .p2align 4 |
| 145 | L(more_1x_vec): |
| 146 | /* From VEC to 2 * VEC. No branch when size == VEC_SIZE. */ |
| 147 | VMOVU (%rsi), %YMM1 |
| 148 | /* Use compare not equals to directly check for mismatch. */ |
| 149 | VPCMP $4,(%rdi), %YMM1, %k1 |
| 150 | kmovd %k1, %eax |
| 151 | /* NB: eax must be destination register if going to |
| 152 | L(return_vec_[0,2]). For L(return_vec_3) destination register |
| 153 | must be ecx. */ |
| 154 | testl %eax, %eax |
| 155 | jnz L(return_vec_0) |
| 156 | |
| 157 | cmpq $(CHAR_PER_VEC * 2), %rdx |
| 158 | jbe L(last_1x_vec) |
| 159 | |
| 160 | /* Check second VEC no matter what. */ |
| 161 | VMOVU VEC_SIZE(%rsi), %YMM2 |
| 162 | VPCMP $4, VEC_SIZE(%rdi), %YMM2, %k1 |
| 163 | kmovd %k1, %eax |
| 164 | testl %eax, %eax |
| 165 | jnz L(return_vec_1) |
| 166 | |
| 167 | /* Less than 4 * VEC. */ |
| 168 | cmpq $(CHAR_PER_VEC * 4), %rdx |
| 169 | jbe L(last_2x_vec) |
| 170 | |
| 171 | /* Check third and fourth VEC no matter what. */ |
| 172 | VMOVU (VEC_SIZE * 2)(%rsi), %YMM3 |
| 173 | VPCMP $4,(VEC_SIZE * 2)(%rdi), %YMM3, %k1 |
| 174 | kmovd %k1, %eax |
| 175 | testl %eax, %eax |
| 176 | jnz L(return_vec_2) |
| 177 | |
| 178 | VMOVU (VEC_SIZE * 3)(%rsi), %YMM4 |
| 179 | VPCMP $4,(VEC_SIZE * 3)(%rdi), %YMM4, %k1 |
| 180 | kmovd %k1, %ecx |
| 181 | testl %ecx, %ecx |
| 182 | jnz L(return_vec_3) |
| 183 | |
| 184 | /* Go to 4x VEC loop. */ |
| 185 | cmpq $(CHAR_PER_VEC * 8), %rdx |
| 186 | ja L(more_8x_vec) |
| 187 | |
| 188 | /* Handle remainder of size = 4 * VEC + 1 to 8 * VEC without any |
| 189 | branches. */ |
| 190 | |
| 191 | /* Load first two VEC from s2 before adjusting addresses. */ |
| 192 | VMOVU -(VEC_SIZE * 4)(%rsi, %rdx, CHAR_SIZE), %YMM1 |
| 193 | VMOVU -(VEC_SIZE * 3)(%rsi, %rdx, CHAR_SIZE), %YMM2 |
| 194 | leaq -(4 * VEC_SIZE)(%rdi, %rdx, CHAR_SIZE), %rdi |
| 195 | leaq -(4 * VEC_SIZE)(%rsi, %rdx, CHAR_SIZE), %rsi |
| 196 | |
| 197 | /* Wait to load from s1 until addressed adjust due to |
| 198 | unlamination of microfusion with complex address mode. */ |
| 199 | |
| 200 | /* vpxor will be all 0s if s1 and s2 are equal. Otherwise it |
| 201 | will have some 1s. */ |
| 202 | vpxorq (%rdi), %YMM1, %YMM1 |
| 203 | vpxorq (VEC_SIZE)(%rdi), %YMM2, %YMM2 |
| 204 | |
| 205 | VMOVU (VEC_SIZE * 2)(%rsi), %YMM3 |
| 206 | vpxorq (VEC_SIZE * 2)(%rdi), %YMM3, %YMM3 |
| 207 | |
| 208 | VMOVU (VEC_SIZE * 3)(%rsi), %YMM4 |
| 209 | /* Ternary logic to xor (VEC_SIZE * 3)(%rdi) with YMM4 while |
| 210 | oring with YMM1. Result is stored in YMM4. */ |
| 211 | vpternlogd $0xde,(VEC_SIZE * 3)(%rdi), %YMM1, %YMM4 |
| 212 | |
| 213 | /* Or together YMM2, YMM3, and YMM4 into YMM4. */ |
| 214 | vpternlogd $0xfe, %YMM2, %YMM3, %YMM4 |
| 215 | |
| 216 | /* Test YMM4 against itself. Store any CHAR mismatches in k1. |
| 217 | */ |
| 218 | VPTEST %YMM4, %YMM4, %k1 |
| 219 | /* k1 must go to ecx for L(return_vec_0_1_2_3). */ |
| 220 | kmovd %k1, %ecx |
| 221 | testl %ecx, %ecx |
| 222 | jnz L(return_vec_0_1_2_3) |
| 223 | /* NB: eax must be zero to reach here. */ |
| 224 | ret |
| 225 | |
| 226 | |
| 227 | .p2align 4,, 8 |
| 228 | L(8x_end_return_vec_0_1_2_3): |
| 229 | movq %rdx, %rdi |
| 230 | L(8x_return_vec_0_1_2_3): |
| 231 | addq %rdi, %rsi |
| 232 | L(return_vec_0_1_2_3): |
| 233 | VPTEST %YMM1, %YMM1, %k0 |
| 234 | kmovd %k0, %eax |
| 235 | testl %eax, %eax |
| 236 | jnz L(return_vec_0) |
| 237 | |
| 238 | VPTEST %YMM2, %YMM2, %k0 |
| 239 | kmovd %k0, %eax |
| 240 | testl %eax, %eax |
| 241 | jnz L(return_vec_1) |
| 242 | |
| 243 | VPTEST %YMM3, %YMM3, %k0 |
| 244 | kmovd %k0, %eax |
| 245 | testl %eax, %eax |
| 246 | jnz L(return_vec_2) |
| 247 | L(return_vec_3): |
| 248 | /* bsf saves 1 byte from tzcnt. This keep L(return_vec_3) in one |
| 249 | fetch block and the entire L(*return_vec_0_1_2_3) in 1 cache |
| 250 | line. */ |
| 251 | bsfl %ecx, %ecx |
| 252 | # ifdef USE_AS_WMEMCMP |
| 253 | movl (VEC_SIZE * 3)(%rdi, %rcx, CHAR_SIZE), %eax |
| 254 | xorl %edx, %edx |
| 255 | cmpl (VEC_SIZE * 3)(%rsi, %rcx, CHAR_SIZE), %eax |
| 256 | setg %dl |
| 257 | leal -1(%rdx, %rdx), %eax |
| 258 | # else |
| 259 | movzbl (VEC_SIZE * 3)(%rdi, %rcx), %eax |
| 260 | movzbl (VEC_SIZE * 3)(%rsi, %rcx), %ecx |
| 261 | subl %ecx, %eax |
| 262 | # endif |
| 263 | ret |
| 264 | |
| 265 | |
| 266 | .p2align 4 |
| 267 | L(return_vec_1): |
| 268 | /* bsf saves 1 byte over tzcnt and keeps L(return_vec_1) in one |
| 269 | fetch block. */ |
| 270 | bsfl %eax, %eax |
| 271 | # ifdef USE_AS_WMEMCMP |
| 272 | movl VEC_SIZE(%rdi, %rax, CHAR_SIZE), %ecx |
| 273 | xorl %edx, %edx |
| 274 | cmpl VEC_SIZE(%rsi, %rax, CHAR_SIZE), %ecx |
| 275 | setg %dl |
| 276 | leal -1(%rdx, %rdx), %eax |
| 277 | # else |
| 278 | movzbl VEC_SIZE(%rsi, %rax), %ecx |
| 279 | movzbl VEC_SIZE(%rdi, %rax), %eax |
| 280 | subl %ecx, %eax |
| 281 | # endif |
| 282 | ret |
| 283 | |
| 284 | .p2align 4,, 10 |
| 285 | L(return_vec_2): |
| 286 | /* bsf saves 1 byte over tzcnt and keeps L(return_vec_2) in one |
| 287 | fetch block. */ |
| 288 | bsfl %eax, %eax |
| 289 | # ifdef USE_AS_WMEMCMP |
| 290 | movl (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %ecx |
| 291 | xorl %edx, %edx |
| 292 | cmpl (VEC_SIZE * 2)(%rsi, %rax, CHAR_SIZE), %ecx |
| 293 | setg %dl |
| 294 | leal -1(%rdx, %rdx), %eax |
| 295 | # else |
| 296 | movzbl (VEC_SIZE * 2)(%rsi, %rax), %ecx |
| 297 | movzbl (VEC_SIZE * 2)(%rdi, %rax), %eax |
| 298 | subl %ecx, %eax |
| 299 | # endif |
| 300 | ret |
| 301 | |
| 302 | .p2align 4 |
| 303 | L(more_8x_vec): |
| 304 | /* Set end of s1 in rdx. */ |
| 305 | leaq -(VEC_SIZE * 4)(%rdi, %rdx, CHAR_SIZE), %rdx |
| 306 | /* rsi stores s2 - s1. This allows loop to only update one |
| 307 | pointer. */ |
| 308 | subq %rdi, %rsi |
| 309 | /* Align s1 pointer. */ |
| 310 | andq $-VEC_SIZE, %rdi |
| 311 | /* Adjust because first 4x vec where check already. */ |
| 312 | subq $-(VEC_SIZE * 4), %rdi |
| 313 | |
| 314 | .p2align 4 |
| 315 | L(loop_4x_vec): |
| 316 | VMOVU (%rsi, %rdi), %YMM1 |
| 317 | vpxorq (%rdi), %YMM1, %YMM1 |
| 318 | VMOVU VEC_SIZE(%rsi, %rdi), %YMM2 |
| 319 | vpxorq VEC_SIZE(%rdi), %YMM2, %YMM2 |
| 320 | VMOVU (VEC_SIZE * 2)(%rsi, %rdi), %YMM3 |
| 321 | vpxorq (VEC_SIZE * 2)(%rdi), %YMM3, %YMM3 |
| 322 | VMOVU (VEC_SIZE * 3)(%rsi, %rdi), %YMM4 |
| 323 | vpternlogd $0xde,(VEC_SIZE * 3)(%rdi), %YMM1, %YMM4 |
| 324 | vpternlogd $0xfe, %YMM2, %YMM3, %YMM4 |
| 325 | VPTEST %YMM4, %YMM4, %k1 |
| 326 | kmovd %k1, %ecx |
| 327 | testl %ecx, %ecx |
| 328 | jnz L(8x_return_vec_0_1_2_3) |
| 329 | subq $-(VEC_SIZE * 4), %rdi |
| 330 | cmpq %rdx, %rdi |
| 331 | jb L(loop_4x_vec) |
| 332 | |
| 333 | subq %rdx, %rdi |
| 334 | /* rdi has 4 * VEC_SIZE - remaining length. */ |
| 335 | cmpl $(VEC_SIZE * 3), %edi |
| 336 | jae L(8x_last_1x_vec) |
| 337 | /* Load regardless of branch. */ |
| 338 | VMOVU (VEC_SIZE * 2)(%rsi, %rdx), %YMM3 |
| 339 | cmpl $(VEC_SIZE * 2), %edi |
| 340 | jae L(8x_last_2x_vec) |
| 341 | |
| 342 | vpxorq (VEC_SIZE * 2)(%rdx), %YMM3, %YMM3 |
| 343 | |
| 344 | VMOVU (%rsi, %rdx), %YMM1 |
| 345 | vpxorq (%rdx), %YMM1, %YMM1 |
| 346 | |
| 347 | VMOVU VEC_SIZE(%rsi, %rdx), %YMM2 |
| 348 | vpxorq VEC_SIZE(%rdx), %YMM2, %YMM2 |
| 349 | VMOVU (VEC_SIZE * 3)(%rsi, %rdx), %YMM4 |
| 350 | vpternlogd $0xde,(VEC_SIZE * 3)(%rdx), %YMM1, %YMM4 |
| 351 | vpternlogd $0xfe, %YMM2, %YMM3, %YMM4 |
| 352 | VPTEST %YMM4, %YMM4, %k1 |
| 353 | kmovd %k1, %ecx |
| 354 | testl %ecx, %ecx |
| 355 | jnz L(8x_end_return_vec_0_1_2_3) |
| 356 | /* NB: eax must be zero to reach here. */ |
| 357 | ret |
| 358 | |
| 359 | /* Only entry is from L(more_8x_vec). */ |
| 360 | .p2align 4,, 10 |
| 361 | L(8x_last_2x_vec): |
| 362 | VPCMP $4,(VEC_SIZE * 2)(%rdx), %YMM3, %k1 |
| 363 | kmovd %k1, %eax |
| 364 | testl %eax, %eax |
| 365 | jnz L(8x_return_vec_2) |
| 366 | /* Naturally aligned to 16 bytes. */ |
| 367 | L(8x_last_1x_vec): |
| 368 | VMOVU (VEC_SIZE * 3)(%rsi, %rdx), %YMM1 |
| 369 | VPCMP $4,(VEC_SIZE * 3)(%rdx), %YMM1, %k1 |
| 370 | kmovd %k1, %eax |
| 371 | testl %eax, %eax |
| 372 | jnz L(8x_return_vec_3) |
| 373 | ret |
| 374 | |
| 375 | /* Not ideally aligned (at offset +9 bytes in fetch block) but |
| 376 | not aligning keeps it in the same cache line as |
| 377 | L(8x_last_1x/2x_vec) so likely worth it. As well, saves code |
| 378 | size. */ |
| 379 | .p2align 4,, 4 |
| 380 | L(8x_return_vec_2): |
| 381 | subq $VEC_SIZE, %rdx |
| 382 | L(8x_return_vec_3): |
| 383 | bsfl %eax, %eax |
| 384 | # ifdef USE_AS_WMEMCMP |
| 385 | leaq (%rdx, %rax, CHAR_SIZE), %rax |
| 386 | movl (VEC_SIZE * 3)(%rax), %ecx |
| 387 | xorl %edx, %edx |
| 388 | cmpl (VEC_SIZE * 3)(%rsi, %rax), %ecx |
| 389 | setg %dl |
| 390 | leal -1(%rdx, %rdx), %eax |
| 391 | # else |
| 392 | addq %rdx, %rax |
| 393 | movzbl (VEC_SIZE * 3)(%rsi, %rax), %ecx |
| 394 | movzbl (VEC_SIZE * 3)(%rax), %eax |
| 395 | subl %ecx, %eax |
| 396 | # endif |
| 397 | ret |
| 398 | |
| 399 | .p2align 4,, 10 |
| 400 | L(last_2x_vec): |
| 401 | /* Check second to last VEC. */ |
| 402 | VMOVU -(VEC_SIZE * 2)(%rsi, %rdx, CHAR_SIZE), %YMM1 |
| 403 | VPCMP $4, -(VEC_SIZE * 2)(%rdi, %rdx, CHAR_SIZE), %YMM1, %k1 |
| 404 | kmovd %k1, %eax |
| 405 | testl %eax, %eax |
| 406 | jnz L(return_vec_1_end) |
| 407 | |
| 408 | /* Check last VEC. */ |
| 409 | .p2align 4 |
| 410 | L(last_1x_vec): |
| 411 | VMOVU -(VEC_SIZE * 1)(%rsi, %rdx, CHAR_SIZE), %YMM1 |
| 412 | VPCMP $4, -(VEC_SIZE * 1)(%rdi, %rdx, CHAR_SIZE), %YMM1, %k1 |
| 413 | kmovd %k1, %eax |
| 414 | testl %eax, %eax |
| 415 | jnz L(return_vec_0_end) |
| 416 | ret |
| 417 | |
| 418 | |
| 419 | /* Don't align. Takes 2-fetch blocks either way and aligning |
| 420 | will cause code to spill into another cacheline. */ |
| 421 | L(return_vec_1_end): |
| 422 | /* Use bsf to save code size. This is necessary to have |
| 423 | L(one_or_less) fit in aligning bytes between. */ |
| 424 | bsfl %eax, %eax |
| 425 | addl %edx, %eax |
| 426 | # ifdef USE_AS_WMEMCMP |
| 427 | movl -(VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %ecx |
| 428 | xorl %edx, %edx |
| 429 | cmpl -(VEC_SIZE * 2)(%rsi, %rax, CHAR_SIZE), %ecx |
| 430 | setg %dl |
| 431 | leal -1(%rdx, %rdx), %eax |
| 432 | # else |
| 433 | movzbl -(VEC_SIZE * 2)(%rsi, %rax), %ecx |
| 434 | movzbl -(VEC_SIZE * 2)(%rdi, %rax), %eax |
| 435 | subl %ecx, %eax |
| 436 | # endif |
| 437 | ret |
| 438 | |
| 439 | /* Don't align. Takes 2-fetch blocks either way and aligning |
| 440 | will cause code to spill into another cacheline. */ |
| 441 | L(return_vec_0_end): |
| 442 | tzcntl %eax, %eax |
| 443 | addl %edx, %eax |
| 444 | # ifdef USE_AS_WMEMCMP |
| 445 | movl -VEC_SIZE(%rdi, %rax, CHAR_SIZE), %ecx |
| 446 | xorl %edx, %edx |
| 447 | cmpl -VEC_SIZE(%rsi, %rax, CHAR_SIZE), %ecx |
| 448 | setg %dl |
| 449 | leal -1(%rdx, %rdx), %eax |
| 450 | # else |
| 451 | movzbl -VEC_SIZE(%rsi, %rax), %ecx |
| 452 | movzbl -VEC_SIZE(%rdi, %rax), %eax |
| 453 | subl %ecx, %eax |
| 454 | # endif |
| 455 | ret |
| 456 | /* 1-byte until next cache line. */ |
| 457 | |
| 458 | END (MEMCMP) |
| 459 | #endif |
| 460 | |