1 | /* Compute x * y + z as ternary operation. |
2 | Copyright (C) 2010-2022 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #define NO_MATH_REDIRECT |
20 | #include <float.h> |
21 | #include <math.h> |
22 | #include <fenv.h> |
23 | #include <ieee754.h> |
24 | #include <math-barriers.h> |
25 | #include <libm-alias-ldouble.h> |
26 | #include <tininess.h> |
27 | |
28 | /* This implementation uses rounding to odd to avoid problems with |
29 | double rounding. See a paper by Boldo and Melquiond: |
30 | http://www.lri.fr/~melquion/doc/08-tc.pdf */ |
31 | |
32 | long double |
33 | __fmal (long double x, long double y, long double z) |
34 | { |
35 | union ieee854_long_double u, v, w; |
36 | int adjust = 0; |
37 | u.d = x; |
38 | v.d = y; |
39 | w.d = z; |
40 | if (__builtin_expect (u.ieee.exponent + v.ieee.exponent |
41 | >= 0x7fff + IEEE854_LONG_DOUBLE_BIAS |
42 | - LDBL_MANT_DIG, 0) |
43 | || __builtin_expect (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0) |
44 | || __builtin_expect (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0) |
45 | || __builtin_expect (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0) |
46 | || __builtin_expect (u.ieee.exponent + v.ieee.exponent |
47 | <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG, 0)) |
48 | { |
49 | /* If z is Inf, but x and y are finite, the result should be |
50 | z rather than NaN. */ |
51 | if (w.ieee.exponent == 0x7fff |
52 | && u.ieee.exponent != 0x7fff |
53 | && v.ieee.exponent != 0x7fff) |
54 | return (z + x) + y; |
55 | /* If z is zero and x are y are nonzero, compute the result |
56 | as x * y to avoid the wrong sign of a zero result if x * y |
57 | underflows to 0. */ |
58 | if (z == 0 && x != 0 && y != 0) |
59 | return x * y; |
60 | /* If x or y or z is Inf/NaN, or if x * y is zero, compute as |
61 | x * y + z. */ |
62 | if (u.ieee.exponent == 0x7fff |
63 | || v.ieee.exponent == 0x7fff |
64 | || w.ieee.exponent == 0x7fff |
65 | || x == 0 |
66 | || y == 0) |
67 | return x * y + z; |
68 | /* If fma will certainly overflow, compute as x * y. */ |
69 | if (u.ieee.exponent + v.ieee.exponent |
70 | > 0x7fff + IEEE854_LONG_DOUBLE_BIAS) |
71 | return x * y; |
72 | /* If x * y is less than 1/4 of LDBL_TRUE_MIN, neither the |
73 | result nor whether there is underflow depends on its exact |
74 | value, only on its sign. */ |
75 | if (u.ieee.exponent + v.ieee.exponent |
76 | < IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG - 2) |
77 | { |
78 | int neg = u.ieee.negative ^ v.ieee.negative; |
79 | long double tiny = neg ? -0x1p-16445L : 0x1p-16445L; |
80 | if (w.ieee.exponent >= 3) |
81 | return tiny + z; |
82 | /* Scaling up, adding TINY and scaling down produces the |
83 | correct result, because in round-to-nearest mode adding |
84 | TINY has no effect and in other modes double rounding is |
85 | harmless. But it may not produce required underflow |
86 | exceptions. */ |
87 | v.d = z * 0x1p65L + tiny; |
88 | if (TININESS_AFTER_ROUNDING |
89 | ? v.ieee.exponent < 66 |
90 | : (w.ieee.exponent == 0 |
91 | || (w.ieee.exponent == 1 |
92 | && w.ieee.negative != neg |
93 | && w.ieee.mantissa1 == 0 |
94 | && w.ieee.mantissa0 == 0x80000000))) |
95 | { |
96 | long double force_underflow = x * y; |
97 | math_force_eval (force_underflow); |
98 | } |
99 | return v.d * 0x1p-65L; |
100 | } |
101 | if (u.ieee.exponent + v.ieee.exponent |
102 | >= 0x7fff + IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG) |
103 | { |
104 | /* Compute 1p-64 times smaller result and multiply |
105 | at the end. */ |
106 | if (u.ieee.exponent > v.ieee.exponent) |
107 | u.ieee.exponent -= LDBL_MANT_DIG; |
108 | else |
109 | v.ieee.exponent -= LDBL_MANT_DIG; |
110 | /* If x + y exponent is very large and z exponent is very small, |
111 | it doesn't matter if we don't adjust it. */ |
112 | if (w.ieee.exponent > LDBL_MANT_DIG) |
113 | w.ieee.exponent -= LDBL_MANT_DIG; |
114 | adjust = 1; |
115 | } |
116 | else if (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG) |
117 | { |
118 | /* Similarly. |
119 | If z exponent is very large and x and y exponents are |
120 | very small, adjust them up to avoid spurious underflows, |
121 | rather than down. */ |
122 | if (u.ieee.exponent + v.ieee.exponent |
123 | <= IEEE854_LONG_DOUBLE_BIAS + 2 * LDBL_MANT_DIG) |
124 | { |
125 | if (u.ieee.exponent > v.ieee.exponent) |
126 | u.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
127 | else |
128 | v.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
129 | } |
130 | else if (u.ieee.exponent > v.ieee.exponent) |
131 | { |
132 | if (u.ieee.exponent > LDBL_MANT_DIG) |
133 | u.ieee.exponent -= LDBL_MANT_DIG; |
134 | } |
135 | else if (v.ieee.exponent > LDBL_MANT_DIG) |
136 | v.ieee.exponent -= LDBL_MANT_DIG; |
137 | w.ieee.exponent -= LDBL_MANT_DIG; |
138 | adjust = 1; |
139 | } |
140 | else if (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG) |
141 | { |
142 | u.ieee.exponent -= LDBL_MANT_DIG; |
143 | if (v.ieee.exponent) |
144 | v.ieee.exponent += LDBL_MANT_DIG; |
145 | else |
146 | v.d *= 0x1p64L; |
147 | } |
148 | else if (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG) |
149 | { |
150 | v.ieee.exponent -= LDBL_MANT_DIG; |
151 | if (u.ieee.exponent) |
152 | u.ieee.exponent += LDBL_MANT_DIG; |
153 | else |
154 | u.d *= 0x1p64L; |
155 | } |
156 | else /* if (u.ieee.exponent + v.ieee.exponent |
157 | <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG) */ |
158 | { |
159 | if (u.ieee.exponent > v.ieee.exponent) |
160 | u.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
161 | else |
162 | v.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
163 | if (w.ieee.exponent <= 4 * LDBL_MANT_DIG + 6) |
164 | { |
165 | if (w.ieee.exponent) |
166 | w.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
167 | else |
168 | w.d *= 0x1p130L; |
169 | adjust = -1; |
170 | } |
171 | /* Otherwise x * y should just affect inexact |
172 | and nothing else. */ |
173 | } |
174 | x = u.d; |
175 | y = v.d; |
176 | z = w.d; |
177 | } |
178 | |
179 | /* Ensure correct sign of exact 0 + 0. */ |
180 | if (__glibc_unlikely ((x == 0 || y == 0) && z == 0)) |
181 | { |
182 | x = math_opt_barrier (x); |
183 | return x * y + z; |
184 | } |
185 | |
186 | fenv_t env; |
187 | feholdexcept (&env); |
188 | fesetround (FE_TONEAREST); |
189 | |
190 | /* Multiplication m1 + m2 = x * y using Dekker's algorithm. */ |
191 | #define C ((1LL << (LDBL_MANT_DIG + 1) / 2) + 1) |
192 | long double x1 = x * C; |
193 | long double y1 = y * C; |
194 | long double m1 = x * y; |
195 | x1 = (x - x1) + x1; |
196 | y1 = (y - y1) + y1; |
197 | long double x2 = x - x1; |
198 | long double y2 = y - y1; |
199 | long double m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2; |
200 | |
201 | /* Addition a1 + a2 = z + m1 using Knuth's algorithm. */ |
202 | long double a1 = z + m1; |
203 | long double t1 = a1 - z; |
204 | long double t2 = a1 - t1; |
205 | t1 = m1 - t1; |
206 | t2 = z - t2; |
207 | long double a2 = t1 + t2; |
208 | /* Ensure the arithmetic is not scheduled after feclearexcept call. */ |
209 | math_force_eval (m2); |
210 | math_force_eval (a2); |
211 | feclearexcept (FE_INEXACT); |
212 | |
213 | /* If the result is an exact zero, ensure it has the correct sign. */ |
214 | if (a1 == 0 && m2 == 0) |
215 | { |
216 | feupdateenv (&env); |
217 | /* Ensure that round-to-nearest value of z + m1 is not reused. */ |
218 | z = math_opt_barrier (z); |
219 | return z + m1; |
220 | } |
221 | |
222 | fesetround (FE_TOWARDZERO); |
223 | /* Perform m2 + a2 addition with round to odd. */ |
224 | u.d = a2 + m2; |
225 | |
226 | if (__glibc_likely (adjust == 0)) |
227 | { |
228 | if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7fff) |
229 | u.ieee.mantissa1 |= fetestexcept (FE_INEXACT) != 0; |
230 | feupdateenv (&env); |
231 | /* Result is a1 + u.d. */ |
232 | return a1 + u.d; |
233 | } |
234 | else if (__glibc_likely (adjust > 0)) |
235 | { |
236 | if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7fff) |
237 | u.ieee.mantissa1 |= fetestexcept (FE_INEXACT) != 0; |
238 | feupdateenv (&env); |
239 | /* Result is a1 + u.d, scaled up. */ |
240 | return (a1 + u.d) * 0x1p64L; |
241 | } |
242 | else |
243 | { |
244 | if ((u.ieee.mantissa1 & 1) == 0) |
245 | u.ieee.mantissa1 |= fetestexcept (FE_INEXACT) != 0; |
246 | v.d = a1 + u.d; |
247 | /* Ensure the addition is not scheduled after fetestexcept call. */ |
248 | math_force_eval (v.d); |
249 | int j = fetestexcept (FE_INEXACT) != 0; |
250 | feupdateenv (&env); |
251 | /* Ensure the following computations are performed in default rounding |
252 | mode instead of just reusing the round to zero computation. */ |
253 | asm volatile ("" : "=m" (u) : "m" (u)); |
254 | /* If a1 + u.d is exact, the only rounding happens during |
255 | scaling down. */ |
256 | if (j == 0) |
257 | return v.d * 0x1p-130L; |
258 | /* If result rounded to zero is not subnormal, no double |
259 | rounding will occur. */ |
260 | if (v.ieee.exponent > 130) |
261 | return (a1 + u.d) * 0x1p-130L; |
262 | /* If v.d * 0x1p-130L with round to zero is a subnormal above |
263 | or equal to LDBL_MIN / 2, then v.d * 0x1p-130L shifts mantissa |
264 | down just by 1 bit, which means v.ieee.mantissa1 |= j would |
265 | change the round bit, not sticky or guard bit. |
266 | v.d * 0x1p-130L never normalizes by shifting up, |
267 | so round bit plus sticky bit should be already enough |
268 | for proper rounding. */ |
269 | if (v.ieee.exponent == 130) |
270 | { |
271 | /* If the exponent would be in the normal range when |
272 | rounding to normal precision with unbounded exponent |
273 | range, the exact result is known and spurious underflows |
274 | must be avoided on systems detecting tininess after |
275 | rounding. */ |
276 | if (TININESS_AFTER_ROUNDING) |
277 | { |
278 | w.d = a1 + u.d; |
279 | if (w.ieee.exponent == 131) |
280 | return w.d * 0x1p-130L; |
281 | } |
282 | /* v.ieee.mantissa1 & 2 is LSB bit of the result before rounding, |
283 | v.ieee.mantissa1 & 1 is the round bit and j is our sticky |
284 | bit. */ |
285 | w.d = 0.0L; |
286 | w.ieee.mantissa1 = ((v.ieee.mantissa1 & 3) << 1) | j; |
287 | w.ieee.negative = v.ieee.negative; |
288 | v.ieee.mantissa1 &= ~3U; |
289 | v.d *= 0x1p-130L; |
290 | w.d *= 0x1p-2L; |
291 | return v.d + w.d; |
292 | } |
293 | v.ieee.mantissa1 |= j; |
294 | return v.d * 0x1p-130L; |
295 | } |
296 | } |
297 | libm_alias_ldouble (__fma, fma) |
298 | |