1 | /* |
2 | * ==================================================== |
3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
4 | * |
5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
6 | * Permission to use, copy, modify, and distribute this |
7 | * software is freely granted, provided that this notice |
8 | * is preserved. |
9 | * ==================================================== |
10 | */ |
11 | |
12 | /* Long double expansions are |
13 | Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> |
14 | and are incorporated herein by permission of the author. The author |
15 | reserves the right to distribute this material elsewhere under different |
16 | copying permissions. These modifications are distributed here under |
17 | the following terms: |
18 | |
19 | This library is free software; you can redistribute it and/or |
20 | modify it under the terms of the GNU Lesser General Public |
21 | License as published by the Free Software Foundation; either |
22 | version 2.1 of the License, or (at your option) any later version. |
23 | |
24 | This library is distributed in the hope that it will be useful, |
25 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
26 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
27 | Lesser General Public License for more details. |
28 | |
29 | You should have received a copy of the GNU Lesser General Public |
30 | License along with this library; if not, see |
31 | <https://www.gnu.org/licenses/>. */ |
32 | |
33 | /* double erf(double x) |
34 | * double erfc(double x) |
35 | * x |
36 | * 2 |\ |
37 | * erf(x) = --------- | exp(-t*t)dt |
38 | * sqrt(pi) \| |
39 | * 0 |
40 | * |
41 | * erfc(x) = 1-erf(x) |
42 | * Note that |
43 | * erf(-x) = -erf(x) |
44 | * erfc(-x) = 2 - erfc(x) |
45 | * |
46 | * Method: |
47 | * 1. For |x| in [0, 0.84375] |
48 | * erf(x) = x + x*R(x^2) |
49 | * erfc(x) = 1 - erf(x) if x in [-.84375,0.25] |
50 | * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375] |
51 | * Remark. The formula is derived by noting |
52 | * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) |
53 | * and that |
54 | * 2/sqrt(pi) = 1.128379167095512573896158903121545171688 |
55 | * is close to one. The interval is chosen because the fix |
56 | * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is |
57 | * near 0.6174), and by some experiment, 0.84375 is chosen to |
58 | * guarantee the error is less than one ulp for erf. |
59 | * |
60 | * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and |
61 | * c = 0.84506291151 rounded to single (24 bits) |
62 | * erf(x) = sign(x) * (c + P1(s)/Q1(s)) |
63 | * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0 |
64 | * 1+(c+P1(s)/Q1(s)) if x < 0 |
65 | * Remark: here we use the taylor series expansion at x=1. |
66 | * erf(1+s) = erf(1) + s*Poly(s) |
67 | * = 0.845.. + P1(s)/Q1(s) |
68 | * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] |
69 | * |
70 | * 3. For x in [1.25,1/0.35(~2.857143)], |
71 | * erfc(x) = (1/x)*exp(-x*x-0.5625+R1(z)/S1(z)) |
72 | * z=1/x^2 |
73 | * erf(x) = 1 - erfc(x) |
74 | * |
75 | * 4. For x in [1/0.35,107] |
76 | * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 |
77 | * = 2.0 - (1/x)*exp(-x*x-0.5625+R2(z)/S2(z)) |
78 | * if -6.666<x<0 |
79 | * = 2.0 - tiny (if x <= -6.666) |
80 | * z=1/x^2 |
81 | * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6.666, else |
82 | * erf(x) = sign(x)*(1.0 - tiny) |
83 | * Note1: |
84 | * To compute exp(-x*x-0.5625+R/S), let s be a single |
85 | * precision number and s := x; then |
86 | * -x*x = -s*s + (s-x)*(s+x) |
87 | * exp(-x*x-0.5626+R/S) = |
88 | * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); |
89 | * Note2: |
90 | * Here 4 and 5 make use of the asymptotic series |
91 | * exp(-x*x) |
92 | * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) |
93 | * x*sqrt(pi) |
94 | * |
95 | * 5. For inf > x >= 107 |
96 | * erf(x) = sign(x) *(1 - tiny) (raise inexact) |
97 | * erfc(x) = tiny*tiny (raise underflow) if x > 0 |
98 | * = 2 - tiny if x<0 |
99 | * |
100 | * 7. Special case: |
101 | * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, |
102 | * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, |
103 | * erfc/erf(NaN) is NaN |
104 | */ |
105 | |
106 | |
107 | #include <errno.h> |
108 | #include <float.h> |
109 | #include <math.h> |
110 | #include <math_private.h> |
111 | #include <math-underflow.h> |
112 | #include <libm-alias-ldouble.h> |
113 | |
114 | static const long double |
115 | tiny = 1e-4931L, |
116 | half = 0.5L, |
117 | one = 1.0L, |
118 | two = 2.0L, |
119 | /* c = (float)0.84506291151 */ |
120 | erx = 0.845062911510467529296875L, |
121 | /* |
122 | * Coefficients for approximation to erf on [0,0.84375] |
123 | */ |
124 | /* 2/sqrt(pi) - 1 */ |
125 | efx = 1.2837916709551257389615890312154517168810E-1L, |
126 | |
127 | pp[6] = { |
128 | 1.122751350964552113068262337278335028553E6L, |
129 | -2.808533301997696164408397079650699163276E6L, |
130 | -3.314325479115357458197119660818768924100E5L, |
131 | -6.848684465326256109712135497895525446398E4L, |
132 | -2.657817695110739185591505062971929859314E3L, |
133 | -1.655310302737837556654146291646499062882E2L, |
134 | }, |
135 | |
136 | qq[6] = { |
137 | 8.745588372054466262548908189000448124232E6L, |
138 | 3.746038264792471129367533128637019611485E6L, |
139 | 7.066358783162407559861156173539693900031E5L, |
140 | 7.448928604824620999413120955705448117056E4L, |
141 | 4.511583986730994111992253980546131408924E3L, |
142 | 1.368902937933296323345610240009071254014E2L, |
143 | /* 1.000000000000000000000000000000000000000E0 */ |
144 | }, |
145 | |
146 | /* |
147 | * Coefficients for approximation to erf in [0.84375,1.25] |
148 | */ |
149 | /* erf(x+1) = 0.845062911510467529296875 + pa(x)/qa(x) |
150 | -0.15625 <= x <= +.25 |
151 | Peak relative error 8.5e-22 */ |
152 | |
153 | pa[8] = { |
154 | -1.076952146179812072156734957705102256059E0L, |
155 | 1.884814957770385593365179835059971587220E2L, |
156 | -5.339153975012804282890066622962070115606E1L, |
157 | 4.435910679869176625928504532109635632618E1L, |
158 | 1.683219516032328828278557309642929135179E1L, |
159 | -2.360236618396952560064259585299045804293E0L, |
160 | 1.852230047861891953244413872297940938041E0L, |
161 | 9.394994446747752308256773044667843200719E-2L, |
162 | }, |
163 | |
164 | qa[7] = { |
165 | 4.559263722294508998149925774781887811255E2L, |
166 | 3.289248982200800575749795055149780689738E2L, |
167 | 2.846070965875643009598627918383314457912E2L, |
168 | 1.398715859064535039433275722017479994465E2L, |
169 | 6.060190733759793706299079050985358190726E1L, |
170 | 2.078695677795422351040502569964299664233E1L, |
171 | 4.641271134150895940966798357442234498546E0L, |
172 | /* 1.000000000000000000000000000000000000000E0 */ |
173 | }, |
174 | |
175 | /* |
176 | * Coefficients for approximation to erfc in [1.25,1/0.35] |
177 | */ |
178 | /* erfc(1/x) = x exp (-1/x^2 - 0.5625 + ra(x^2)/sa(x^2)) |
179 | 1/2.85711669921875 < 1/x < 1/1.25 |
180 | Peak relative error 3.1e-21 */ |
181 | |
182 | ra[] = { |
183 | 1.363566591833846324191000679620738857234E-1L, |
184 | 1.018203167219873573808450274314658434507E1L, |
185 | 1.862359362334248675526472871224778045594E2L, |
186 | 1.411622588180721285284945138667933330348E3L, |
187 | 5.088538459741511988784440103218342840478E3L, |
188 | 8.928251553922176506858267311750789273656E3L, |
189 | 7.264436000148052545243018622742770549982E3L, |
190 | 2.387492459664548651671894725748959751119E3L, |
191 | 2.220916652813908085449221282808458466556E2L, |
192 | }, |
193 | |
194 | sa[] = { |
195 | -1.382234625202480685182526402169222331847E1L, |
196 | -3.315638835627950255832519203687435946482E2L, |
197 | -2.949124863912936259747237164260785326692E3L, |
198 | -1.246622099070875940506391433635999693661E4L, |
199 | -2.673079795851665428695842853070996219632E4L, |
200 | -2.880269786660559337358397106518918220991E4L, |
201 | -1.450600228493968044773354186390390823713E4L, |
202 | -2.874539731125893533960680525192064277816E3L, |
203 | -1.402241261419067750237395034116942296027E2L, |
204 | /* 1.000000000000000000000000000000000000000E0 */ |
205 | }, |
206 | /* |
207 | * Coefficients for approximation to erfc in [1/.35,107] |
208 | */ |
209 | /* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rb(x^2)/sb(x^2)) |
210 | 1/6.6666259765625 < 1/x < 1/2.85711669921875 |
211 | Peak relative error 4.2e-22 */ |
212 | rb[] = { |
213 | -4.869587348270494309550558460786501252369E-5L, |
214 | -4.030199390527997378549161722412466959403E-3L, |
215 | -9.434425866377037610206443566288917589122E-2L, |
216 | -9.319032754357658601200655161585539404155E-1L, |
217 | -4.273788174307459947350256581445442062291E0L, |
218 | -8.842289940696150508373541814064198259278E0L, |
219 | -7.069215249419887403187988144752613025255E0L, |
220 | -1.401228723639514787920274427443330704764E0L, |
221 | }, |
222 | |
223 | sb[] = { |
224 | 4.936254964107175160157544545879293019085E-3L, |
225 | 1.583457624037795744377163924895349412015E-1L, |
226 | 1.850647991850328356622940552450636420484E0L, |
227 | 9.927611557279019463768050710008450625415E0L, |
228 | 2.531667257649436709617165336779212114570E1L, |
229 | 2.869752886406743386458304052862814690045E1L, |
230 | 1.182059497870819562441683560749192539345E1L, |
231 | /* 1.000000000000000000000000000000000000000E0 */ |
232 | }, |
233 | /* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rc(x^2)/sc(x^2)) |
234 | 1/107 <= 1/x <= 1/6.6666259765625 |
235 | Peak relative error 1.1e-21 */ |
236 | rc[] = { |
237 | -8.299617545269701963973537248996670806850E-5L, |
238 | -6.243845685115818513578933902532056244108E-3L, |
239 | -1.141667210620380223113693474478394397230E-1L, |
240 | -7.521343797212024245375240432734425789409E-1L, |
241 | -1.765321928311155824664963633786967602934E0L, |
242 | -1.029403473103215800456761180695263439188E0L, |
243 | }, |
244 | |
245 | sc[] = { |
246 | 8.413244363014929493035952542677768808601E-3L, |
247 | 2.065114333816877479753334599639158060979E-1L, |
248 | 1.639064941530797583766364412782135680148E0L, |
249 | 4.936788463787115555582319302981666347450E0L, |
250 | 5.005177727208955487404729933261347679090E0L, |
251 | /* 1.000000000000000000000000000000000000000E0 */ |
252 | }; |
253 | |
254 | long double |
255 | __erfl (long double x) |
256 | { |
257 | long double R, S, P, Q, s, y, z, r; |
258 | int32_t ix, i; |
259 | uint32_t se, i0, i1; |
260 | |
261 | GET_LDOUBLE_WORDS (se, i0, i1, x); |
262 | ix = se & 0x7fff; |
263 | |
264 | if (ix >= 0x7fff) |
265 | { /* erf(nan)=nan */ |
266 | i = ((se & 0xffff) >> 15) << 1; |
267 | return (long double) (1 - i) + one / x; /* erf(+-inf)=+-1 */ |
268 | } |
269 | |
270 | ix = (ix << 16) | (i0 >> 16); |
271 | if (ix < 0x3ffed800) /* |x|<0.84375 */ |
272 | { |
273 | if (ix < 0x3fde8000) /* |x|<2**-33 */ |
274 | { |
275 | if (ix < 0x00080000) |
276 | { |
277 | /* Avoid spurious underflow. */ |
278 | long double ret = 0.0625 * (16.0 * x + (16.0 * efx) * x); |
279 | math_check_force_underflow (ret); |
280 | return ret; |
281 | } |
282 | return x + efx * x; |
283 | } |
284 | z = x * x; |
285 | r = pp[0] + z * (pp[1] |
286 | + z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5])))); |
287 | s = qq[0] + z * (qq[1] |
288 | + z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z))))); |
289 | y = r / s; |
290 | return x + x * y; |
291 | } |
292 | if (ix < 0x3fffa000) /* 1.25 */ |
293 | { /* 0.84375 <= |x| < 1.25 */ |
294 | s = fabsl (x) - one; |
295 | P = pa[0] + s * (pa[1] + s * (pa[2] |
296 | + s * (pa[3] + s * (pa[4] + s * (pa[5] + s * (pa[6] + s * pa[7])))))); |
297 | Q = qa[0] + s * (qa[1] + s * (qa[2] |
298 | + s * (qa[3] + s * (qa[4] + s * (qa[5] + s * (qa[6] + s)))))); |
299 | if ((se & 0x8000) == 0) |
300 | return erx + P / Q; |
301 | else |
302 | return -erx - P / Q; |
303 | } |
304 | if (ix >= 0x4001d555) /* 6.6666259765625 */ |
305 | { /* inf>|x|>=6.666 */ |
306 | if ((se & 0x8000) == 0) |
307 | return one - tiny; |
308 | else |
309 | return tiny - one; |
310 | } |
311 | x = fabsl (x); |
312 | s = one / (x * x); |
313 | if (ix < 0x4000b6db) /* 2.85711669921875 */ |
314 | { |
315 | R = ra[0] + s * (ra[1] + s * (ra[2] + s * (ra[3] + s * (ra[4] + |
316 | s * (ra[5] + s * (ra[6] + s * (ra[7] + s * ra[8]))))))); |
317 | S = sa[0] + s * (sa[1] + s * (sa[2] + s * (sa[3] + s * (sa[4] + |
318 | s * (sa[5] + s * (sa[6] + s * (sa[7] + s * (sa[8] + s)))))))); |
319 | } |
320 | else |
321 | { /* |x| >= 1/0.35 */ |
322 | R = rb[0] + s * (rb[1] + s * (rb[2] + s * (rb[3] + s * (rb[4] + |
323 | s * (rb[5] + s * (rb[6] + s * rb[7])))))); |
324 | S = sb[0] + s * (sb[1] + s * (sb[2] + s * (sb[3] + s * (sb[4] + |
325 | s * (sb[5] + s * (sb[6] + s)))))); |
326 | } |
327 | z = x; |
328 | GET_LDOUBLE_WORDS (i, i0, i1, z); |
329 | i1 = 0; |
330 | SET_LDOUBLE_WORDS (z, i, i0, i1); |
331 | r = |
332 | __ieee754_expl (-z * z - 0.5625) * __ieee754_expl ((z - x) * (z + x) + |
333 | R / S); |
334 | if ((se & 0x8000) == 0) |
335 | return one - r / x; |
336 | else |
337 | return r / x - one; |
338 | } |
339 | |
340 | libm_alias_ldouble (__erf, erf) |
341 | long double |
342 | __erfcl (long double x) |
343 | { |
344 | int32_t hx, ix; |
345 | long double R, S, P, Q, s, y, z, r; |
346 | uint32_t se, i0, i1; |
347 | |
348 | GET_LDOUBLE_WORDS (se, i0, i1, x); |
349 | ix = se & 0x7fff; |
350 | if (ix >= 0x7fff) |
351 | { /* erfc(nan)=nan */ |
352 | /* erfc(+-inf)=0,2 */ |
353 | return (long double) (((se & 0xffff) >> 15) << 1) + one / x; |
354 | } |
355 | |
356 | ix = (ix << 16) | (i0 >> 16); |
357 | if (ix < 0x3ffed800) /* |x|<0.84375 */ |
358 | { |
359 | if (ix < 0x3fbe0000) /* |x|<2**-65 */ |
360 | return one - x; |
361 | z = x * x; |
362 | r = pp[0] + z * (pp[1] |
363 | + z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5])))); |
364 | s = qq[0] + z * (qq[1] |
365 | + z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z))))); |
366 | y = r / s; |
367 | if (ix < 0x3ffd8000) /* x<1/4 */ |
368 | { |
369 | return one - (x + x * y); |
370 | } |
371 | else |
372 | { |
373 | r = x * y; |
374 | r += (x - half); |
375 | return half - r; |
376 | } |
377 | } |
378 | if (ix < 0x3fffa000) /* 1.25 */ |
379 | { /* 0.84375 <= |x| < 1.25 */ |
380 | s = fabsl (x) - one; |
381 | P = pa[0] + s * (pa[1] + s * (pa[2] |
382 | + s * (pa[3] + s * (pa[4] + s * (pa[5] + s * (pa[6] + s * pa[7])))))); |
383 | Q = qa[0] + s * (qa[1] + s * (qa[2] |
384 | + s * (qa[3] + s * (qa[4] + s * (qa[5] + s * (qa[6] + s)))))); |
385 | if ((se & 0x8000) == 0) |
386 | { |
387 | z = one - erx; |
388 | return z - P / Q; |
389 | } |
390 | else |
391 | { |
392 | z = erx + P / Q; |
393 | return one + z; |
394 | } |
395 | } |
396 | if (ix < 0x4005d600) /* 107 */ |
397 | { /* |x|<107 */ |
398 | x = fabsl (x); |
399 | s = one / (x * x); |
400 | if (ix < 0x4000b6db) /* 2.85711669921875 */ |
401 | { /* |x| < 1/.35 ~ 2.857143 */ |
402 | R = ra[0] + s * (ra[1] + s * (ra[2] + s * (ra[3] + s * (ra[4] + |
403 | s * (ra[5] + s * (ra[6] + s * (ra[7] + s * ra[8]))))))); |
404 | S = sa[0] + s * (sa[1] + s * (sa[2] + s * (sa[3] + s * (sa[4] + |
405 | s * (sa[5] + s * (sa[6] + s * (sa[7] + s * (sa[8] + s)))))))); |
406 | } |
407 | else if (ix < 0x4001d555) /* 6.6666259765625 */ |
408 | { /* 6.666 > |x| >= 1/.35 ~ 2.857143 */ |
409 | R = rb[0] + s * (rb[1] + s * (rb[2] + s * (rb[3] + s * (rb[4] + |
410 | s * (rb[5] + s * (rb[6] + s * rb[7])))))); |
411 | S = sb[0] + s * (sb[1] + s * (sb[2] + s * (sb[3] + s * (sb[4] + |
412 | s * (sb[5] + s * (sb[6] + s)))))); |
413 | } |
414 | else |
415 | { /* |x| >= 6.666 */ |
416 | if (se & 0x8000) |
417 | return two - tiny; /* x < -6.666 */ |
418 | |
419 | R = rc[0] + s * (rc[1] + s * (rc[2] + s * (rc[3] + |
420 | s * (rc[4] + s * rc[5])))); |
421 | S = sc[0] + s * (sc[1] + s * (sc[2] + s * (sc[3] + |
422 | s * (sc[4] + s)))); |
423 | } |
424 | z = x; |
425 | GET_LDOUBLE_WORDS (hx, i0, i1, z); |
426 | i1 = 0; |
427 | i0 &= 0xffffff00; |
428 | SET_LDOUBLE_WORDS (z, hx, i0, i1); |
429 | r = __ieee754_expl (-z * z - 0.5625) * |
430 | __ieee754_expl ((z - x) * (z + x) + R / S); |
431 | if ((se & 0x8000) == 0) |
432 | { |
433 | long double ret = r / x; |
434 | if (ret == 0) |
435 | __set_errno (ERANGE); |
436 | return ret; |
437 | } |
438 | else |
439 | return two - r / x; |
440 | } |
441 | else |
442 | { |
443 | if ((se & 0x8000) == 0) |
444 | { |
445 | __set_errno (ERANGE); |
446 | return tiny * tiny; |
447 | } |
448 | else |
449 | return two - tiny; |
450 | } |
451 | } |
452 | |
453 | libm_alias_ldouble (__erfc, erfc) |
454 | |