1 | /* Copyright (C) 1995-2022 Free Software Foundation, Inc. |
2 | This file is part of the GNU C Library. |
3 | |
4 | The GNU C Library is free software; you can redistribute it and/or |
5 | modify it under the terms of the GNU Lesser General Public |
6 | License as published by the Free Software Foundation; either |
7 | version 2.1 of the License, or (at your option) any later version. |
8 | |
9 | The GNU C Library is distributed in the hope that it will be useful, |
10 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
12 | Lesser General Public License for more details. |
13 | |
14 | You should have received a copy of the GNU Lesser General Public |
15 | License along with the GNU C Library; if not, see |
16 | <https://www.gnu.org/licenses/>. */ |
17 | |
18 | #include "gmp.h" |
19 | #include "gmp-impl.h" |
20 | #include "longlong.h" |
21 | #include <ieee754.h> |
22 | #include <float.h> |
23 | #include <math.h> |
24 | #include <math_private.h> |
25 | #include <stdlib.h> |
26 | |
27 | /* Convert a `long double' in IEEE854 quad-precision format to a |
28 | multi-precision integer representing the significand scaled up by its |
29 | number of bits (113 for long double) and an integral power of two |
30 | (MPN frexpl). */ |
31 | |
32 | mp_size_t |
33 | __mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size, |
34 | int *expt, int *is_neg, |
35 | _Float128 value) |
36 | { |
37 | union ieee854_long_double u; |
38 | u.d = value; |
39 | |
40 | *is_neg = u.ieee.negative; |
41 | *expt = (int) u.ieee.exponent - IEEE854_LONG_DOUBLE_BIAS; |
42 | |
43 | #if BITS_PER_MP_LIMB == 32 |
44 | res_ptr[0] = u.ieee.mantissa3; /* Low-order 32 bits of fraction. */ |
45 | res_ptr[1] = u.ieee.mantissa2; |
46 | res_ptr[2] = u.ieee.mantissa1; |
47 | res_ptr[3] = u.ieee.mantissa0; /* High-order 32 bits. */ |
48 | #define N 4 |
49 | #elif BITS_PER_MP_LIMB == 64 |
50 | /* Hopefully the compiler will combine the two bitfield extracts |
51 | and this composition into just the original quadword extract. */ |
52 | res_ptr[0] = ((mp_limb_t) u.ieee.mantissa2 << 32) | u.ieee.mantissa3; |
53 | res_ptr[1] = ((mp_limb_t) u.ieee.mantissa0 << 32) | u.ieee.mantissa1; |
54 | #define N 2 |
55 | #else |
56 | #error "mp_limb size " BITS_PER_MP_LIMB "not accounted for" |
57 | #endif |
58 | /* The format does not fill the last limb. There are some zeros. */ |
59 | #define NUM_LEADING_ZEROS (BITS_PER_MP_LIMB \ |
60 | - (LDBL_MANT_DIG - ((N - 1) * BITS_PER_MP_LIMB))) |
61 | |
62 | if (u.ieee.exponent == 0) |
63 | { |
64 | /* A biased exponent of zero is a special case. |
65 | Either it is a zero or it is a denormal number. */ |
66 | if (res_ptr[0] == 0 && res_ptr[1] == 0 |
67 | && res_ptr[N - 2] == 0 && res_ptr[N - 1] == 0) /* Assumes N<=4. */ |
68 | /* It's zero. */ |
69 | *expt = 0; |
70 | else |
71 | { |
72 | /* It is a denormal number, meaning it has no implicit leading |
73 | one bit, and its exponent is in fact the format minimum. */ |
74 | int cnt; |
75 | |
76 | #if N == 2 |
77 | if (res_ptr[N - 1] != 0) |
78 | { |
79 | count_leading_zeros (cnt, res_ptr[N - 1]); |
80 | cnt -= NUM_LEADING_ZEROS; |
81 | res_ptr[N - 1] = res_ptr[N - 1] << cnt |
82 | | (res_ptr[0] >> (BITS_PER_MP_LIMB - cnt)); |
83 | res_ptr[0] <<= cnt; |
84 | *expt = LDBL_MIN_EXP - 1 - cnt; |
85 | } |
86 | else |
87 | { |
88 | count_leading_zeros (cnt, res_ptr[0]); |
89 | if (cnt >= NUM_LEADING_ZEROS) |
90 | { |
91 | res_ptr[N - 1] = res_ptr[0] << (cnt - NUM_LEADING_ZEROS); |
92 | res_ptr[0] = 0; |
93 | } |
94 | else |
95 | { |
96 | res_ptr[N - 1] = res_ptr[0] >> (NUM_LEADING_ZEROS - cnt); |
97 | res_ptr[0] <<= BITS_PER_MP_LIMB - (NUM_LEADING_ZEROS - cnt); |
98 | } |
99 | *expt = LDBL_MIN_EXP - 1 |
100 | - (BITS_PER_MP_LIMB - NUM_LEADING_ZEROS) - cnt; |
101 | } |
102 | #else |
103 | int j, k, l; |
104 | |
105 | for (j = N - 1; j > 0; j--) |
106 | if (res_ptr[j] != 0) |
107 | break; |
108 | |
109 | count_leading_zeros (cnt, res_ptr[j]); |
110 | cnt -= NUM_LEADING_ZEROS; |
111 | l = N - 1 - j; |
112 | if (cnt < 0) |
113 | { |
114 | cnt += BITS_PER_MP_LIMB; |
115 | l--; |
116 | } |
117 | if (!cnt) |
118 | for (k = N - 1; k >= l; k--) |
119 | res_ptr[k] = res_ptr[k-l]; |
120 | else |
121 | { |
122 | for (k = N - 1; k > l; k--) |
123 | res_ptr[k] = res_ptr[k-l] << cnt |
124 | | res_ptr[k-l-1] >> (BITS_PER_MP_LIMB - cnt); |
125 | res_ptr[k--] = res_ptr[0] << cnt; |
126 | } |
127 | |
128 | for (; k >= 0; k--) |
129 | res_ptr[k] = 0; |
130 | *expt = LDBL_MIN_EXP - 1 - l * BITS_PER_MP_LIMB - cnt; |
131 | #endif |
132 | } |
133 | } |
134 | else |
135 | /* Add the implicit leading one bit for a normalized number. */ |
136 | res_ptr[N - 1] |= (mp_limb_t) 1 << (LDBL_MANT_DIG - 1 |
137 | - ((N - 1) * BITS_PER_MP_LIMB)); |
138 | |
139 | return N; |
140 | } |
141 | |