1 | /* Single-precision pow function. |
2 | Copyright (C) 2017-2022 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #include <math.h> |
20 | #include <math-barriers.h> |
21 | #include <math-narrow-eval.h> |
22 | #include <stdint.h> |
23 | #include <libm-alias-finite.h> |
24 | #include <libm-alias-float.h> |
25 | #include "math_config.h" |
26 | |
27 | /* |
28 | POWF_LOG2_POLY_ORDER = 5 |
29 | EXP2F_TABLE_BITS = 5 |
30 | |
31 | ULP error: 0.82 (~ 0.5 + relerr*2^24) |
32 | relerr: 1.27 * 2^-26 (Relative error ~= 128*Ln2*relerr_log2 + relerr_exp2) |
33 | relerr_log2: 1.83 * 2^-33 (Relative error of logx.) |
34 | relerr_exp2: 1.69 * 2^-34 (Relative error of exp2(ylogx).) |
35 | */ |
36 | |
37 | #define N (1 << POWF_LOG2_TABLE_BITS) |
38 | #define T __powf_log2_data.tab |
39 | #define A __powf_log2_data.poly |
40 | #define OFF 0x3f330000 |
41 | |
42 | /* Subnormal input is normalized so ix has negative biased exponent. |
43 | Output is multiplied by N (POWF_SCALE) if TOINT_INTRINICS is set. */ |
44 | static inline double_t |
45 | log2_inline (uint32_t ix) |
46 | { |
47 | /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ |
48 | double_t z, r, r2, r4, p, q, y, y0, invc, logc; |
49 | uint32_t iz, top, tmp; |
50 | int k, i; |
51 | |
52 | /* x = 2^k z; where z is in range [OFF,2*OFF] and exact. |
53 | The range is split into N subintervals. |
54 | The ith subinterval contains z and c is near its center. */ |
55 | tmp = ix - OFF; |
56 | i = (tmp >> (23 - POWF_LOG2_TABLE_BITS)) % N; |
57 | top = tmp & 0xff800000; |
58 | iz = ix - top; |
59 | k = (int32_t) top >> (23 - POWF_SCALE_BITS); /* arithmetic shift */ |
60 | invc = T[i].invc; |
61 | logc = T[i].logc; |
62 | z = (double_t) asfloat (iz); |
63 | |
64 | /* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */ |
65 | r = z * invc - 1; |
66 | y0 = logc + (double_t) k; |
67 | |
68 | /* Pipelined polynomial evaluation to approximate log1p(r)/ln2. */ |
69 | r2 = r * r; |
70 | y = A[0] * r + A[1]; |
71 | p = A[2] * r + A[3]; |
72 | r4 = r2 * r2; |
73 | q = A[4] * r + y0; |
74 | q = p * r2 + q; |
75 | y = y * r4 + q; |
76 | return y; |
77 | } |
78 | |
79 | #undef N |
80 | #undef T |
81 | #define N (1 << EXP2F_TABLE_BITS) |
82 | #define T __exp2f_data.tab |
83 | #define SIGN_BIAS (1 << (EXP2F_TABLE_BITS + 11)) |
84 | |
85 | /* The output of log2 and thus the input of exp2 is either scaled by N |
86 | (in case of fast toint intrinsics) or not. The unscaled xd must be |
87 | in [-1021,1023], sign_bias sets the sign of the result. */ |
88 | static inline double_t |
89 | exp2_inline (double_t xd, uint32_t sign_bias) |
90 | { |
91 | uint64_t ki, ski, t; |
92 | /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ |
93 | double_t kd, z, r, r2, y, s; |
94 | |
95 | #if TOINT_INTRINSICS |
96 | # define C __exp2f_data.poly_scaled |
97 | /* N*x = k + r with r in [-1/2, 1/2] */ |
98 | kd = roundtoint (xd); /* k */ |
99 | ki = converttoint (xd); |
100 | #else |
101 | # define C __exp2f_data.poly |
102 | # define SHIFT __exp2f_data.shift_scaled |
103 | /* x = k/N + r with r in [-1/(2N), 1/(2N)] */ |
104 | kd = (double) (xd + SHIFT); /* Rounding to double precision is required. */ |
105 | ki = asuint64 (kd); |
106 | kd -= SHIFT; /* k/N */ |
107 | #endif |
108 | r = xd - kd; |
109 | |
110 | /* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */ |
111 | t = T[ki % N]; |
112 | ski = ki + sign_bias; |
113 | t += ski << (52 - EXP2F_TABLE_BITS); |
114 | s = asdouble (t); |
115 | z = C[0] * r + C[1]; |
116 | r2 = r * r; |
117 | y = C[2] * r + 1; |
118 | y = z * r2 + y; |
119 | y = y * s; |
120 | return y; |
121 | } |
122 | |
123 | /* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is |
124 | the bit representation of a non-zero finite floating-point value. */ |
125 | static inline int |
126 | checkint (uint32_t iy) |
127 | { |
128 | int e = iy >> 23 & 0xff; |
129 | if (e < 0x7f) |
130 | return 0; |
131 | if (e > 0x7f + 23) |
132 | return 2; |
133 | if (iy & ((1 << (0x7f + 23 - e)) - 1)) |
134 | return 0; |
135 | if (iy & (1 << (0x7f + 23 - e))) |
136 | return 1; |
137 | return 2; |
138 | } |
139 | |
140 | static inline int |
141 | zeroinfnan (uint32_t ix) |
142 | { |
143 | return 2 * ix - 1 >= 2u * 0x7f800000 - 1; |
144 | } |
145 | |
146 | float |
147 | __powf (float x, float y) |
148 | { |
149 | uint32_t sign_bias = 0; |
150 | uint32_t ix, iy; |
151 | |
152 | ix = asuint (x); |
153 | iy = asuint (y); |
154 | if (__glibc_unlikely (ix - 0x00800000 >= 0x7f800000 - 0x00800000 |
155 | || zeroinfnan (iy))) |
156 | { |
157 | /* Either (x < 0x1p-126 or inf or nan) or (y is 0 or inf or nan). */ |
158 | if (__glibc_unlikely (zeroinfnan (iy))) |
159 | { |
160 | if (2 * iy == 0) |
161 | return issignaling (x) ? x + y : 1.0f; |
162 | if (ix == 0x3f800000) |
163 | return issignaling (y) ? x + y : 1.0f; |
164 | if (2 * ix > 2u * 0x7f800000 || 2 * iy > 2u * 0x7f800000) |
165 | return x + y; |
166 | if (2 * ix == 2 * 0x3f800000) |
167 | return 1.0f; |
168 | if ((2 * ix < 2 * 0x3f800000) == !(iy & 0x80000000)) |
169 | return 0.0f; /* |x|<1 && y==inf or |x|>1 && y==-inf. */ |
170 | return y * y; |
171 | } |
172 | if (__glibc_unlikely (zeroinfnan (ix))) |
173 | { |
174 | float_t x2 = x * x; |
175 | if (ix & 0x80000000 && checkint (iy) == 1) |
176 | { |
177 | x2 = -x2; |
178 | sign_bias = 1; |
179 | } |
180 | #if WANT_ERRNO |
181 | if (2 * ix == 0 && iy & 0x80000000) |
182 | return __math_divzerof (sign_bias); |
183 | #endif |
184 | return iy & 0x80000000 ? 1 / x2 : x2; |
185 | } |
186 | /* x and y are non-zero finite. */ |
187 | if (ix & 0x80000000) |
188 | { |
189 | /* Finite x < 0. */ |
190 | int yint = checkint (iy); |
191 | if (yint == 0) |
192 | return __math_invalidf (x); |
193 | if (yint == 1) |
194 | sign_bias = SIGN_BIAS; |
195 | ix &= 0x7fffffff; |
196 | } |
197 | if (ix < 0x00800000) |
198 | { |
199 | /* Normalize subnormal x so exponent becomes negative. */ |
200 | ix = asuint (x * 0x1p23f); |
201 | ix &= 0x7fffffff; |
202 | ix -= 23 << 23; |
203 | } |
204 | } |
205 | double_t logx = log2_inline (ix); |
206 | double_t ylogx = y * logx; /* Note: cannot overflow, y is single prec. */ |
207 | if (__glibc_unlikely ((asuint64 (ylogx) >> 47 & 0xffff) |
208 | >= asuint64 (126.0 * POWF_SCALE) >> 47)) |
209 | { |
210 | /* |y*log(x)| >= 126. */ |
211 | if (ylogx > 0x1.fffffffd1d571p+6 * POWF_SCALE) |
212 | /* |x^y| > 0x1.ffffffp127. */ |
213 | return __math_oflowf (sign_bias); |
214 | if (WANT_ROUNDING && WANT_ERRNO |
215 | && ylogx > 0x1.fffffffa3aae2p+6 * POWF_SCALE) |
216 | /* |x^y| > 0x1.fffffep127, check if we round away from 0. */ |
217 | if ((!sign_bias |
218 | && math_narrow_eval (1.0f + math_opt_barrier (0x1p-25f)) != 1.0f) |
219 | || (sign_bias |
220 | && math_narrow_eval (-1.0f - math_opt_barrier (0x1p-25f)) |
221 | != -1.0f)) |
222 | return __math_oflowf (sign_bias); |
223 | if (ylogx <= -150.0 * POWF_SCALE) |
224 | return __math_uflowf (sign_bias); |
225 | #if WANT_ERRNO_UFLOW |
226 | if (ylogx < -149.0 * POWF_SCALE) |
227 | return __math_may_uflowf (sign_bias); |
228 | #endif |
229 | } |
230 | return (float) exp2_inline (ylogx, sign_bias); |
231 | } |
232 | #ifndef __powf |
233 | strong_alias (__powf, __ieee754_powf) |
234 | libm_alias_finite (__ieee754_powf, __powf) |
235 | versioned_symbol (libm, __powf, powf, GLIBC_2_27); |
236 | libm_alias_float_other (__pow, pow) |
237 | #endif |
238 | |