| 1 | /* Single-precision pow function. |
| 2 | Copyright (C) 2017-2022 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <math.h> |
| 20 | #include <math-barriers.h> |
| 21 | #include <math-narrow-eval.h> |
| 22 | #include <stdint.h> |
| 23 | #include <libm-alias-finite.h> |
| 24 | #include <libm-alias-float.h> |
| 25 | #include "math_config.h" |
| 26 | |
| 27 | /* |
| 28 | POWF_LOG2_POLY_ORDER = 5 |
| 29 | EXP2F_TABLE_BITS = 5 |
| 30 | |
| 31 | ULP error: 0.82 (~ 0.5 + relerr*2^24) |
| 32 | relerr: 1.27 * 2^-26 (Relative error ~= 128*Ln2*relerr_log2 + relerr_exp2) |
| 33 | relerr_log2: 1.83 * 2^-33 (Relative error of logx.) |
| 34 | relerr_exp2: 1.69 * 2^-34 (Relative error of exp2(ylogx).) |
| 35 | */ |
| 36 | |
| 37 | #define N (1 << POWF_LOG2_TABLE_BITS) |
| 38 | #define T __powf_log2_data.tab |
| 39 | #define A __powf_log2_data.poly |
| 40 | #define OFF 0x3f330000 |
| 41 | |
| 42 | /* Subnormal input is normalized so ix has negative biased exponent. |
| 43 | Output is multiplied by N (POWF_SCALE) if TOINT_INTRINICS is set. */ |
| 44 | static inline double_t |
| 45 | log2_inline (uint32_t ix) |
| 46 | { |
| 47 | /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ |
| 48 | double_t z, r, r2, r4, p, q, y, y0, invc, logc; |
| 49 | uint32_t iz, top, tmp; |
| 50 | int k, i; |
| 51 | |
| 52 | /* x = 2^k z; where z is in range [OFF,2*OFF] and exact. |
| 53 | The range is split into N subintervals. |
| 54 | The ith subinterval contains z and c is near its center. */ |
| 55 | tmp = ix - OFF; |
| 56 | i = (tmp >> (23 - POWF_LOG2_TABLE_BITS)) % N; |
| 57 | top = tmp & 0xff800000; |
| 58 | iz = ix - top; |
| 59 | k = (int32_t) top >> (23 - POWF_SCALE_BITS); /* arithmetic shift */ |
| 60 | invc = T[i].invc; |
| 61 | logc = T[i].logc; |
| 62 | z = (double_t) asfloat (iz); |
| 63 | |
| 64 | /* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */ |
| 65 | r = z * invc - 1; |
| 66 | y0 = logc + (double_t) k; |
| 67 | |
| 68 | /* Pipelined polynomial evaluation to approximate log1p(r)/ln2. */ |
| 69 | r2 = r * r; |
| 70 | y = A[0] * r + A[1]; |
| 71 | p = A[2] * r + A[3]; |
| 72 | r4 = r2 * r2; |
| 73 | q = A[4] * r + y0; |
| 74 | q = p * r2 + q; |
| 75 | y = y * r4 + q; |
| 76 | return y; |
| 77 | } |
| 78 | |
| 79 | #undef N |
| 80 | #undef T |
| 81 | #define N (1 << EXP2F_TABLE_BITS) |
| 82 | #define T __exp2f_data.tab |
| 83 | #define SIGN_BIAS (1 << (EXP2F_TABLE_BITS + 11)) |
| 84 | |
| 85 | /* The output of log2 and thus the input of exp2 is either scaled by N |
| 86 | (in case of fast toint intrinsics) or not. The unscaled xd must be |
| 87 | in [-1021,1023], sign_bias sets the sign of the result. */ |
| 88 | static inline double_t |
| 89 | exp2_inline (double_t xd, uint32_t sign_bias) |
| 90 | { |
| 91 | uint64_t ki, ski, t; |
| 92 | /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ |
| 93 | double_t kd, z, r, r2, y, s; |
| 94 | |
| 95 | #if TOINT_INTRINSICS |
| 96 | # define C __exp2f_data.poly_scaled |
| 97 | /* N*x = k + r with r in [-1/2, 1/2] */ |
| 98 | kd = roundtoint (xd); /* k */ |
| 99 | ki = converttoint (xd); |
| 100 | #else |
| 101 | # define C __exp2f_data.poly |
| 102 | # define SHIFT __exp2f_data.shift_scaled |
| 103 | /* x = k/N + r with r in [-1/(2N), 1/(2N)] */ |
| 104 | kd = (double) (xd + SHIFT); /* Rounding to double precision is required. */ |
| 105 | ki = asuint64 (kd); |
| 106 | kd -= SHIFT; /* k/N */ |
| 107 | #endif |
| 108 | r = xd - kd; |
| 109 | |
| 110 | /* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */ |
| 111 | t = T[ki % N]; |
| 112 | ski = ki + sign_bias; |
| 113 | t += ski << (52 - EXP2F_TABLE_BITS); |
| 114 | s = asdouble (t); |
| 115 | z = C[0] * r + C[1]; |
| 116 | r2 = r * r; |
| 117 | y = C[2] * r + 1; |
| 118 | y = z * r2 + y; |
| 119 | y = y * s; |
| 120 | return y; |
| 121 | } |
| 122 | |
| 123 | /* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is |
| 124 | the bit representation of a non-zero finite floating-point value. */ |
| 125 | static inline int |
| 126 | checkint (uint32_t iy) |
| 127 | { |
| 128 | int e = iy >> 23 & 0xff; |
| 129 | if (e < 0x7f) |
| 130 | return 0; |
| 131 | if (e > 0x7f + 23) |
| 132 | return 2; |
| 133 | if (iy & ((1 << (0x7f + 23 - e)) - 1)) |
| 134 | return 0; |
| 135 | if (iy & (1 << (0x7f + 23 - e))) |
| 136 | return 1; |
| 137 | return 2; |
| 138 | } |
| 139 | |
| 140 | static inline int |
| 141 | zeroinfnan (uint32_t ix) |
| 142 | { |
| 143 | return 2 * ix - 1 >= 2u * 0x7f800000 - 1; |
| 144 | } |
| 145 | |
| 146 | float |
| 147 | __powf (float x, float y) |
| 148 | { |
| 149 | uint32_t sign_bias = 0; |
| 150 | uint32_t ix, iy; |
| 151 | |
| 152 | ix = asuint (x); |
| 153 | iy = asuint (y); |
| 154 | if (__glibc_unlikely (ix - 0x00800000 >= 0x7f800000 - 0x00800000 |
| 155 | || zeroinfnan (iy))) |
| 156 | { |
| 157 | /* Either (x < 0x1p-126 or inf or nan) or (y is 0 or inf or nan). */ |
| 158 | if (__glibc_unlikely (zeroinfnan (iy))) |
| 159 | { |
| 160 | if (2 * iy == 0) |
| 161 | return issignaling (x) ? x + y : 1.0f; |
| 162 | if (ix == 0x3f800000) |
| 163 | return issignaling (y) ? x + y : 1.0f; |
| 164 | if (2 * ix > 2u * 0x7f800000 || 2 * iy > 2u * 0x7f800000) |
| 165 | return x + y; |
| 166 | if (2 * ix == 2 * 0x3f800000) |
| 167 | return 1.0f; |
| 168 | if ((2 * ix < 2 * 0x3f800000) == !(iy & 0x80000000)) |
| 169 | return 0.0f; /* |x|<1 && y==inf or |x|>1 && y==-inf. */ |
| 170 | return y * y; |
| 171 | } |
| 172 | if (__glibc_unlikely (zeroinfnan (ix))) |
| 173 | { |
| 174 | float_t x2 = x * x; |
| 175 | if (ix & 0x80000000 && checkint (iy) == 1) |
| 176 | { |
| 177 | x2 = -x2; |
| 178 | sign_bias = 1; |
| 179 | } |
| 180 | #if WANT_ERRNO |
| 181 | if (2 * ix == 0 && iy & 0x80000000) |
| 182 | return __math_divzerof (sign_bias); |
| 183 | #endif |
| 184 | return iy & 0x80000000 ? 1 / x2 : x2; |
| 185 | } |
| 186 | /* x and y are non-zero finite. */ |
| 187 | if (ix & 0x80000000) |
| 188 | { |
| 189 | /* Finite x < 0. */ |
| 190 | int yint = checkint (iy); |
| 191 | if (yint == 0) |
| 192 | return __math_invalidf (x); |
| 193 | if (yint == 1) |
| 194 | sign_bias = SIGN_BIAS; |
| 195 | ix &= 0x7fffffff; |
| 196 | } |
| 197 | if (ix < 0x00800000) |
| 198 | { |
| 199 | /* Normalize subnormal x so exponent becomes negative. */ |
| 200 | ix = asuint (x * 0x1p23f); |
| 201 | ix &= 0x7fffffff; |
| 202 | ix -= 23 << 23; |
| 203 | } |
| 204 | } |
| 205 | double_t logx = log2_inline (ix); |
| 206 | double_t ylogx = y * logx; /* Note: cannot overflow, y is single prec. */ |
| 207 | if (__glibc_unlikely ((asuint64 (ylogx) >> 47 & 0xffff) |
| 208 | >= asuint64 (126.0 * POWF_SCALE) >> 47)) |
| 209 | { |
| 210 | /* |y*log(x)| >= 126. */ |
| 211 | if (ylogx > 0x1.fffffffd1d571p+6 * POWF_SCALE) |
| 212 | /* |x^y| > 0x1.ffffffp127. */ |
| 213 | return __math_oflowf (sign_bias); |
| 214 | if (WANT_ROUNDING && WANT_ERRNO |
| 215 | && ylogx > 0x1.fffffffa3aae2p+6 * POWF_SCALE) |
| 216 | /* |x^y| > 0x1.fffffep127, check if we round away from 0. */ |
| 217 | if ((!sign_bias |
| 218 | && math_narrow_eval (1.0f + math_opt_barrier (0x1p-25f)) != 1.0f) |
| 219 | || (sign_bias |
| 220 | && math_narrow_eval (-1.0f - math_opt_barrier (0x1p-25f)) |
| 221 | != -1.0f)) |
| 222 | return __math_oflowf (sign_bias); |
| 223 | if (ylogx <= -150.0 * POWF_SCALE) |
| 224 | return __math_uflowf (sign_bias); |
| 225 | #if WANT_ERRNO_UFLOW |
| 226 | if (ylogx < -149.0 * POWF_SCALE) |
| 227 | return __math_may_uflowf (sign_bias); |
| 228 | #endif |
| 229 | } |
| 230 | return (float) exp2_inline (ylogx, sign_bias); |
| 231 | } |
| 232 | #ifndef __powf |
| 233 | strong_alias (__powf, __ieee754_powf) |
| 234 | libm_alias_finite (__ieee754_powf, __powf) |
| 235 | versioned_symbol (libm, __powf, powf, GLIBC_2_27); |
| 236 | libm_alias_float_other (__pow, pow) |
| 237 | #endif |
| 238 | |