1 | /* Single-precision e^x function. |
2 | Copyright (C) 2017-2022 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #ifdef __expf |
20 | # undef libm_hidden_proto |
21 | # define libm_hidden_proto(ignored) |
22 | #endif |
23 | |
24 | #include <math.h> |
25 | #include <math-narrow-eval.h> |
26 | #include <stdint.h> |
27 | #include <libm-alias-finite.h> |
28 | #include <libm-alias-float.h> |
29 | #include "math_config.h" |
30 | |
31 | /* |
32 | EXP2F_TABLE_BITS = 5 |
33 | EXP2F_POLY_ORDER = 3 |
34 | |
35 | ULP error: 0.502 (nearest rounding.) |
36 | Relative error: 1.69 * 2^-34 in [-ln2/64, ln2/64] (before rounding.) |
37 | Wrong count: 170635 (all nearest rounding wrong results with fma.) |
38 | Non-nearest ULP error: 1 (rounded ULP error) |
39 | */ |
40 | |
41 | #define N (1 << EXP2F_TABLE_BITS) |
42 | #define InvLn2N __exp2f_data.invln2_scaled |
43 | #define T __exp2f_data.tab |
44 | #define C __exp2f_data.poly_scaled |
45 | |
46 | static inline uint32_t |
47 | top12 (float x) |
48 | { |
49 | return asuint (x) >> 20; |
50 | } |
51 | |
52 | float |
53 | __expf (float x) |
54 | { |
55 | uint32_t abstop; |
56 | uint64_t ki, t; |
57 | /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ |
58 | double_t kd, xd, z, r, r2, y, s; |
59 | |
60 | xd = (double_t) x; |
61 | abstop = top12 (x) & 0x7ff; |
62 | if (__glibc_unlikely (abstop >= top12 (88.0f))) |
63 | { |
64 | /* |x| >= 88 or x is nan. */ |
65 | if (asuint (x) == asuint (-INFINITY)) |
66 | return 0.0f; |
67 | if (abstop >= top12 (INFINITY)) |
68 | return x + x; |
69 | if (x > 0x1.62e42ep6f) /* x > log(0x1p128) ~= 88.72 */ |
70 | return __math_oflowf (0); |
71 | if (x < -0x1.9fe368p6f) /* x < log(0x1p-150) ~= -103.97 */ |
72 | return __math_uflowf (0); |
73 | #if WANT_ERRNO_UFLOW |
74 | if (x < -0x1.9d1d9ep6f) /* x < log(0x1p-149) ~= -103.28 */ |
75 | return __math_may_uflowf (0); |
76 | #endif |
77 | } |
78 | |
79 | /* x*N/Ln2 = k + r with r in [-1/2, 1/2] and int k. */ |
80 | z = InvLn2N * xd; |
81 | |
82 | /* Round and convert z to int, the result is in [-150*N, 128*N] and |
83 | ideally ties-to-even rule is used, otherwise the magnitude of r |
84 | can be bigger which gives larger approximation error. */ |
85 | #if TOINT_INTRINSICS |
86 | kd = roundtoint (z); |
87 | ki = converttoint (z); |
88 | #else |
89 | # define SHIFT __exp2f_data.shift |
90 | kd = math_narrow_eval ((double) (z + SHIFT)); /* Needs to be double. */ |
91 | ki = asuint64 (kd); |
92 | kd -= SHIFT; |
93 | #endif |
94 | r = z - kd; |
95 | |
96 | /* exp(x) = 2^(k/N) * 2^(r/N) ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */ |
97 | t = T[ki % N]; |
98 | t += ki << (52 - EXP2F_TABLE_BITS); |
99 | s = asdouble (t); |
100 | z = C[0] * r + C[1]; |
101 | r2 = r * r; |
102 | y = C[2] * r + 1; |
103 | y = z * r2 + y; |
104 | y = y * s; |
105 | return (float) y; |
106 | } |
107 | |
108 | #ifndef __expf |
109 | hidden_def (__expf) |
110 | strong_alias (__expf, __ieee754_expf) |
111 | libm_alias_finite (__ieee754_expf, __expf) |
112 | versioned_symbol (libm, __expf, expf, GLIBC_2_27); |
113 | libm_alias_float_other (__exp, exp) |
114 | #endif |
115 | |