1 | /* Copyright (C) 2016-2022 Free Software Foundation, Inc. |
2 | This file is part of the GNU C Library. |
3 | |
4 | The GNU C Library is free software; you can redistribute it and/or |
5 | modify it under the terms of the GNU Lesser General Public |
6 | License as published by the Free Software Foundation; either |
7 | version 2.1 of the License, or (at your option) any later version. |
8 | |
9 | The GNU C Library is distributed in the hope that it will be useful, |
10 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
12 | Lesser General Public License for more details. |
13 | |
14 | You should have received a copy of the GNU Lesser General Public |
15 | License along with the GNU C Library; if not, see |
16 | <https://www.gnu.org/licenses/>. */ |
17 | |
18 | /* |
19 | * Copyright (c) 1985, 1989, 1993 |
20 | * The Regents of the University of California. All rights reserved. |
21 | * |
22 | * Redistribution and use in source and binary forms, with or without |
23 | * modification, are permitted provided that the following conditions |
24 | * are met: |
25 | * 1. Redistributions of source code must retain the above copyright |
26 | * notice, this list of conditions and the following disclaimer. |
27 | * 2. Redistributions in binary form must reproduce the above copyright |
28 | * notice, this list of conditions and the following disclaimer in the |
29 | * documentation and/or other materials provided with the distribution. |
30 | * 4. Neither the name of the University nor the names of its contributors |
31 | * may be used to endorse or promote products derived from this software |
32 | * without specific prior written permission. |
33 | * |
34 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
35 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
36 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
37 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
38 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
39 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
40 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
41 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
42 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
43 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
44 | * SUCH DAMAGE. |
45 | */ |
46 | |
47 | /* |
48 | * Portions Copyright (c) 1993 by Digital Equipment Corporation. |
49 | * |
50 | * Permission to use, copy, modify, and distribute this software for any |
51 | * purpose with or without fee is hereby granted, provided that the above |
52 | * copyright notice and this permission notice appear in all copies, and that |
53 | * the name of Digital Equipment Corporation not be used in advertising or |
54 | * publicity pertaining to distribution of the document or software without |
55 | * specific, written prior permission. |
56 | * |
57 | * THE SOFTWARE IS PROVIDED "AS IS" AND DIGITAL EQUIPMENT CORP. DISCLAIMS ALL |
58 | * WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES |
59 | * OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL DIGITAL EQUIPMENT |
60 | * CORPORATION BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL |
61 | * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR |
62 | * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS |
63 | * ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS |
64 | * SOFTWARE. |
65 | */ |
66 | |
67 | /* |
68 | * Portions Copyright (c) 1996-1999 by Internet Software Consortium. |
69 | * |
70 | * Permission to use, copy, modify, and distribute this software for any |
71 | * purpose with or without fee is hereby granted, provided that the above |
72 | * copyright notice and this permission notice appear in all copies. |
73 | * |
74 | * THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE CONSORTIUM DISCLAIMS |
75 | * ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES |
76 | * OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE |
77 | * CONSORTIUM BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL |
78 | * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR |
79 | * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS |
80 | * ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS |
81 | * SOFTWARE. |
82 | */ |
83 | |
84 | /* |
85 | * Send query to name server and wait for reply. |
86 | */ |
87 | |
88 | #include <assert.h> |
89 | #include <sys/types.h> |
90 | #include <sys/param.h> |
91 | #include <sys/time.h> |
92 | #include <sys/socket.h> |
93 | #include <sys/uio.h> |
94 | #include <sys/poll.h> |
95 | |
96 | #include <netinet/in.h> |
97 | #include <arpa/nameser.h> |
98 | #include <arpa/inet.h> |
99 | #include <sys/ioctl.h> |
100 | |
101 | #include <errno.h> |
102 | #include <fcntl.h> |
103 | #include <netdb.h> |
104 | #include <resolv/resolv-internal.h> |
105 | #include <resolv/resolv_context.h> |
106 | #include <signal.h> |
107 | #include <stdlib.h> |
108 | #include <string.h> |
109 | #include <unistd.h> |
110 | #include <kernel-features.h> |
111 | #include <libc-diag.h> |
112 | #include <random-bits.h> |
113 | |
114 | #if PACKETSZ > 65536 |
115 | #define MAXPACKET PACKETSZ |
116 | #else |
117 | #define MAXPACKET 65536 |
118 | #endif |
119 | |
120 | /* From ev_streams.c. */ |
121 | |
122 | static inline void |
123 | __attribute ((always_inline)) |
124 | evConsIovec(void *buf, size_t cnt, struct iovec *vec) { |
125 | memset(vec, 0xf5, sizeof (*vec)); |
126 | vec->iov_base = buf; |
127 | vec->iov_len = cnt; |
128 | } |
129 | |
130 | /* From ev_timers.c. */ |
131 | |
132 | #define BILLION 1000000000 |
133 | |
134 | static inline void |
135 | evConsTime(struct timespec *res, time_t sec, long nsec) { |
136 | res->tv_sec = sec; |
137 | res->tv_nsec = nsec; |
138 | } |
139 | |
140 | static inline void |
141 | evAddTime(struct timespec *res, const struct timespec *addend1, |
142 | const struct timespec *addend2) { |
143 | res->tv_sec = addend1->tv_sec + addend2->tv_sec; |
144 | res->tv_nsec = addend1->tv_nsec + addend2->tv_nsec; |
145 | if (res->tv_nsec >= BILLION) { |
146 | res->tv_sec++; |
147 | res->tv_nsec -= BILLION; |
148 | } |
149 | } |
150 | |
151 | static inline void |
152 | evSubTime(struct timespec *res, const struct timespec *minuend, |
153 | const struct timespec *subtrahend) { |
154 | res->tv_sec = minuend->tv_sec - subtrahend->tv_sec; |
155 | if (minuend->tv_nsec >= subtrahend->tv_nsec) |
156 | res->tv_nsec = minuend->tv_nsec - subtrahend->tv_nsec; |
157 | else { |
158 | res->tv_nsec = (BILLION |
159 | - subtrahend->tv_nsec + minuend->tv_nsec); |
160 | res->tv_sec--; |
161 | } |
162 | } |
163 | |
164 | static int |
165 | evCmpTime(struct timespec a, struct timespec b) { |
166 | long x = a.tv_sec - b.tv_sec; |
167 | |
168 | if (x == 0L) |
169 | x = a.tv_nsec - b.tv_nsec; |
170 | return (x < 0L ? (-1) : x > 0L ? (1) : (0)); |
171 | } |
172 | |
173 | static void |
174 | evNowTime(struct timespec *res) { |
175 | __clock_gettime(CLOCK_REALTIME, res); |
176 | } |
177 | |
178 | |
179 | #define EXT(res) ((res)->_u._ext) |
180 | |
181 | /* Forward. */ |
182 | |
183 | static int send_vc(res_state, const u_char *, int, |
184 | const u_char *, int, |
185 | u_char **, int *, int *, int, u_char **, |
186 | u_char **, int *, int *, int *); |
187 | static int send_dg(res_state, const u_char *, int, |
188 | const u_char *, int, |
189 | u_char **, int *, int *, int, |
190 | int *, int *, u_char **, |
191 | u_char **, int *, int *, int *); |
192 | static int sock_eq(struct sockaddr_in6 *, struct sockaddr_in6 *); |
193 | |
194 | /* Returns a shift value for the name server index. Used to implement |
195 | RES_ROTATE. */ |
196 | static unsigned int |
197 | nameserver_offset (struct __res_state *statp) |
198 | { |
199 | /* If we only have one name server or rotation is disabled, return |
200 | offset 0 (no rotation). */ |
201 | unsigned int nscount = statp->nscount; |
202 | if (nscount <= 1 || !(statp->options & RES_ROTATE)) |
203 | return 0; |
204 | |
205 | /* Global offset. The lowest bit indicates whether the offset has |
206 | been initialized with a random value. Use relaxed MO to access |
207 | global_offset because all we need is a sequence of roughly |
208 | sequential value. */ |
209 | static unsigned int global_offset; |
210 | unsigned int offset = atomic_fetch_add_relaxed (&global_offset, 2); |
211 | if ((offset & 1) == 0) |
212 | { |
213 | /* Initialization is required. */ |
214 | offset = random_bits (); |
215 | /* The lowest bit is the most random. Preserve it. */ |
216 | offset <<= 1; |
217 | |
218 | /* Store the new starting value. atomic_fetch_add_relaxed |
219 | returns the old value, so emulate that by storing the new |
220 | (incremented) value. Concurrent initialization with |
221 | different random values is harmless. */ |
222 | atomic_store_relaxed (&global_offset, (offset | 1) + 2); |
223 | } |
224 | |
225 | /* Remove the initialization bit. */ |
226 | offset >>= 1; |
227 | |
228 | /* Avoid the division in the most common cases. */ |
229 | switch (nscount) |
230 | { |
231 | case 2: |
232 | return offset & 1; |
233 | case 3: |
234 | return offset % 3; |
235 | case 4: |
236 | return offset & 3; |
237 | default: |
238 | return offset % nscount; |
239 | } |
240 | } |
241 | |
242 | /* Clear the AD bit unless the trust-ad option was specified in the |
243 | resolver configuration. */ |
244 | static void |
245 | mask_ad_bit (struct resolv_context *ctx, void *buf) |
246 | { |
247 | if (!(ctx->resp->options & RES_TRUSTAD)) |
248 | ((HEADER *) buf)->ad = 0; |
249 | } |
250 | |
251 | int |
252 | __res_context_send (struct resolv_context *ctx, |
253 | const unsigned char *buf, int buflen, |
254 | const unsigned char *buf2, int buflen2, |
255 | unsigned char *ans, int anssiz, |
256 | unsigned char **ansp, unsigned char **ansp2, |
257 | int *nansp2, int *resplen2, int *ansp2_malloced) |
258 | { |
259 | struct __res_state *statp = ctx->resp; |
260 | int gotsomewhere, terrno, try, v_circuit, resplen; |
261 | /* On some architectures send_vc is inlined and the compiler might emit |
262 | a warning indicating 'resplen' may be used uninitialized. Note that |
263 | the warning belongs to resplen in send_vc which is used as return |
264 | value! There the maybe-uninitialized warning is already ignored as |
265 | it is a false-positive - see comment in send_vc. |
266 | Here the variable n is set to the return value of send_vc. |
267 | See below. */ |
268 | DIAG_PUSH_NEEDS_COMMENT; |
269 | DIAG_IGNORE_NEEDS_COMMENT (9, "-Wmaybe-uninitialized" ); |
270 | int n; |
271 | DIAG_POP_NEEDS_COMMENT; |
272 | |
273 | if (statp->nscount == 0) { |
274 | __set_errno (ESRCH); |
275 | return (-1); |
276 | } |
277 | |
278 | if (anssiz < (buf2 == NULL ? 1 : 2) * HFIXEDSZ) { |
279 | __set_errno (EINVAL); |
280 | return (-1); |
281 | } |
282 | |
283 | v_circuit = ((statp->options & RES_USEVC) |
284 | || buflen > PACKETSZ |
285 | || buflen2 > PACKETSZ); |
286 | gotsomewhere = 0; |
287 | terrno = ETIMEDOUT; |
288 | |
289 | /* |
290 | * If the ns_addr_list in the resolver context has changed, then |
291 | * invalidate our cached copy and the associated timing data. |
292 | */ |
293 | if (EXT(statp).nscount != 0) { |
294 | int needclose = 0; |
295 | |
296 | if (EXT(statp).nscount != statp->nscount) |
297 | needclose++; |
298 | else |
299 | for (unsigned int ns = 0; ns < statp->nscount; ns++) { |
300 | if (statp->nsaddr_list[ns].sin_family != 0 |
301 | && !sock_eq((struct sockaddr_in6 *) |
302 | &statp->nsaddr_list[ns], |
303 | EXT(statp).nsaddrs[ns])) |
304 | { |
305 | needclose++; |
306 | break; |
307 | } |
308 | } |
309 | if (needclose) { |
310 | __res_iclose(statp, false); |
311 | EXT(statp).nscount = 0; |
312 | } |
313 | } |
314 | |
315 | /* |
316 | * Maybe initialize our private copy of the ns_addr_list. |
317 | */ |
318 | if (EXT(statp).nscount == 0) { |
319 | for (unsigned int ns = 0; ns < statp->nscount; ns++) { |
320 | EXT(statp).nssocks[ns] = -1; |
321 | if (statp->nsaddr_list[ns].sin_family == 0) |
322 | continue; |
323 | if (EXT(statp).nsaddrs[ns] == NULL) |
324 | EXT(statp).nsaddrs[ns] = |
325 | malloc(sizeof (struct sockaddr_in6)); |
326 | if (EXT(statp).nsaddrs[ns] != NULL) |
327 | memset (mempcpy(EXT(statp).nsaddrs[ns], |
328 | &statp->nsaddr_list[ns], |
329 | sizeof (struct sockaddr_in)), |
330 | '\0', |
331 | sizeof (struct sockaddr_in6) |
332 | - sizeof (struct sockaddr_in)); |
333 | else |
334 | return -1; |
335 | } |
336 | EXT(statp).nscount = statp->nscount; |
337 | } |
338 | |
339 | /* Name server index offset. Used to implement |
340 | RES_ROTATE. */ |
341 | unsigned int ns_offset = nameserver_offset (statp); |
342 | |
343 | /* |
344 | * Send request, RETRY times, or until successful. |
345 | */ |
346 | for (try = 0; try < statp->retry; try++) { |
347 | for (unsigned ns_shift = 0; ns_shift < statp->nscount; ns_shift++) |
348 | { |
349 | /* The actual name server index. This implements |
350 | RES_ROTATE. */ |
351 | unsigned int ns = ns_shift + ns_offset; |
352 | if (ns >= statp->nscount) |
353 | ns -= statp->nscount; |
354 | |
355 | same_ns: |
356 | if (__glibc_unlikely (v_circuit)) { |
357 | /* Use VC; at most one attempt per server. */ |
358 | try = statp->retry; |
359 | n = send_vc(statp, buf, buflen, buf2, buflen2, |
360 | &ans, &anssiz, &terrno, |
361 | ns, ansp, ansp2, nansp2, resplen2, |
362 | ansp2_malloced); |
363 | if (n < 0) |
364 | return (-1); |
365 | /* See comment at the declaration of n. */ |
366 | DIAG_PUSH_NEEDS_COMMENT; |
367 | DIAG_IGNORE_NEEDS_COMMENT (9, "-Wmaybe-uninitialized" ); |
368 | if (n == 0 && (buf2 == NULL || *resplen2 == 0)) |
369 | goto next_ns; |
370 | DIAG_POP_NEEDS_COMMENT; |
371 | } else { |
372 | /* Use datagrams. */ |
373 | n = send_dg(statp, buf, buflen, buf2, buflen2, |
374 | &ans, &anssiz, &terrno, |
375 | ns, &v_circuit, &gotsomewhere, ansp, |
376 | ansp2, nansp2, resplen2, ansp2_malloced); |
377 | if (n < 0) |
378 | return (-1); |
379 | if (n == 0 && (buf2 == NULL || *resplen2 == 0)) |
380 | goto next_ns; |
381 | if (v_circuit) |
382 | // XXX Check whether both requests failed or |
383 | // XXX whether one has been answered successfully |
384 | goto same_ns; |
385 | } |
386 | |
387 | resplen = n; |
388 | |
389 | /* See comment at the declaration of n. Note: resplen = n; */ |
390 | DIAG_PUSH_NEEDS_COMMENT; |
391 | DIAG_IGNORE_NEEDS_COMMENT (9, "-Wmaybe-uninitialized" ); |
392 | /* Mask the AD bit in both responses unless it is |
393 | marked trusted. */ |
394 | if (resplen > HFIXEDSZ) |
395 | { |
396 | if (ansp != NULL) |
397 | mask_ad_bit (ctx, *ansp); |
398 | else |
399 | mask_ad_bit (ctx, ans); |
400 | } |
401 | DIAG_POP_NEEDS_COMMENT; |
402 | if (resplen2 != NULL && *resplen2 > HFIXEDSZ) |
403 | mask_ad_bit (ctx, *ansp2); |
404 | |
405 | /* |
406 | * If we have temporarily opened a virtual circuit, |
407 | * or if we haven't been asked to keep a socket open, |
408 | * close the socket. |
409 | */ |
410 | if ((v_circuit && (statp->options & RES_USEVC) == 0) || |
411 | (statp->options & RES_STAYOPEN) == 0) { |
412 | __res_iclose(statp, false); |
413 | } |
414 | return (resplen); |
415 | next_ns: ; |
416 | } /*foreach ns*/ |
417 | } /*foreach retry*/ |
418 | __res_iclose(statp, false); |
419 | if (!v_circuit) { |
420 | if (!gotsomewhere) |
421 | __set_errno (ECONNREFUSED); /* no nameservers found */ |
422 | else |
423 | __set_errno (ETIMEDOUT); /* no answer obtained */ |
424 | } else |
425 | __set_errno (terrno); |
426 | return (-1); |
427 | } |
428 | libc_hidden_def (__res_context_send) |
429 | |
430 | /* Common part of res_nsend and res_send. */ |
431 | static int |
432 | context_send_common (struct resolv_context *ctx, |
433 | const unsigned char *buf, int buflen, |
434 | unsigned char *ans, int anssiz) |
435 | { |
436 | if (ctx == NULL) |
437 | { |
438 | RES_SET_H_ERRNO (&_res, NETDB_INTERNAL); |
439 | return -1; |
440 | } |
441 | int result = __res_context_send (ctx, buf, buflen, NULL, 0, ans, anssiz, |
442 | NULL, NULL, NULL, NULL, NULL); |
443 | __resolv_context_put (ctx); |
444 | return result; |
445 | } |
446 | |
447 | int |
448 | ___res_nsend (res_state statp, const unsigned char *buf, int buflen, |
449 | unsigned char *ans, int anssiz) |
450 | { |
451 | return context_send_common |
452 | (__resolv_context_get_override (statp), buf, buflen, ans, anssiz); |
453 | } |
454 | versioned_symbol (libc, ___res_nsend, res_nsend, GLIBC_2_34); |
455 | #if OTHER_SHLIB_COMPAT (libresolv, GLIBC_2_2, GLIBC_2_34) |
456 | compat_symbol (libresolv, ___res_nsend, __res_nsend, GLIBC_2_2); |
457 | #endif |
458 | |
459 | int |
460 | ___res_send (const unsigned char *buf, int buflen, unsigned char *ans, |
461 | int anssiz) |
462 | { |
463 | return context_send_common |
464 | (__resolv_context_get (), buf, buflen, ans, anssiz); |
465 | } |
466 | versioned_symbol (libc, ___res_send, res_send, GLIBC_2_34); |
467 | #if OTHER_SHLIB_COMPAT (libresolv, GLIBC_2_0, GLIBC_2_34) |
468 | compat_symbol (libresolv, ___res_send, __res_send, GLIBC_2_0); |
469 | #endif |
470 | |
471 | /* Private */ |
472 | |
473 | /* Close the resolver structure, assign zero to *RESPLEN2 if RESPLEN2 |
474 | is not NULL, and return zero. */ |
475 | static int |
476 | __attribute__ ((warn_unused_result)) |
477 | close_and_return_error (res_state statp, int *resplen2) |
478 | { |
479 | __res_iclose(statp, false); |
480 | if (resplen2 != NULL) |
481 | *resplen2 = 0; |
482 | return 0; |
483 | } |
484 | |
485 | /* The send_vc function is responsible for sending a DNS query over TCP |
486 | to the nameserver numbered NS from the res_state STATP i.e. |
487 | EXT(statp).nssocks[ns]. The function supports sending both IPv4 and |
488 | IPv6 queries at the same serially on the same socket. |
489 | |
490 | Please note that for TCP there is no way to disable sending both |
491 | queries, unlike UDP, which honours RES_SNGLKUP and RES_SNGLKUPREOP |
492 | and sends the queries serially and waits for the result after each |
493 | sent query. This implementation should be corrected to honour these |
494 | options. |
495 | |
496 | Please also note that for TCP we send both queries over the same |
497 | socket one after another. This technically violates best practice |
498 | since the server is allowed to read the first query, respond, and |
499 | then close the socket (to service another client). If the server |
500 | does this, then the remaining second query in the socket data buffer |
501 | will cause the server to send the client an RST which will arrive |
502 | asynchronously and the client's OS will likely tear down the socket |
503 | receive buffer resulting in a potentially short read and lost |
504 | response data. This will force the client to retry the query again, |
505 | and this process may repeat until all servers and connection resets |
506 | are exhausted and then the query will fail. It's not known if this |
507 | happens with any frequency in real DNS server implementations. This |
508 | implementation should be corrected to use two sockets by default for |
509 | parallel queries. |
510 | |
511 | The query stored in BUF of BUFLEN length is sent first followed by |
512 | the query stored in BUF2 of BUFLEN2 length. Queries are sent |
513 | serially on the same socket. |
514 | |
515 | Answers to the query are stored firstly in *ANSP up to a max of |
516 | *ANSSIZP bytes. If more than *ANSSIZP bytes are needed and ANSCP |
517 | is non-NULL (to indicate that modifying the answer buffer is allowed) |
518 | then malloc is used to allocate a new response buffer and ANSCP and |
519 | ANSP will both point to the new buffer. If more than *ANSSIZP bytes |
520 | are needed but ANSCP is NULL, then as much of the response as |
521 | possible is read into the buffer, but the results will be truncated. |
522 | When truncation happens because of a small answer buffer the DNS |
523 | packets header field TC will bet set to 1, indicating a truncated |
524 | message and the rest of the socket data will be read and discarded. |
525 | |
526 | Answers to the query are stored secondly in *ANSP2 up to a max of |
527 | *ANSSIZP2 bytes, with the actual response length stored in |
528 | *RESPLEN2. If more than *ANSSIZP bytes are needed and ANSP2 |
529 | is non-NULL (required for a second query) then malloc is used to |
530 | allocate a new response buffer, *ANSSIZP2 is set to the new buffer |
531 | size and *ANSP2_MALLOCED is set to 1. |
532 | |
533 | The ANSP2_MALLOCED argument will eventually be removed as the |
534 | change in buffer pointer can be used to detect the buffer has |
535 | changed and that the caller should use free on the new buffer. |
536 | |
537 | Note that the answers may arrive in any order from the server and |
538 | therefore the first and second answer buffers may not correspond to |
539 | the first and second queries. |
540 | |
541 | It is not supported to call this function with a non-NULL ANSP2 |
542 | but a NULL ANSCP. Put another way, you can call send_vc with a |
543 | single unmodifiable buffer or two modifiable buffers, but no other |
544 | combination is supported. |
545 | |
546 | It is the caller's responsibility to free the malloc allocated |
547 | buffers by detecting that the pointers have changed from their |
548 | original values i.e. *ANSCP or *ANSP2 has changed. |
549 | |
550 | If errors are encountered then *TERRNO is set to an appropriate |
551 | errno value and a zero result is returned for a recoverable error, |
552 | and a less-than zero result is returned for a non-recoverable error. |
553 | |
554 | If no errors are encountered then *TERRNO is left unmodified and |
555 | a the length of the first response in bytes is returned. */ |
556 | static int |
557 | send_vc(res_state statp, |
558 | const u_char *buf, int buflen, const u_char *buf2, int buflen2, |
559 | u_char **ansp, int *anssizp, |
560 | int *terrno, int ns, u_char **anscp, u_char **ansp2, int *anssizp2, |
561 | int *resplen2, int *ansp2_malloced) |
562 | { |
563 | const HEADER *hp = (HEADER *) buf; |
564 | const HEADER *hp2 = (HEADER *) buf2; |
565 | HEADER *anhp = (HEADER *) *ansp; |
566 | struct sockaddr *nsap = __res_get_nsaddr (statp, ns); |
567 | int truncating, connreset, n; |
568 | /* On some architectures compiler might emit a warning indicating |
569 | 'resplen' may be used uninitialized. However if buf2 == NULL |
570 | then this code won't be executed; if buf2 != NULL, then first |
571 | time round the loop recvresp1 and recvresp2 will be 0 so this |
572 | code won't be executed but "thisresplenp = &resplen;" followed |
573 | by "*thisresplenp = rlen;" will be executed so that subsequent |
574 | times round the loop resplen has been initialized. So this is |
575 | a false-positive. |
576 | */ |
577 | DIAG_PUSH_NEEDS_COMMENT; |
578 | DIAG_IGNORE_NEEDS_COMMENT (5, "-Wmaybe-uninitialized" ); |
579 | int resplen; |
580 | DIAG_POP_NEEDS_COMMENT; |
581 | struct iovec iov[4]; |
582 | u_short len; |
583 | u_short len2; |
584 | u_char *cp; |
585 | |
586 | connreset = 0; |
587 | same_ns: |
588 | truncating = 0; |
589 | |
590 | /* Are we still talking to whom we want to talk to? */ |
591 | if (statp->_vcsock >= 0 && (statp->_flags & RES_F_VC) != 0) { |
592 | struct sockaddr_in6 peer; |
593 | socklen_t size = sizeof peer; |
594 | |
595 | if (__getpeername (statp->_vcsock, |
596 | (struct sockaddr *) &peer, &size) < 0 |
597 | || !sock_eq (&peer, (struct sockaddr_in6 *) nsap)) { |
598 | __res_iclose(statp, false); |
599 | statp->_flags &= ~RES_F_VC; |
600 | } |
601 | } |
602 | |
603 | if (statp->_vcsock < 0 || (statp->_flags & RES_F_VC) == 0) { |
604 | if (statp->_vcsock >= 0) |
605 | __res_iclose(statp, false); |
606 | |
607 | statp->_vcsock = __socket |
608 | (nsap->sa_family, SOCK_STREAM | SOCK_CLOEXEC, 0); |
609 | if (statp->_vcsock < 0) { |
610 | *terrno = errno; |
611 | if (resplen2 != NULL) |
612 | *resplen2 = 0; |
613 | return (-1); |
614 | } |
615 | __set_errno (0); |
616 | if (__connect (statp->_vcsock, nsap, |
617 | nsap->sa_family == AF_INET |
618 | ? sizeof (struct sockaddr_in) |
619 | : sizeof (struct sockaddr_in6)) < 0) { |
620 | *terrno = errno; |
621 | return close_and_return_error (statp, resplen2); |
622 | } |
623 | statp->_flags |= RES_F_VC; |
624 | } |
625 | |
626 | /* |
627 | * Send length & message |
628 | */ |
629 | len = htons ((u_short) buflen); |
630 | evConsIovec(&len, INT16SZ, &iov[0]); |
631 | evConsIovec((void*)buf, buflen, &iov[1]); |
632 | int niov = 2; |
633 | ssize_t explen = INT16SZ + buflen; |
634 | if (buf2 != NULL) { |
635 | len2 = htons ((u_short) buflen2); |
636 | evConsIovec(&len2, INT16SZ, &iov[2]); |
637 | evConsIovec((void*)buf2, buflen2, &iov[3]); |
638 | niov = 4; |
639 | explen += INT16SZ + buflen2; |
640 | } |
641 | if (TEMP_FAILURE_RETRY (__writev (statp->_vcsock, iov, niov)) |
642 | != explen) { |
643 | *terrno = errno; |
644 | return close_and_return_error (statp, resplen2); |
645 | } |
646 | /* |
647 | * Receive length & response |
648 | */ |
649 | int recvresp1 = 0; |
650 | /* Skip the second response if there is no second query. |
651 | To do that we mark the second response as received. */ |
652 | int recvresp2 = buf2 == NULL; |
653 | uint16_t rlen16; |
654 | read_len: |
655 | cp = (u_char *)&rlen16; |
656 | len = sizeof(rlen16); |
657 | while ((n = TEMP_FAILURE_RETRY (read(statp->_vcsock, cp, |
658 | (int)len))) > 0) { |
659 | cp += n; |
660 | if ((len -= n) <= 0) |
661 | break; |
662 | } |
663 | if (n <= 0) { |
664 | *terrno = errno; |
665 | /* |
666 | * A long running process might get its TCP |
667 | * connection reset if the remote server was |
668 | * restarted. Requery the server instead of |
669 | * trying a new one. When there is only one |
670 | * server, this means that a query might work |
671 | * instead of failing. We only allow one reset |
672 | * per query to prevent looping. |
673 | */ |
674 | if (*terrno == ECONNRESET && !connreset) |
675 | { |
676 | __res_iclose (statp, false); |
677 | connreset = 1; |
678 | goto same_ns; |
679 | } |
680 | return close_and_return_error (statp, resplen2); |
681 | } |
682 | int rlen = ntohs (rlen16); |
683 | |
684 | int *thisanssizp; |
685 | u_char **thisansp; |
686 | int *thisresplenp; |
687 | if ((recvresp1 | recvresp2) == 0 || buf2 == NULL) { |
688 | /* We have not received any responses |
689 | yet or we only have one response to |
690 | receive. */ |
691 | thisanssizp = anssizp; |
692 | thisansp = anscp ?: ansp; |
693 | assert (anscp != NULL || ansp2 == NULL); |
694 | thisresplenp = &resplen; |
695 | } else { |
696 | thisanssizp = anssizp2; |
697 | thisansp = ansp2; |
698 | thisresplenp = resplen2; |
699 | } |
700 | anhp = (HEADER *) *thisansp; |
701 | |
702 | *thisresplenp = rlen; |
703 | /* Is the answer buffer too small? */ |
704 | if (*thisanssizp < rlen) { |
705 | /* If the current buffer is not the the static |
706 | user-supplied buffer then we can reallocate |
707 | it. */ |
708 | if (thisansp != NULL && thisansp != ansp) { |
709 | /* Always allocate MAXPACKET, callers expect |
710 | this specific size. */ |
711 | u_char *newp = malloc (MAXPACKET); |
712 | if (newp == NULL) |
713 | { |
714 | *terrno = ENOMEM; |
715 | return close_and_return_error (statp, resplen2); |
716 | } |
717 | *thisanssizp = MAXPACKET; |
718 | *thisansp = newp; |
719 | if (thisansp == ansp2) |
720 | *ansp2_malloced = 1; |
721 | anhp = (HEADER *) newp; |
722 | /* A uint16_t can't be larger than MAXPACKET |
723 | thus it's safe to allocate MAXPACKET but |
724 | read RLEN bytes instead. */ |
725 | len = rlen; |
726 | } else { |
727 | truncating = 1; |
728 | len = *thisanssizp; |
729 | } |
730 | } else |
731 | len = rlen; |
732 | |
733 | if (__glibc_unlikely (len < HFIXEDSZ)) { |
734 | /* |
735 | * Undersized message. |
736 | */ |
737 | *terrno = EMSGSIZE; |
738 | return close_and_return_error (statp, resplen2); |
739 | } |
740 | |
741 | cp = *thisansp; |
742 | while (len != 0 && (n = read(statp->_vcsock, (char *)cp, (int)len)) > 0){ |
743 | cp += n; |
744 | len -= n; |
745 | } |
746 | if (__glibc_unlikely (n <= 0)) { |
747 | *terrno = errno; |
748 | return close_and_return_error (statp, resplen2); |
749 | } |
750 | if (__glibc_unlikely (truncating)) { |
751 | /* |
752 | * Flush rest of answer so connection stays in synch. |
753 | */ |
754 | anhp->tc = 1; |
755 | len = rlen - *thisanssizp; |
756 | while (len != 0) { |
757 | char junk[PACKETSZ]; |
758 | |
759 | n = read(statp->_vcsock, junk, |
760 | (len > sizeof junk) ? sizeof junk : len); |
761 | if (n > 0) |
762 | len -= n; |
763 | else |
764 | break; |
765 | } |
766 | } |
767 | /* |
768 | * If the calling application has bailed out of |
769 | * a previous call and failed to arrange to have |
770 | * the circuit closed or the server has got |
771 | * itself confused, then drop the packet and |
772 | * wait for the correct one. |
773 | */ |
774 | if ((recvresp1 || hp->id != anhp->id) |
775 | && (recvresp2 || hp2->id != anhp->id)) |
776 | goto read_len; |
777 | |
778 | /* Mark which reply we received. */ |
779 | if (recvresp1 == 0 && hp->id == anhp->id) |
780 | recvresp1 = 1; |
781 | else |
782 | recvresp2 = 1; |
783 | /* Repeat waiting if we have a second answer to arrive. */ |
784 | if ((recvresp1 & recvresp2) == 0) |
785 | goto read_len; |
786 | |
787 | /* |
788 | * All is well, or the error is fatal. Signal that the |
789 | * next nameserver ought not be tried. |
790 | */ |
791 | return resplen; |
792 | } |
793 | |
794 | static int |
795 | reopen (res_state statp, int *terrno, int ns) |
796 | { |
797 | if (EXT(statp).nssocks[ns] == -1) { |
798 | struct sockaddr *nsap = __res_get_nsaddr (statp, ns); |
799 | socklen_t slen; |
800 | |
801 | /* only try IPv6 if IPv6 NS and if not failed before */ |
802 | if (nsap->sa_family == AF_INET6 && !statp->ipv6_unavail) { |
803 | EXT (statp).nssocks[ns] = __socket |
804 | (PF_INET6, |
805 | SOCK_DGRAM | SOCK_NONBLOCK | SOCK_CLOEXEC, 0); |
806 | if (EXT(statp).nssocks[ns] < 0) |
807 | statp->ipv6_unavail = errno == EAFNOSUPPORT; |
808 | slen = sizeof (struct sockaddr_in6); |
809 | } else if (nsap->sa_family == AF_INET) { |
810 | EXT (statp).nssocks[ns] = __socket |
811 | (PF_INET, |
812 | SOCK_DGRAM | SOCK_NONBLOCK | SOCK_CLOEXEC, 0); |
813 | slen = sizeof (struct sockaddr_in); |
814 | } |
815 | if (EXT(statp).nssocks[ns] < 0) { |
816 | *terrno = errno; |
817 | return (-1); |
818 | } |
819 | |
820 | /* Enable full ICMP error reporting for this |
821 | socket. */ |
822 | if (__res_enable_icmp (nsap->sa_family, |
823 | EXT (statp).nssocks[ns]) < 0) |
824 | { |
825 | int saved_errno = errno; |
826 | __res_iclose (statp, false); |
827 | __set_errno (saved_errno); |
828 | *terrno = saved_errno; |
829 | return -1; |
830 | } |
831 | |
832 | /* |
833 | * On a 4.3BSD+ machine (client and server, |
834 | * actually), sending to a nameserver datagram |
835 | * port with no nameserver will cause an |
836 | * ICMP port unreachable message to be returned. |
837 | * If our datagram socket is "connected" to the |
838 | * server, we get an ECONNREFUSED error on the next |
839 | * socket operation, and select returns if the |
840 | * error message is received. We can thus detect |
841 | * the absence of a nameserver without timing out. |
842 | */ |
843 | /* With GCC 5.3 when compiling with -Os the compiler |
844 | emits a warning that slen may be used uninitialized, |
845 | but that is never true. Both slen and |
846 | EXT(statp).nssocks[ns] are initialized together or |
847 | the function return -1 before control flow reaches |
848 | the call to connect with slen. */ |
849 | DIAG_PUSH_NEEDS_COMMENT; |
850 | DIAG_IGNORE_Os_NEEDS_COMMENT (5, "-Wmaybe-uninitialized" ); |
851 | if (__connect (EXT (statp).nssocks[ns], nsap, slen) < 0) { |
852 | DIAG_POP_NEEDS_COMMENT; |
853 | __res_iclose(statp, false); |
854 | return (0); |
855 | } |
856 | } |
857 | |
858 | return 1; |
859 | } |
860 | |
861 | /* The send_dg function is responsible for sending a DNS query over UDP |
862 | to the nameserver numbered NS from the res_state STATP i.e. |
863 | EXT(statp).nssocks[ns]. The function supports IPv4 and IPv6 queries |
864 | along with the ability to send the query in parallel for both stacks |
865 | (default) or serially (RES_SINGLKUP). It also supports serial lookup |
866 | with a close and reopen of the socket used to talk to the server |
867 | (RES_SNGLKUPREOP) to work around broken name servers. |
868 | |
869 | The query stored in BUF of BUFLEN length is sent first followed by |
870 | the query stored in BUF2 of BUFLEN2 length. Queries are sent |
871 | in parallel (default) or serially (RES_SINGLKUP or RES_SNGLKUPREOP). |
872 | |
873 | Answers to the query are stored firstly in *ANSP up to a max of |
874 | *ANSSIZP bytes. If more than *ANSSIZP bytes are needed and ANSCP |
875 | is non-NULL (to indicate that modifying the answer buffer is allowed) |
876 | then malloc is used to allocate a new response buffer and ANSCP and |
877 | ANSP will both point to the new buffer. If more than *ANSSIZP bytes |
878 | are needed but ANSCP is NULL, then as much of the response as |
879 | possible is read into the buffer, but the results will be truncated. |
880 | When truncation happens because of a small answer buffer the DNS |
881 | packets header field TC will bet set to 1, indicating a truncated |
882 | message, while the rest of the UDP packet is discarded. |
883 | |
884 | Answers to the query are stored secondly in *ANSP2 up to a max of |
885 | *ANSSIZP2 bytes, with the actual response length stored in |
886 | *RESPLEN2. If more than *ANSSIZP bytes are needed and ANSP2 |
887 | is non-NULL (required for a second query) then malloc is used to |
888 | allocate a new response buffer, *ANSSIZP2 is set to the new buffer |
889 | size and *ANSP2_MALLOCED is set to 1. |
890 | |
891 | The ANSP2_MALLOCED argument will eventually be removed as the |
892 | change in buffer pointer can be used to detect the buffer has |
893 | changed and that the caller should use free on the new buffer. |
894 | |
895 | Note that the answers may arrive in any order from the server and |
896 | therefore the first and second answer buffers may not correspond to |
897 | the first and second queries. |
898 | |
899 | It is not supported to call this function with a non-NULL ANSP2 |
900 | but a NULL ANSCP. Put another way, you can call send_vc with a |
901 | single unmodifiable buffer or two modifiable buffers, but no other |
902 | combination is supported. |
903 | |
904 | It is the caller's responsibility to free the malloc allocated |
905 | buffers by detecting that the pointers have changed from their |
906 | original values i.e. *ANSCP or *ANSP2 has changed. |
907 | |
908 | If an answer is truncated because of UDP datagram DNS limits then |
909 | *V_CIRCUIT is set to 1 and the return value non-zero to indicate to |
910 | the caller to retry with TCP. The value *GOTSOMEWHERE is set to 1 |
911 | if any progress was made reading a response from the nameserver and |
912 | is used by the caller to distinguish between ECONNREFUSED and |
913 | ETIMEDOUT (the latter if *GOTSOMEWHERE is 1). |
914 | |
915 | If errors are encountered then *TERRNO is set to an appropriate |
916 | errno value and a zero result is returned for a recoverable error, |
917 | and a less-than zero result is returned for a non-recoverable error. |
918 | |
919 | If no errors are encountered then *TERRNO is left unmodified and |
920 | a the length of the first response in bytes is returned. */ |
921 | static int |
922 | send_dg(res_state statp, |
923 | const u_char *buf, int buflen, const u_char *buf2, int buflen2, |
924 | u_char **ansp, int *anssizp, |
925 | int *terrno, int ns, int *v_circuit, int *gotsomewhere, u_char **anscp, |
926 | u_char **ansp2, int *anssizp2, int *resplen2, int *ansp2_malloced) |
927 | { |
928 | const HEADER *hp = (HEADER *) buf; |
929 | const HEADER *hp2 = (HEADER *) buf2; |
930 | struct timespec now, timeout, finish; |
931 | struct pollfd pfd[1]; |
932 | int ptimeout; |
933 | struct sockaddr_in6 from; |
934 | int resplen = 0; |
935 | int n; |
936 | |
937 | /* |
938 | * Compute time for the total operation. |
939 | */ |
940 | int seconds = (statp->retrans << ns); |
941 | if (ns > 0) |
942 | seconds /= statp->nscount; |
943 | if (seconds <= 0) |
944 | seconds = 1; |
945 | bool single_request_reopen = (statp->options & RES_SNGLKUPREOP) != 0; |
946 | bool single_request = (((statp->options & RES_SNGLKUP) != 0) |
947 | | single_request_reopen); |
948 | int save_gotsomewhere = *gotsomewhere; |
949 | |
950 | int retval; |
951 | retry_reopen: |
952 | retval = reopen (statp, terrno, ns); |
953 | if (retval <= 0) |
954 | { |
955 | if (resplen2 != NULL) |
956 | *resplen2 = 0; |
957 | return retval; |
958 | } |
959 | retry: |
960 | evNowTime(&now); |
961 | evConsTime(&timeout, seconds, 0); |
962 | evAddTime(&finish, &now, &timeout); |
963 | int need_recompute = 0; |
964 | int nwritten = 0; |
965 | int recvresp1 = 0; |
966 | /* Skip the second response if there is no second query. |
967 | To do that we mark the second response as received. */ |
968 | int recvresp2 = buf2 == NULL; |
969 | pfd[0].fd = EXT(statp).nssocks[ns]; |
970 | pfd[0].events = POLLOUT; |
971 | wait: |
972 | if (need_recompute) { |
973 | recompute_resend: |
974 | evNowTime(&now); |
975 | if (evCmpTime(finish, now) <= 0) { |
976 | poll_err_out: |
977 | return close_and_return_error (statp, resplen2); |
978 | } |
979 | evSubTime(&timeout, &finish, &now); |
980 | need_recompute = 0; |
981 | } |
982 | /* Convert struct timespec in milliseconds. */ |
983 | ptimeout = timeout.tv_sec * 1000 + timeout.tv_nsec / 1000000; |
984 | |
985 | n = 0; |
986 | if (nwritten == 0) |
987 | n = __poll (pfd, 1, 0); |
988 | if (__glibc_unlikely (n == 0)) { |
989 | n = __poll (pfd, 1, ptimeout); |
990 | need_recompute = 1; |
991 | } |
992 | if (n == 0) { |
993 | if (resplen > 1 && (recvresp1 || (buf2 != NULL && recvresp2))) |
994 | { |
995 | /* There are quite a few broken name servers out |
996 | there which don't handle two outstanding |
997 | requests from the same source. There are also |
998 | broken firewall settings. If we time out after |
999 | having received one answer switch to the mode |
1000 | where we send the second request only once we |
1001 | have received the first answer. */ |
1002 | if (!single_request) |
1003 | { |
1004 | statp->options |= RES_SNGLKUP; |
1005 | single_request = true; |
1006 | *gotsomewhere = save_gotsomewhere; |
1007 | goto retry; |
1008 | } |
1009 | else if (!single_request_reopen) |
1010 | { |
1011 | statp->options |= RES_SNGLKUPREOP; |
1012 | single_request_reopen = true; |
1013 | *gotsomewhere = save_gotsomewhere; |
1014 | __res_iclose (statp, false); |
1015 | goto retry_reopen; |
1016 | } |
1017 | |
1018 | *resplen2 = 1; |
1019 | return resplen; |
1020 | } |
1021 | |
1022 | *gotsomewhere = 1; |
1023 | if (resplen2 != NULL) |
1024 | *resplen2 = 0; |
1025 | return 0; |
1026 | } |
1027 | if (n < 0) { |
1028 | if (errno == EINTR) |
1029 | goto recompute_resend; |
1030 | |
1031 | goto poll_err_out; |
1032 | } |
1033 | __set_errno (0); |
1034 | if (pfd[0].revents & POLLOUT) { |
1035 | #ifndef __ASSUME_SENDMMSG |
1036 | static int have_sendmmsg; |
1037 | #else |
1038 | # define have_sendmmsg 1 |
1039 | #endif |
1040 | if (have_sendmmsg >= 0 && nwritten == 0 && buf2 != NULL |
1041 | && !single_request) |
1042 | { |
1043 | struct iovec iov = |
1044 | { .iov_base = (void *) buf, .iov_len = buflen }; |
1045 | struct iovec iov2 = |
1046 | { .iov_base = (void *) buf2, .iov_len = buflen2 }; |
1047 | struct mmsghdr reqs[2] = |
1048 | { |
1049 | { |
1050 | .msg_hdr = |
1051 | { |
1052 | .msg_iov = &iov, |
1053 | .msg_iovlen = 1, |
1054 | }, |
1055 | }, |
1056 | { |
1057 | .msg_hdr = |
1058 | { |
1059 | .msg_iov = &iov2, |
1060 | .msg_iovlen = 1, |
1061 | } |
1062 | }, |
1063 | }; |
1064 | |
1065 | int ndg = __sendmmsg (pfd[0].fd, reqs, 2, MSG_NOSIGNAL); |
1066 | if (__glibc_likely (ndg == 2)) |
1067 | { |
1068 | if (reqs[0].msg_len != buflen |
1069 | || reqs[1].msg_len != buflen2) |
1070 | goto fail_sendmmsg; |
1071 | |
1072 | pfd[0].events = POLLIN; |
1073 | nwritten += 2; |
1074 | } |
1075 | else if (ndg == 1 && reqs[0].msg_len == buflen) |
1076 | goto just_one; |
1077 | else if (ndg < 0 && (errno == EINTR || errno == EAGAIN)) |
1078 | goto recompute_resend; |
1079 | else |
1080 | { |
1081 | #ifndef __ASSUME_SENDMMSG |
1082 | if (__glibc_unlikely (have_sendmmsg == 0)) |
1083 | { |
1084 | if (ndg < 0 && errno == ENOSYS) |
1085 | { |
1086 | have_sendmmsg = -1; |
1087 | goto try_send; |
1088 | } |
1089 | have_sendmmsg = 1; |
1090 | } |
1091 | #endif |
1092 | |
1093 | fail_sendmmsg: |
1094 | return close_and_return_error (statp, resplen2); |
1095 | } |
1096 | } |
1097 | else |
1098 | { |
1099 | ssize_t sr; |
1100 | #ifndef __ASSUME_SENDMMSG |
1101 | try_send: |
1102 | #endif |
1103 | if (nwritten != 0) |
1104 | sr = __send (pfd[0].fd, buf2, buflen2, MSG_NOSIGNAL); |
1105 | else |
1106 | sr = __send (pfd[0].fd, buf, buflen, MSG_NOSIGNAL); |
1107 | |
1108 | if (sr != (nwritten != 0 ? buflen2 : buflen)) { |
1109 | if (errno == EINTR || errno == EAGAIN) |
1110 | goto recompute_resend; |
1111 | return close_and_return_error (statp, resplen2); |
1112 | } |
1113 | just_one: |
1114 | if (nwritten != 0 || buf2 == NULL || single_request) |
1115 | pfd[0].events = POLLIN; |
1116 | else |
1117 | pfd[0].events = POLLIN | POLLOUT; |
1118 | ++nwritten; |
1119 | } |
1120 | goto wait; |
1121 | } else if (pfd[0].revents & POLLIN) { |
1122 | int *thisanssizp; |
1123 | u_char **thisansp; |
1124 | int *thisresplenp; |
1125 | |
1126 | if ((recvresp1 | recvresp2) == 0 || buf2 == NULL) { |
1127 | /* We have not received any responses |
1128 | yet or we only have one response to |
1129 | receive. */ |
1130 | thisanssizp = anssizp; |
1131 | thisansp = anscp ?: ansp; |
1132 | assert (anscp != NULL || ansp2 == NULL); |
1133 | thisresplenp = &resplen; |
1134 | } else { |
1135 | thisanssizp = anssizp2; |
1136 | thisansp = ansp2; |
1137 | thisresplenp = resplen2; |
1138 | } |
1139 | |
1140 | if (*thisanssizp < MAXPACKET |
1141 | /* If the current buffer is not the the static |
1142 | user-supplied buffer then we can reallocate |
1143 | it. */ |
1144 | && (thisansp != NULL && thisansp != ansp) |
1145 | #ifdef FIONREAD |
1146 | /* Is the size too small? */ |
1147 | && (__ioctl (pfd[0].fd, FIONREAD, thisresplenp) < 0 |
1148 | || *thisanssizp < *thisresplenp) |
1149 | #endif |
1150 | ) { |
1151 | /* Always allocate MAXPACKET, callers expect |
1152 | this specific size. */ |
1153 | u_char *newp = malloc (MAXPACKET); |
1154 | if (newp != NULL) { |
1155 | *thisanssizp = MAXPACKET; |
1156 | *thisansp = newp; |
1157 | if (thisansp == ansp2) |
1158 | *ansp2_malloced = 1; |
1159 | } |
1160 | } |
1161 | /* We could end up with truncation if anscp was NULL |
1162 | (not allowed to change caller's buffer) and the |
1163 | response buffer size is too small. This isn't a |
1164 | reliable way to detect truncation because the ioctl |
1165 | may be an inaccurate report of the UDP message size. |
1166 | Therefore we use this only to issue debug output. |
1167 | To do truncation accurately with UDP we need |
1168 | MSG_TRUNC which is only available on Linux. We |
1169 | can abstract out the Linux-specific feature in the |
1170 | future to detect truncation. */ |
1171 | HEADER *anhp = (HEADER *) *thisansp; |
1172 | socklen_t fromlen = sizeof(struct sockaddr_in6); |
1173 | assert (sizeof(from) <= fromlen); |
1174 | *thisresplenp = __recvfrom (pfd[0].fd, (char *) *thisansp, |
1175 | *thisanssizp, 0, |
1176 | (struct sockaddr *) &from, |
1177 | &fromlen); |
1178 | if (__glibc_unlikely (*thisresplenp <= 0)) { |
1179 | if (errno == EINTR || errno == EAGAIN) { |
1180 | need_recompute = 1; |
1181 | goto wait; |
1182 | } |
1183 | return close_and_return_error (statp, resplen2); |
1184 | } |
1185 | *gotsomewhere = 1; |
1186 | if (__glibc_unlikely (*thisresplenp < HFIXEDSZ)) { |
1187 | /* |
1188 | * Undersized message. |
1189 | */ |
1190 | *terrno = EMSGSIZE; |
1191 | return close_and_return_error (statp, resplen2); |
1192 | } |
1193 | |
1194 | /* Check for the correct header layout and a matching |
1195 | question. */ |
1196 | int matching_query = 0; /* Default to no matching query. */ |
1197 | if (!recvresp1 |
1198 | && anhp->id == hp->id |
1199 | && __libc_res_queriesmatch (buf, buf + buflen, |
1200 | *thisansp, |
1201 | *thisansp + *thisanssizp)) |
1202 | matching_query = 1; |
1203 | if (!recvresp2 |
1204 | && anhp->id == hp2->id |
1205 | && __libc_res_queriesmatch (buf2, buf2 + buflen2, |
1206 | *thisansp, |
1207 | *thisansp + *thisanssizp)) |
1208 | matching_query = 2; |
1209 | if (matching_query == 0) |
1210 | /* Spurious UDP packet. Drop it and continue |
1211 | waiting. */ |
1212 | { |
1213 | need_recompute = 1; |
1214 | goto wait; |
1215 | } |
1216 | |
1217 | if (anhp->rcode == SERVFAIL || |
1218 | anhp->rcode == NOTIMP || |
1219 | anhp->rcode == REFUSED) { |
1220 | next_ns: |
1221 | if (recvresp1 || (buf2 != NULL && recvresp2)) { |
1222 | *resplen2 = 0; |
1223 | return resplen; |
1224 | } |
1225 | if (buf2 != NULL) |
1226 | { |
1227 | /* No data from the first reply. */ |
1228 | resplen = 0; |
1229 | /* We are waiting for a possible second reply. */ |
1230 | if (matching_query == 1) |
1231 | recvresp1 = 1; |
1232 | else |
1233 | recvresp2 = 1; |
1234 | |
1235 | goto wait; |
1236 | } |
1237 | |
1238 | /* don't retry if called from dig */ |
1239 | if (!statp->pfcode) |
1240 | return close_and_return_error (statp, resplen2); |
1241 | __res_iclose(statp, false); |
1242 | } |
1243 | if (anhp->rcode == NOERROR && anhp->ancount == 0 |
1244 | && anhp->aa == 0 && anhp->ra == 0 && anhp->arcount == 0) { |
1245 | goto next_ns; |
1246 | } |
1247 | if (!(statp->options & RES_IGNTC) && anhp->tc) { |
1248 | /* |
1249 | * To get the rest of answer, |
1250 | * use TCP with same server. |
1251 | */ |
1252 | *v_circuit = 1; |
1253 | __res_iclose(statp, false); |
1254 | // XXX if we have received one reply we could |
1255 | // XXX use it and not repeat it over TCP... |
1256 | if (resplen2 != NULL) |
1257 | *resplen2 = 0; |
1258 | return (1); |
1259 | } |
1260 | /* Mark which reply we received. */ |
1261 | if (matching_query == 1) |
1262 | recvresp1 = 1; |
1263 | else |
1264 | recvresp2 = 1; |
1265 | /* Repeat waiting if we have a second answer to arrive. */ |
1266 | if ((recvresp1 & recvresp2) == 0) { |
1267 | if (single_request) { |
1268 | pfd[0].events = POLLOUT; |
1269 | if (single_request_reopen) { |
1270 | __res_iclose (statp, false); |
1271 | retval = reopen (statp, terrno, ns); |
1272 | if (retval <= 0) |
1273 | { |
1274 | if (resplen2 != NULL) |
1275 | *resplen2 = 0; |
1276 | return retval; |
1277 | } |
1278 | pfd[0].fd = EXT(statp).nssocks[ns]; |
1279 | } |
1280 | } |
1281 | goto wait; |
1282 | } |
1283 | /* All is well. We have received both responses (if |
1284 | two responses were requested). */ |
1285 | return (resplen); |
1286 | } else if (pfd[0].revents & (POLLERR | POLLHUP | POLLNVAL)) |
1287 | /* Something went wrong. We can stop trying. */ |
1288 | return close_and_return_error (statp, resplen2); |
1289 | else { |
1290 | /* poll should not have returned > 0 in this case. */ |
1291 | abort (); |
1292 | } |
1293 | } |
1294 | |
1295 | static int |
1296 | sock_eq(struct sockaddr_in6 *a1, struct sockaddr_in6 *a2) { |
1297 | if (a1->sin6_family == a2->sin6_family) { |
1298 | if (a1->sin6_family == AF_INET) |
1299 | return ((((struct sockaddr_in *)a1)->sin_port == |
1300 | ((struct sockaddr_in *)a2)->sin_port) && |
1301 | (((struct sockaddr_in *)a1)->sin_addr.s_addr == |
1302 | ((struct sockaddr_in *)a2)->sin_addr.s_addr)); |
1303 | else |
1304 | return ((a1->sin6_port == a2->sin6_port) && |
1305 | !memcmp(&a1->sin6_addr, &a2->sin6_addr, |
1306 | sizeof (struct in6_addr))); |
1307 | } |
1308 | if (a1->sin6_family == AF_INET) { |
1309 | struct sockaddr_in6 *sap = a1; |
1310 | a1 = a2; |
1311 | a2 = sap; |
1312 | } /* assumes that AF_INET and AF_INET6 are the only possibilities */ |
1313 | return ((a1->sin6_port == ((struct sockaddr_in *)a2)->sin_port) && |
1314 | IN6_IS_ADDR_V4MAPPED(&a1->sin6_addr) && |
1315 | (a1->sin6_addr.s6_addr32[3] == |
1316 | ((struct sockaddr_in *)a2)->sin_addr.s_addr)); |
1317 | } |
1318 | |