1 | /* Extended regular expression matching and search library. |
2 | Copyright (C) 2002-2022 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, see |
18 | <https://www.gnu.org/licenses/>. */ |
19 | |
20 | #ifdef _LIBC |
21 | # include <locale/weight.h> |
22 | #endif |
23 | |
24 | static reg_errcode_t re_compile_internal (regex_t *preg, const char * pattern, |
25 | size_t length, reg_syntax_t syntax); |
26 | static void re_compile_fastmap_iter (regex_t *bufp, |
27 | const re_dfastate_t *init_state, |
28 | char *fastmap); |
29 | static reg_errcode_t init_dfa (re_dfa_t *dfa, size_t pat_len); |
30 | #ifdef RE_ENABLE_I18N |
31 | static void free_charset (re_charset_t *cset); |
32 | #endif /* RE_ENABLE_I18N */ |
33 | static void free_workarea_compile (regex_t *preg); |
34 | static reg_errcode_t create_initial_state (re_dfa_t *dfa); |
35 | #ifdef RE_ENABLE_I18N |
36 | static void optimize_utf8 (re_dfa_t *dfa); |
37 | #endif |
38 | static reg_errcode_t analyze (regex_t *preg); |
39 | static reg_errcode_t preorder (bin_tree_t *root, |
40 | reg_errcode_t (fn (void *, bin_tree_t *)), |
41 | void *); |
42 | static reg_errcode_t postorder (bin_tree_t *root, |
43 | reg_errcode_t (fn (void *, bin_tree_t *)), |
44 | void *); |
45 | static reg_errcode_t optimize_subexps (void *, bin_tree_t *node); |
46 | static reg_errcode_t lower_subexps (void *, bin_tree_t *node); |
47 | static bin_tree_t *lower_subexp (reg_errcode_t *err, regex_t *preg, |
48 | bin_tree_t *node); |
49 | static reg_errcode_t calc_first (void *, bin_tree_t *node); |
50 | static reg_errcode_t calc_next (void *, bin_tree_t *node); |
51 | static reg_errcode_t link_nfa_nodes (void *, bin_tree_t *node); |
52 | static Idx duplicate_node (re_dfa_t *dfa, Idx org_idx, unsigned int constraint); |
53 | static Idx search_duplicated_node (const re_dfa_t *dfa, Idx org_node, |
54 | unsigned int constraint); |
55 | static reg_errcode_t calc_eclosure (re_dfa_t *dfa); |
56 | static reg_errcode_t calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, |
57 | Idx node, bool root); |
58 | static reg_errcode_t calc_inveclosure (re_dfa_t *dfa); |
59 | static Idx fetch_number (re_string_t *input, re_token_t *token, |
60 | reg_syntax_t syntax); |
61 | static int peek_token (re_token_t *token, re_string_t *input, |
62 | reg_syntax_t syntax); |
63 | static bin_tree_t *parse (re_string_t *regexp, regex_t *preg, |
64 | reg_syntax_t syntax, reg_errcode_t *err); |
65 | static bin_tree_t *parse_reg_exp (re_string_t *regexp, regex_t *preg, |
66 | re_token_t *token, reg_syntax_t syntax, |
67 | Idx nest, reg_errcode_t *err); |
68 | static bin_tree_t *parse_branch (re_string_t *regexp, regex_t *preg, |
69 | re_token_t *token, reg_syntax_t syntax, |
70 | Idx nest, reg_errcode_t *err); |
71 | static bin_tree_t *parse_expression (re_string_t *regexp, regex_t *preg, |
72 | re_token_t *token, reg_syntax_t syntax, |
73 | Idx nest, reg_errcode_t *err); |
74 | static bin_tree_t *parse_sub_exp (re_string_t *regexp, regex_t *preg, |
75 | re_token_t *token, reg_syntax_t syntax, |
76 | Idx nest, reg_errcode_t *err); |
77 | static bin_tree_t *parse_dup_op (bin_tree_t *dup_elem, re_string_t *regexp, |
78 | re_dfa_t *dfa, re_token_t *token, |
79 | reg_syntax_t syntax, reg_errcode_t *err); |
80 | static bin_tree_t *parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, |
81 | re_token_t *token, reg_syntax_t syntax, |
82 | reg_errcode_t *err); |
83 | static reg_errcode_t parse_bracket_element (bracket_elem_t *elem, |
84 | re_string_t *regexp, |
85 | re_token_t *token, int token_len, |
86 | re_dfa_t *dfa, |
87 | reg_syntax_t syntax, |
88 | bool accept_hyphen); |
89 | static reg_errcode_t parse_bracket_symbol (bracket_elem_t *elem, |
90 | re_string_t *regexp, |
91 | re_token_t *token); |
92 | #ifdef RE_ENABLE_I18N |
93 | static reg_errcode_t build_equiv_class (bitset_t sbcset, |
94 | re_charset_t *mbcset, |
95 | Idx *equiv_class_alloc, |
96 | const unsigned char *name); |
97 | static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans, |
98 | bitset_t sbcset, |
99 | re_charset_t *mbcset, |
100 | Idx *char_class_alloc, |
101 | const char *class_name, |
102 | reg_syntax_t syntax); |
103 | #else /* not RE_ENABLE_I18N */ |
104 | static reg_errcode_t build_equiv_class (bitset_t sbcset, |
105 | const unsigned char *name); |
106 | static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans, |
107 | bitset_t sbcset, |
108 | const char *class_name, |
109 | reg_syntax_t syntax); |
110 | #endif /* not RE_ENABLE_I18N */ |
111 | static bin_tree_t *build_charclass_op (re_dfa_t *dfa, |
112 | RE_TRANSLATE_TYPE trans, |
113 | const char *class_name, |
114 | const char *, |
115 | bool non_match, reg_errcode_t *err); |
116 | static bin_tree_t *create_tree (re_dfa_t *dfa, |
117 | bin_tree_t *left, bin_tree_t *right, |
118 | re_token_type_t type); |
119 | static bin_tree_t *create_token_tree (re_dfa_t *dfa, |
120 | bin_tree_t *left, bin_tree_t *right, |
121 | const re_token_t *token); |
122 | static bin_tree_t *duplicate_tree (const bin_tree_t *src, re_dfa_t *dfa); |
123 | static void free_token (re_token_t *node); |
124 | static reg_errcode_t free_tree (void *, bin_tree_t *node); |
125 | static reg_errcode_t mark_opt_subexp (void *, bin_tree_t *node); |
126 | |
127 | /* This table gives an error message for each of the error codes listed |
128 | in regex.h. Obviously the order here has to be same as there. |
129 | POSIX doesn't require that we do anything for REG_NOERROR, |
130 | but why not be nice? */ |
131 | |
132 | static const char __re_error_msgid[] = |
133 | { |
134 | #define REG_NOERROR_IDX 0 |
135 | gettext_noop ("Success" ) /* REG_NOERROR */ |
136 | "\0" |
137 | #define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success") |
138 | gettext_noop ("No match" ) /* REG_NOMATCH */ |
139 | "\0" |
140 | #define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match") |
141 | gettext_noop ("Invalid regular expression" ) /* REG_BADPAT */ |
142 | "\0" |
143 | #define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression") |
144 | gettext_noop ("Invalid collation character" ) /* REG_ECOLLATE */ |
145 | "\0" |
146 | #define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character") |
147 | gettext_noop ("Invalid character class name" ) /* REG_ECTYPE */ |
148 | "\0" |
149 | #define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name") |
150 | gettext_noop ("Trailing backslash" ) /* REG_EESCAPE */ |
151 | "\0" |
152 | #define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash") |
153 | gettext_noop ("Invalid back reference" ) /* REG_ESUBREG */ |
154 | "\0" |
155 | #define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference") |
156 | gettext_noop ("Unmatched [, [^, [:, [., or [=" ) /* REG_EBRACK */ |
157 | "\0" |
158 | #define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [, [^, [:, [., or [=") |
159 | gettext_noop ("Unmatched ( or \\(" ) /* REG_EPAREN */ |
160 | "\0" |
161 | #define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(") |
162 | gettext_noop ("Unmatched \\{" ) /* REG_EBRACE */ |
163 | "\0" |
164 | #define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{") |
165 | gettext_noop ("Invalid content of \\{\\}" ) /* REG_BADBR */ |
166 | "\0" |
167 | #define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}") |
168 | gettext_noop ("Invalid range end" ) /* REG_ERANGE */ |
169 | "\0" |
170 | #define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end") |
171 | gettext_noop ("Memory exhausted" ) /* REG_ESPACE */ |
172 | "\0" |
173 | #define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted") |
174 | gettext_noop ("Invalid preceding regular expression" ) /* REG_BADRPT */ |
175 | "\0" |
176 | #define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression") |
177 | gettext_noop ("Premature end of regular expression" ) /* REG_EEND */ |
178 | "\0" |
179 | #define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression") |
180 | gettext_noop ("Regular expression too big" ) /* REG_ESIZE */ |
181 | "\0" |
182 | #define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big") |
183 | gettext_noop ("Unmatched ) or \\)" ) /* REG_ERPAREN */ |
184 | }; |
185 | |
186 | static const size_t __re_error_msgid_idx[] = |
187 | { |
188 | REG_NOERROR_IDX, |
189 | REG_NOMATCH_IDX, |
190 | REG_BADPAT_IDX, |
191 | REG_ECOLLATE_IDX, |
192 | REG_ECTYPE_IDX, |
193 | REG_EESCAPE_IDX, |
194 | REG_ESUBREG_IDX, |
195 | REG_EBRACK_IDX, |
196 | REG_EPAREN_IDX, |
197 | REG_EBRACE_IDX, |
198 | REG_BADBR_IDX, |
199 | REG_ERANGE_IDX, |
200 | REG_ESPACE_IDX, |
201 | REG_BADRPT_IDX, |
202 | REG_EEND_IDX, |
203 | REG_ESIZE_IDX, |
204 | REG_ERPAREN_IDX |
205 | }; |
206 | |
207 | /* Entry points for GNU code. */ |
208 | |
209 | /* re_compile_pattern is the GNU regular expression compiler: it |
210 | compiles PATTERN (of length LENGTH) and puts the result in BUFP. |
211 | Returns 0 if the pattern was valid, otherwise an error string. |
212 | |
213 | Assumes the 'allocated' (and perhaps 'buffer') and 'translate' fields |
214 | are set in BUFP on entry. */ |
215 | |
216 | const char * |
217 | re_compile_pattern (const char *pattern, size_t length, |
218 | struct re_pattern_buffer *bufp) |
219 | { |
220 | reg_errcode_t ret; |
221 | |
222 | /* And GNU code determines whether or not to get register information |
223 | by passing null for the REGS argument to re_match, etc., not by |
224 | setting no_sub, unless RE_NO_SUB is set. */ |
225 | bufp->no_sub = !!(re_syntax_options & RE_NO_SUB); |
226 | |
227 | /* Match anchors at newline. */ |
228 | bufp->newline_anchor = 1; |
229 | |
230 | ret = re_compile_internal (bufp, pattern, length, re_syntax_options); |
231 | |
232 | if (!ret) |
233 | return NULL; |
234 | return gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]); |
235 | } |
236 | weak_alias (__re_compile_pattern, re_compile_pattern) |
237 | |
238 | /* Set by 're_set_syntax' to the current regexp syntax to recognize. Can |
239 | also be assigned to arbitrarily: each pattern buffer stores its own |
240 | syntax, so it can be changed between regex compilations. */ |
241 | /* This has no initializer because initialized variables in Emacs |
242 | become read-only after dumping. */ |
243 | reg_syntax_t re_syntax_options; |
244 | |
245 | |
246 | /* Specify the precise syntax of regexps for compilation. This provides |
247 | for compatibility for various utilities which historically have |
248 | different, incompatible syntaxes. |
249 | |
250 | The argument SYNTAX is a bit mask comprised of the various bits |
251 | defined in regex.h. We return the old syntax. */ |
252 | |
253 | reg_syntax_t |
254 | re_set_syntax (reg_syntax_t syntax) |
255 | { |
256 | reg_syntax_t ret = re_syntax_options; |
257 | |
258 | re_syntax_options = syntax; |
259 | return ret; |
260 | } |
261 | weak_alias (__re_set_syntax, re_set_syntax) |
262 | |
263 | int |
264 | re_compile_fastmap (struct re_pattern_buffer *bufp) |
265 | { |
266 | re_dfa_t *dfa = bufp->buffer; |
267 | char *fastmap = bufp->fastmap; |
268 | |
269 | memset (fastmap, '\0', sizeof (char) * SBC_MAX); |
270 | re_compile_fastmap_iter (bufp, dfa->init_state, fastmap); |
271 | if (dfa->init_state != dfa->init_state_word) |
272 | re_compile_fastmap_iter (bufp, dfa->init_state_word, fastmap); |
273 | if (dfa->init_state != dfa->init_state_nl) |
274 | re_compile_fastmap_iter (bufp, dfa->init_state_nl, fastmap); |
275 | if (dfa->init_state != dfa->init_state_begbuf) |
276 | re_compile_fastmap_iter (bufp, dfa->init_state_begbuf, fastmap); |
277 | bufp->fastmap_accurate = 1; |
278 | return 0; |
279 | } |
280 | weak_alias (__re_compile_fastmap, re_compile_fastmap) |
281 | |
282 | static inline void |
283 | __attribute__ ((always_inline)) |
284 | re_set_fastmap (char *fastmap, bool icase, int ch) |
285 | { |
286 | fastmap[ch] = 1; |
287 | if (icase) |
288 | fastmap[tolower (ch)] = 1; |
289 | } |
290 | |
291 | /* Helper function for re_compile_fastmap. |
292 | Compile fastmap for the initial_state INIT_STATE. */ |
293 | |
294 | static void |
295 | re_compile_fastmap_iter (regex_t *bufp, const re_dfastate_t *init_state, |
296 | char *fastmap) |
297 | { |
298 | re_dfa_t *dfa = bufp->buffer; |
299 | Idx node_cnt; |
300 | bool icase = (dfa->mb_cur_max == 1 && (bufp->syntax & RE_ICASE)); |
301 | for (node_cnt = 0; node_cnt < init_state->nodes.nelem; ++node_cnt) |
302 | { |
303 | Idx node = init_state->nodes.elems[node_cnt]; |
304 | re_token_type_t type = dfa->nodes[node].type; |
305 | |
306 | if (type == CHARACTER) |
307 | { |
308 | re_set_fastmap (fastmap, icase, dfa->nodes[node].opr.c); |
309 | #ifdef RE_ENABLE_I18N |
310 | if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1) |
311 | { |
312 | unsigned char buf[MB_LEN_MAX]; |
313 | unsigned char *p; |
314 | wchar_t wc; |
315 | mbstate_t state; |
316 | |
317 | p = buf; |
318 | *p++ = dfa->nodes[node].opr.c; |
319 | while (++node < dfa->nodes_len |
320 | && dfa->nodes[node].type == CHARACTER |
321 | && dfa->nodes[node].mb_partial) |
322 | *p++ = dfa->nodes[node].opr.c; |
323 | memset (&state, '\0', sizeof (state)); |
324 | if (__mbrtowc (&wc, (const char *) buf, p - buf, |
325 | &state) == p - buf |
326 | && (__wcrtomb ((char *) buf, __towlower (wc), &state) |
327 | != (size_t) -1)) |
328 | re_set_fastmap (fastmap, false, buf[0]); |
329 | } |
330 | #endif |
331 | } |
332 | else if (type == SIMPLE_BRACKET) |
333 | { |
334 | int i, ch; |
335 | for (i = 0, ch = 0; i < BITSET_WORDS; ++i) |
336 | { |
337 | int j; |
338 | bitset_word_t w = dfa->nodes[node].opr.sbcset[i]; |
339 | for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) |
340 | if (w & ((bitset_word_t) 1 << j)) |
341 | re_set_fastmap (fastmap, icase, ch); |
342 | } |
343 | } |
344 | #ifdef RE_ENABLE_I18N |
345 | else if (type == COMPLEX_BRACKET) |
346 | { |
347 | re_charset_t *cset = dfa->nodes[node].opr.mbcset; |
348 | Idx i; |
349 | |
350 | # ifdef _LIBC |
351 | /* See if we have to try all bytes which start multiple collation |
352 | elements. |
353 | e.g. In da_DK, we want to catch 'a' since "aa" is a valid |
354 | collation element, and don't catch 'b' since 'b' is |
355 | the only collation element which starts from 'b' (and |
356 | it is caught by SIMPLE_BRACKET). */ |
357 | if (_NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES) != 0 |
358 | && (cset->ncoll_syms || cset->nranges)) |
359 | { |
360 | const int32_t *table = (const int32_t *) |
361 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); |
362 | for (i = 0; i < SBC_MAX; ++i) |
363 | if (table[i] < 0) |
364 | re_set_fastmap (fastmap, icase, i); |
365 | } |
366 | # endif /* _LIBC */ |
367 | |
368 | /* See if we have to start the match at all multibyte characters, |
369 | i.e. where we would not find an invalid sequence. This only |
370 | applies to multibyte character sets; for single byte character |
371 | sets, the SIMPLE_BRACKET again suffices. */ |
372 | if (dfa->mb_cur_max > 1 |
373 | && (cset->nchar_classes || cset->non_match || cset->nranges |
374 | # ifdef _LIBC |
375 | || cset->nequiv_classes |
376 | # endif /* _LIBC */ |
377 | )) |
378 | { |
379 | unsigned char c = 0; |
380 | do |
381 | { |
382 | mbstate_t mbs; |
383 | memset (&mbs, 0, sizeof (mbs)); |
384 | if (__mbrtowc (NULL, (char *) &c, 1, &mbs) == (size_t) -2) |
385 | re_set_fastmap (fastmap, false, (int) c); |
386 | } |
387 | while (++c != 0); |
388 | } |
389 | |
390 | else |
391 | { |
392 | /* ... Else catch all bytes which can start the mbchars. */ |
393 | for (i = 0; i < cset->nmbchars; ++i) |
394 | { |
395 | char buf[256]; |
396 | mbstate_t state; |
397 | memset (&state, '\0', sizeof (state)); |
398 | if (__wcrtomb (buf, cset->mbchars[i], &state) != (size_t) -1) |
399 | re_set_fastmap (fastmap, icase, *(unsigned char *) buf); |
400 | if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1) |
401 | { |
402 | if (__wcrtomb (buf, __towlower (cset->mbchars[i]), &state) |
403 | != (size_t) -1) |
404 | re_set_fastmap (fastmap, false, *(unsigned char *) buf); |
405 | } |
406 | } |
407 | } |
408 | } |
409 | #endif /* RE_ENABLE_I18N */ |
410 | else if (type == OP_PERIOD |
411 | #ifdef RE_ENABLE_I18N |
412 | || type == OP_UTF8_PERIOD |
413 | #endif /* RE_ENABLE_I18N */ |
414 | || type == END_OF_RE) |
415 | { |
416 | memset (fastmap, '\1', sizeof (char) * SBC_MAX); |
417 | if (type == END_OF_RE) |
418 | bufp->can_be_null = 1; |
419 | return; |
420 | } |
421 | } |
422 | } |
423 | |
424 | /* Entry point for POSIX code. */ |
425 | /* regcomp takes a regular expression as a string and compiles it. |
426 | |
427 | PREG is a regex_t *. We do not expect any fields to be initialized, |
428 | since POSIX says we shouldn't. Thus, we set |
429 | |
430 | 'buffer' to the compiled pattern; |
431 | 'used' to the length of the compiled pattern; |
432 | 'syntax' to RE_SYNTAX_POSIX_EXTENDED if the |
433 | REG_EXTENDED bit in CFLAGS is set; otherwise, to |
434 | RE_SYNTAX_POSIX_BASIC; |
435 | 'newline_anchor' to REG_NEWLINE being set in CFLAGS; |
436 | 'fastmap' to an allocated space for the fastmap; |
437 | 'fastmap_accurate' to zero; |
438 | 're_nsub' to the number of subexpressions in PATTERN. |
439 | |
440 | PATTERN is the address of the pattern string. |
441 | |
442 | CFLAGS is a series of bits which affect compilation. |
443 | |
444 | If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we |
445 | use POSIX basic syntax. |
446 | |
447 | If REG_NEWLINE is set, then . and [^...] don't match newline. |
448 | Also, regexec will try a match beginning after every newline. |
449 | |
450 | If REG_ICASE is set, then we considers upper- and lowercase |
451 | versions of letters to be equivalent when matching. |
452 | |
453 | If REG_NOSUB is set, then when PREG is passed to regexec, that |
454 | routine will report only success or failure, and nothing about the |
455 | registers. |
456 | |
457 | It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for |
458 | the return codes and their meanings.) */ |
459 | |
460 | int |
461 | regcomp (regex_t *__restrict preg, const char *__restrict pattern, int cflags) |
462 | { |
463 | reg_errcode_t ret; |
464 | reg_syntax_t syntax = ((cflags & REG_EXTENDED) ? RE_SYNTAX_POSIX_EXTENDED |
465 | : RE_SYNTAX_POSIX_BASIC); |
466 | |
467 | preg->buffer = NULL; |
468 | preg->allocated = 0; |
469 | preg->used = 0; |
470 | |
471 | /* Try to allocate space for the fastmap. */ |
472 | preg->fastmap = re_malloc (char, SBC_MAX); |
473 | if (__glibc_unlikely (preg->fastmap == NULL)) |
474 | return REG_ESPACE; |
475 | |
476 | syntax |= (cflags & REG_ICASE) ? RE_ICASE : 0; |
477 | |
478 | /* If REG_NEWLINE is set, newlines are treated differently. */ |
479 | if (cflags & REG_NEWLINE) |
480 | { /* REG_NEWLINE implies neither . nor [^...] match newline. */ |
481 | syntax &= ~RE_DOT_NEWLINE; |
482 | syntax |= RE_HAT_LISTS_NOT_NEWLINE; |
483 | /* It also changes the matching behavior. */ |
484 | preg->newline_anchor = 1; |
485 | } |
486 | else |
487 | preg->newline_anchor = 0; |
488 | preg->no_sub = !!(cflags & REG_NOSUB); |
489 | preg->translate = NULL; |
490 | |
491 | ret = re_compile_internal (preg, pattern, strlen (pattern), syntax); |
492 | |
493 | /* POSIX doesn't distinguish between an unmatched open-group and an |
494 | unmatched close-group: both are REG_EPAREN. */ |
495 | if (ret == REG_ERPAREN) |
496 | ret = REG_EPAREN; |
497 | |
498 | /* We have already checked preg->fastmap != NULL. */ |
499 | if (__glibc_likely (ret == REG_NOERROR)) |
500 | /* Compute the fastmap now, since regexec cannot modify the pattern |
501 | buffer. This function never fails in this implementation. */ |
502 | (void) re_compile_fastmap (preg); |
503 | else |
504 | { |
505 | /* Some error occurred while compiling the expression. */ |
506 | re_free (preg->fastmap); |
507 | preg->fastmap = NULL; |
508 | } |
509 | |
510 | return (int) ret; |
511 | } |
512 | libc_hidden_def (__regcomp) |
513 | weak_alias (__regcomp, regcomp) |
514 | |
515 | /* Returns a message corresponding to an error code, ERRCODE, returned |
516 | from either regcomp or regexec. We don't use PREG here. */ |
517 | |
518 | size_t |
519 | regerror (int errcode, const regex_t *__restrict preg, char *__restrict errbuf, |
520 | size_t errbuf_size) |
521 | { |
522 | const char *msg; |
523 | size_t msg_size; |
524 | int nerrcodes = sizeof __re_error_msgid_idx / sizeof __re_error_msgid_idx[0]; |
525 | |
526 | if (__glibc_unlikely (errcode < 0 || errcode >= nerrcodes)) |
527 | /* Only error codes returned by the rest of the code should be passed |
528 | to this routine. If we are given anything else, or if other regex |
529 | code generates an invalid error code, then the program has a bug. |
530 | Dump core so we can fix it. */ |
531 | abort (); |
532 | |
533 | msg = gettext (__re_error_msgid + __re_error_msgid_idx[errcode]); |
534 | |
535 | msg_size = strlen (msg) + 1; /* Includes the null. */ |
536 | |
537 | if (__glibc_likely (errbuf_size != 0)) |
538 | { |
539 | size_t cpy_size = msg_size; |
540 | if (__glibc_unlikely (msg_size > errbuf_size)) |
541 | { |
542 | cpy_size = errbuf_size - 1; |
543 | errbuf[cpy_size] = '\0'; |
544 | } |
545 | memcpy (errbuf, msg, cpy_size); |
546 | } |
547 | |
548 | return msg_size; |
549 | } |
550 | weak_alias (__regerror, regerror) |
551 | |
552 | |
553 | #ifdef RE_ENABLE_I18N |
554 | /* This static array is used for the map to single-byte characters when |
555 | UTF-8 is used. Otherwise we would allocate memory just to initialize |
556 | it the same all the time. UTF-8 is the preferred encoding so this is |
557 | a worthwhile optimization. */ |
558 | static const bitset_t utf8_sb_map = |
559 | { |
560 | /* Set the first 128 bits. */ |
561 | # if (defined __GNUC__ || __clang_major__ >= 4) && !defined __STRICT_ANSI__ |
562 | [0 ... 0x80 / BITSET_WORD_BITS - 1] = BITSET_WORD_MAX |
563 | # else |
564 | # if 4 * BITSET_WORD_BITS < ASCII_CHARS |
565 | # error "bitset_word_t is narrower than 32 bits" |
566 | # elif 3 * BITSET_WORD_BITS < ASCII_CHARS |
567 | BITSET_WORD_MAX, BITSET_WORD_MAX, BITSET_WORD_MAX, |
568 | # elif 2 * BITSET_WORD_BITS < ASCII_CHARS |
569 | BITSET_WORD_MAX, BITSET_WORD_MAX, |
570 | # elif 1 * BITSET_WORD_BITS < ASCII_CHARS |
571 | BITSET_WORD_MAX, |
572 | # endif |
573 | (BITSET_WORD_MAX |
574 | >> (SBC_MAX % BITSET_WORD_BITS == 0 |
575 | ? 0 |
576 | : BITSET_WORD_BITS - SBC_MAX % BITSET_WORD_BITS)) |
577 | # endif |
578 | }; |
579 | #endif |
580 | |
581 | |
582 | static void |
583 | free_dfa_content (re_dfa_t *dfa) |
584 | { |
585 | Idx i, j; |
586 | |
587 | if (dfa->nodes) |
588 | for (i = 0; i < dfa->nodes_len; ++i) |
589 | free_token (dfa->nodes + i); |
590 | re_free (dfa->nexts); |
591 | for (i = 0; i < dfa->nodes_len; ++i) |
592 | { |
593 | if (dfa->eclosures != NULL) |
594 | re_node_set_free (dfa->eclosures + i); |
595 | if (dfa->inveclosures != NULL) |
596 | re_node_set_free (dfa->inveclosures + i); |
597 | if (dfa->edests != NULL) |
598 | re_node_set_free (dfa->edests + i); |
599 | } |
600 | re_free (dfa->edests); |
601 | re_free (dfa->eclosures); |
602 | re_free (dfa->inveclosures); |
603 | re_free (dfa->nodes); |
604 | |
605 | if (dfa->state_table) |
606 | for (i = 0; i <= dfa->state_hash_mask; ++i) |
607 | { |
608 | struct re_state_table_entry *entry = dfa->state_table + i; |
609 | for (j = 0; j < entry->num; ++j) |
610 | { |
611 | re_dfastate_t *state = entry->array[j]; |
612 | free_state (state); |
613 | } |
614 | re_free (entry->array); |
615 | } |
616 | re_free (dfa->state_table); |
617 | #ifdef RE_ENABLE_I18N |
618 | if (dfa->sb_char != utf8_sb_map) |
619 | re_free (dfa->sb_char); |
620 | #endif |
621 | re_free (dfa->subexp_map); |
622 | #ifdef DEBUG |
623 | re_free (dfa->re_str); |
624 | #endif |
625 | |
626 | re_free (dfa); |
627 | } |
628 | |
629 | |
630 | /* Free dynamically allocated space used by PREG. */ |
631 | |
632 | void |
633 | regfree (regex_t *preg) |
634 | { |
635 | re_dfa_t *dfa = preg->buffer; |
636 | if (__glibc_likely (dfa != NULL)) |
637 | { |
638 | lock_fini (dfa->lock); |
639 | free_dfa_content (dfa); |
640 | } |
641 | preg->buffer = NULL; |
642 | preg->allocated = 0; |
643 | |
644 | re_free (preg->fastmap); |
645 | preg->fastmap = NULL; |
646 | |
647 | re_free (preg->translate); |
648 | preg->translate = NULL; |
649 | } |
650 | libc_hidden_def (__regfree) |
651 | weak_alias (__regfree, regfree) |
652 | |
653 | /* Entry points compatible with 4.2 BSD regex library. We don't define |
654 | them unless specifically requested. */ |
655 | |
656 | #if defined _REGEX_RE_COMP || defined _LIBC |
657 | |
658 | /* BSD has one and only one pattern buffer. */ |
659 | static struct re_pattern_buffer re_comp_buf; |
660 | |
661 | char * |
662 | # ifdef _LIBC |
663 | /* Make these definitions weak in libc, so POSIX programs can redefine |
664 | these names if they don't use our functions, and still use |
665 | regcomp/regexec above without link errors. */ |
666 | weak_function |
667 | # endif |
668 | re_comp (const char *s) |
669 | { |
670 | reg_errcode_t ret; |
671 | char *fastmap; |
672 | |
673 | if (!s) |
674 | { |
675 | if (!re_comp_buf.buffer) |
676 | return gettext ("No previous regular expression" ); |
677 | return 0; |
678 | } |
679 | |
680 | if (re_comp_buf.buffer) |
681 | { |
682 | fastmap = re_comp_buf.fastmap; |
683 | re_comp_buf.fastmap = NULL; |
684 | __regfree (&re_comp_buf); |
685 | memset (&re_comp_buf, '\0', sizeof (re_comp_buf)); |
686 | re_comp_buf.fastmap = fastmap; |
687 | } |
688 | |
689 | if (re_comp_buf.fastmap == NULL) |
690 | { |
691 | re_comp_buf.fastmap = re_malloc (char, SBC_MAX); |
692 | if (re_comp_buf.fastmap == NULL) |
693 | return (char *) gettext (__re_error_msgid |
694 | + __re_error_msgid_idx[(int) REG_ESPACE]); |
695 | } |
696 | |
697 | /* Since 're_exec' always passes NULL for the 'regs' argument, we |
698 | don't need to initialize the pattern buffer fields which affect it. */ |
699 | |
700 | /* Match anchors at newlines. */ |
701 | re_comp_buf.newline_anchor = 1; |
702 | |
703 | ret = re_compile_internal (&re_comp_buf, s, strlen (s), re_syntax_options); |
704 | |
705 | if (!ret) |
706 | return NULL; |
707 | |
708 | /* Yes, we're discarding 'const' here if !HAVE_LIBINTL. */ |
709 | return (char *) gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]); |
710 | } |
711 | |
712 | #ifdef _LIBC |
713 | libc_freeres_fn (free_mem) |
714 | { |
715 | __regfree (&re_comp_buf); |
716 | } |
717 | #endif |
718 | |
719 | #endif /* _REGEX_RE_COMP */ |
720 | |
721 | /* Internal entry point. |
722 | Compile the regular expression PATTERN, whose length is LENGTH. |
723 | SYNTAX indicate regular expression's syntax. */ |
724 | |
725 | static reg_errcode_t |
726 | re_compile_internal (regex_t *preg, const char * pattern, size_t length, |
727 | reg_syntax_t syntax) |
728 | { |
729 | reg_errcode_t err = REG_NOERROR; |
730 | re_dfa_t *dfa; |
731 | re_string_t regexp; |
732 | |
733 | /* Initialize the pattern buffer. */ |
734 | preg->fastmap_accurate = 0; |
735 | preg->syntax = syntax; |
736 | preg->not_bol = preg->not_eol = 0; |
737 | preg->used = 0; |
738 | preg->re_nsub = 0; |
739 | preg->can_be_null = 0; |
740 | preg->regs_allocated = REGS_UNALLOCATED; |
741 | |
742 | /* Initialize the dfa. */ |
743 | dfa = preg->buffer; |
744 | if (__glibc_unlikely (preg->allocated < sizeof (re_dfa_t))) |
745 | { |
746 | /* If zero allocated, but buffer is non-null, try to realloc |
747 | enough space. This loses if buffer's address is bogus, but |
748 | that is the user's responsibility. If ->buffer is NULL this |
749 | is a simple allocation. */ |
750 | dfa = re_realloc (preg->buffer, re_dfa_t, 1); |
751 | if (dfa == NULL) |
752 | return REG_ESPACE; |
753 | preg->allocated = sizeof (re_dfa_t); |
754 | preg->buffer = dfa; |
755 | } |
756 | preg->used = sizeof (re_dfa_t); |
757 | |
758 | err = init_dfa (dfa, length); |
759 | if (__glibc_unlikely (err == REG_NOERROR && lock_init (dfa->lock) != 0)) |
760 | err = REG_ESPACE; |
761 | if (__glibc_unlikely (err != REG_NOERROR)) |
762 | { |
763 | free_dfa_content (dfa); |
764 | preg->buffer = NULL; |
765 | preg->allocated = 0; |
766 | return err; |
767 | } |
768 | #ifdef DEBUG |
769 | /* Note: length+1 will not overflow since it is checked in init_dfa. */ |
770 | dfa->re_str = re_malloc (char, length + 1); |
771 | strncpy (dfa->re_str, pattern, length + 1); |
772 | #endif |
773 | |
774 | err = re_string_construct (®exp, pattern, length, preg->translate, |
775 | (syntax & RE_ICASE) != 0, dfa); |
776 | if (__glibc_unlikely (err != REG_NOERROR)) |
777 | { |
778 | re_compile_internal_free_return: |
779 | free_workarea_compile (preg); |
780 | re_string_destruct (®exp); |
781 | lock_fini (dfa->lock); |
782 | free_dfa_content (dfa); |
783 | preg->buffer = NULL; |
784 | preg->allocated = 0; |
785 | return err; |
786 | } |
787 | |
788 | /* Parse the regular expression, and build a structure tree. */ |
789 | preg->re_nsub = 0; |
790 | dfa->str_tree = parse (®exp, preg, syntax, &err); |
791 | if (__glibc_unlikely (dfa->str_tree == NULL)) |
792 | goto re_compile_internal_free_return; |
793 | |
794 | /* Analyze the tree and create the nfa. */ |
795 | err = analyze (preg); |
796 | if (__glibc_unlikely (err != REG_NOERROR)) |
797 | goto re_compile_internal_free_return; |
798 | |
799 | #ifdef RE_ENABLE_I18N |
800 | /* If possible, do searching in single byte encoding to speed things up. */ |
801 | if (dfa->is_utf8 && !(syntax & RE_ICASE) && preg->translate == NULL) |
802 | optimize_utf8 (dfa); |
803 | #endif |
804 | |
805 | /* Then create the initial state of the dfa. */ |
806 | err = create_initial_state (dfa); |
807 | |
808 | /* Release work areas. */ |
809 | free_workarea_compile (preg); |
810 | re_string_destruct (®exp); |
811 | |
812 | if (__glibc_unlikely (err != REG_NOERROR)) |
813 | { |
814 | lock_fini (dfa->lock); |
815 | free_dfa_content (dfa); |
816 | preg->buffer = NULL; |
817 | preg->allocated = 0; |
818 | } |
819 | |
820 | return err; |
821 | } |
822 | |
823 | /* Initialize DFA. We use the length of the regular expression PAT_LEN |
824 | as the initial length of some arrays. */ |
825 | |
826 | static reg_errcode_t |
827 | init_dfa (re_dfa_t *dfa, size_t pat_len) |
828 | { |
829 | __re_size_t table_size; |
830 | #ifndef _LIBC |
831 | const char *codeset_name; |
832 | #endif |
833 | #ifdef RE_ENABLE_I18N |
834 | size_t max_i18n_object_size = MAX (sizeof (wchar_t), sizeof (wctype_t)); |
835 | #else |
836 | size_t max_i18n_object_size = 0; |
837 | #endif |
838 | size_t max_object_size = |
839 | MAX (sizeof (struct re_state_table_entry), |
840 | MAX (sizeof (re_token_t), |
841 | MAX (sizeof (re_node_set), |
842 | MAX (sizeof (regmatch_t), |
843 | max_i18n_object_size)))); |
844 | |
845 | memset (dfa, '\0', sizeof (re_dfa_t)); |
846 | |
847 | /* Force allocation of str_tree_storage the first time. */ |
848 | dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE; |
849 | |
850 | /* Avoid overflows. The extra "/ 2" is for the table_size doubling |
851 | calculation below, and for similar doubling calculations |
852 | elsewhere. And it's <= rather than <, because some of the |
853 | doubling calculations add 1 afterwards. */ |
854 | if (__glibc_unlikely (MIN (IDX_MAX, SIZE_MAX / max_object_size) / 2 |
855 | <= pat_len)) |
856 | return REG_ESPACE; |
857 | |
858 | dfa->nodes_alloc = pat_len + 1; |
859 | dfa->nodes = re_malloc (re_token_t, dfa->nodes_alloc); |
860 | |
861 | /* table_size = 2 ^ ceil(log pat_len) */ |
862 | for (table_size = 1; ; table_size <<= 1) |
863 | if (table_size > pat_len) |
864 | break; |
865 | |
866 | dfa->state_table = calloc (sizeof (struct re_state_table_entry), table_size); |
867 | dfa->state_hash_mask = table_size - 1; |
868 | |
869 | dfa->mb_cur_max = MB_CUR_MAX; |
870 | #ifdef _LIBC |
871 | if (dfa->mb_cur_max == 6 |
872 | && strcmp (_NL_CURRENT (LC_CTYPE, _NL_CTYPE_CODESET_NAME), "UTF-8" ) == 0) |
873 | dfa->is_utf8 = 1; |
874 | dfa->map_notascii = (_NL_CURRENT_WORD (LC_CTYPE, _NL_CTYPE_MAP_TO_NONASCII) |
875 | != 0); |
876 | #else |
877 | codeset_name = nl_langinfo (CODESET); |
878 | if ((codeset_name[0] == 'U' || codeset_name[0] == 'u') |
879 | && (codeset_name[1] == 'T' || codeset_name[1] == 't') |
880 | && (codeset_name[2] == 'F' || codeset_name[2] == 'f') |
881 | && strcmp (codeset_name + 3 + (codeset_name[3] == '-'), "8" ) == 0) |
882 | dfa->is_utf8 = 1; |
883 | |
884 | /* We check exhaustively in the loop below if this charset is a |
885 | superset of ASCII. */ |
886 | dfa->map_notascii = 0; |
887 | #endif |
888 | |
889 | #ifdef RE_ENABLE_I18N |
890 | if (dfa->mb_cur_max > 1) |
891 | { |
892 | if (dfa->is_utf8) |
893 | dfa->sb_char = (re_bitset_ptr_t) utf8_sb_map; |
894 | else |
895 | { |
896 | int i, j, ch; |
897 | |
898 | dfa->sb_char = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1); |
899 | if (__glibc_unlikely (dfa->sb_char == NULL)) |
900 | return REG_ESPACE; |
901 | |
902 | /* Set the bits corresponding to single byte chars. */ |
903 | for (i = 0, ch = 0; i < BITSET_WORDS; ++i) |
904 | for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) |
905 | { |
906 | wint_t wch = __btowc (ch); |
907 | if (wch != WEOF) |
908 | dfa->sb_char[i] |= (bitset_word_t) 1 << j; |
909 | # ifndef _LIBC |
910 | if (isascii (ch) && wch != ch) |
911 | dfa->map_notascii = 1; |
912 | # endif |
913 | } |
914 | } |
915 | } |
916 | #endif |
917 | |
918 | if (__glibc_unlikely (dfa->nodes == NULL || dfa->state_table == NULL)) |
919 | return REG_ESPACE; |
920 | return REG_NOERROR; |
921 | } |
922 | |
923 | /* Initialize WORD_CHAR table, which indicate which character is |
924 | "word". In this case "word" means that it is the word construction |
925 | character used by some operators like "\<", "\>", etc. */ |
926 | |
927 | static void |
928 | init_word_char (re_dfa_t *dfa) |
929 | { |
930 | int i = 0; |
931 | int j; |
932 | int ch = 0; |
933 | dfa->word_ops_used = 1; |
934 | if (__glibc_likely (dfa->map_notascii == 0)) |
935 | { |
936 | /* Avoid uint32_t and uint64_t as some non-GCC platforms lack |
937 | them, an issue when this code is used in Gnulib. */ |
938 | bitset_word_t bits0 = 0x00000000; |
939 | bitset_word_t bits1 = 0x03ff0000; |
940 | bitset_word_t bits2 = 0x87fffffe; |
941 | bitset_word_t bits3 = 0x07fffffe; |
942 | if (BITSET_WORD_BITS == 64) |
943 | { |
944 | /* Pacify gcc -Woverflow on 32-bit platformns. */ |
945 | dfa->word_char[0] = bits1 << 31 << 1 | bits0; |
946 | dfa->word_char[1] = bits3 << 31 << 1 | bits2; |
947 | i = 2; |
948 | } |
949 | else if (BITSET_WORD_BITS == 32) |
950 | { |
951 | dfa->word_char[0] = bits0; |
952 | dfa->word_char[1] = bits1; |
953 | dfa->word_char[2] = bits2; |
954 | dfa->word_char[3] = bits3; |
955 | i = 4; |
956 | } |
957 | else |
958 | goto general_case; |
959 | ch = 128; |
960 | |
961 | if (__glibc_likely (dfa->is_utf8)) |
962 | { |
963 | memset (&dfa->word_char[i], '\0', (SBC_MAX - ch) / 8); |
964 | return; |
965 | } |
966 | } |
967 | |
968 | general_case: |
969 | for (; i < BITSET_WORDS; ++i) |
970 | for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) |
971 | if (isalnum (ch) || ch == '_') |
972 | dfa->word_char[i] |= (bitset_word_t) 1 << j; |
973 | } |
974 | |
975 | /* Free the work area which are only used while compiling. */ |
976 | |
977 | static void |
978 | free_workarea_compile (regex_t *preg) |
979 | { |
980 | re_dfa_t *dfa = preg->buffer; |
981 | bin_tree_storage_t *storage, *next; |
982 | for (storage = dfa->str_tree_storage; storage; storage = next) |
983 | { |
984 | next = storage->next; |
985 | re_free (storage); |
986 | } |
987 | dfa->str_tree_storage = NULL; |
988 | dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE; |
989 | dfa->str_tree = NULL; |
990 | re_free (dfa->org_indices); |
991 | dfa->org_indices = NULL; |
992 | } |
993 | |
994 | /* Create initial states for all contexts. */ |
995 | |
996 | static reg_errcode_t |
997 | create_initial_state (re_dfa_t *dfa) |
998 | { |
999 | Idx first, i; |
1000 | reg_errcode_t err; |
1001 | re_node_set init_nodes; |
1002 | |
1003 | /* Initial states have the epsilon closure of the node which is |
1004 | the first node of the regular expression. */ |
1005 | first = dfa->str_tree->first->node_idx; |
1006 | dfa->init_node = first; |
1007 | err = re_node_set_init_copy (&init_nodes, dfa->eclosures + first); |
1008 | if (__glibc_unlikely (err != REG_NOERROR)) |
1009 | return err; |
1010 | |
1011 | /* The back-references which are in initial states can epsilon transit, |
1012 | since in this case all of the subexpressions can be null. |
1013 | Then we add epsilon closures of the nodes which are the next nodes of |
1014 | the back-references. */ |
1015 | if (dfa->nbackref > 0) |
1016 | for (i = 0; i < init_nodes.nelem; ++i) |
1017 | { |
1018 | Idx node_idx = init_nodes.elems[i]; |
1019 | re_token_type_t type = dfa->nodes[node_idx].type; |
1020 | |
1021 | Idx clexp_idx; |
1022 | if (type != OP_BACK_REF) |
1023 | continue; |
1024 | for (clexp_idx = 0; clexp_idx < init_nodes.nelem; ++clexp_idx) |
1025 | { |
1026 | re_token_t *clexp_node; |
1027 | clexp_node = dfa->nodes + init_nodes.elems[clexp_idx]; |
1028 | if (clexp_node->type == OP_CLOSE_SUBEXP |
1029 | && clexp_node->opr.idx == dfa->nodes[node_idx].opr.idx) |
1030 | break; |
1031 | } |
1032 | if (clexp_idx == init_nodes.nelem) |
1033 | continue; |
1034 | |
1035 | if (type == OP_BACK_REF) |
1036 | { |
1037 | Idx dest_idx = dfa->edests[node_idx].elems[0]; |
1038 | if (!re_node_set_contains (&init_nodes, dest_idx)) |
1039 | { |
1040 | reg_errcode_t merge_err |
1041 | = re_node_set_merge (&init_nodes, dfa->eclosures + dest_idx); |
1042 | if (merge_err != REG_NOERROR) |
1043 | return merge_err; |
1044 | i = 0; |
1045 | } |
1046 | } |
1047 | } |
1048 | |
1049 | /* It must be the first time to invoke acquire_state. */ |
1050 | dfa->init_state = re_acquire_state_context (&err, dfa, &init_nodes, 0); |
1051 | /* We don't check ERR here, since the initial state must not be NULL. */ |
1052 | if (__glibc_unlikely (dfa->init_state == NULL)) |
1053 | return err; |
1054 | if (dfa->init_state->has_constraint) |
1055 | { |
1056 | dfa->init_state_word = re_acquire_state_context (&err, dfa, &init_nodes, |
1057 | CONTEXT_WORD); |
1058 | dfa->init_state_nl = re_acquire_state_context (&err, dfa, &init_nodes, |
1059 | CONTEXT_NEWLINE); |
1060 | dfa->init_state_begbuf = re_acquire_state_context (&err, dfa, |
1061 | &init_nodes, |
1062 | CONTEXT_NEWLINE |
1063 | | CONTEXT_BEGBUF); |
1064 | if (__glibc_unlikely (dfa->init_state_word == NULL |
1065 | || dfa->init_state_nl == NULL |
1066 | || dfa->init_state_begbuf == NULL)) |
1067 | return err; |
1068 | } |
1069 | else |
1070 | dfa->init_state_word = dfa->init_state_nl |
1071 | = dfa->init_state_begbuf = dfa->init_state; |
1072 | |
1073 | re_node_set_free (&init_nodes); |
1074 | return REG_NOERROR; |
1075 | } |
1076 | |
1077 | #ifdef RE_ENABLE_I18N |
1078 | /* If it is possible to do searching in single byte encoding instead of UTF-8 |
1079 | to speed things up, set dfa->mb_cur_max to 1, clear is_utf8 and change |
1080 | DFA nodes where needed. */ |
1081 | |
1082 | static void |
1083 | optimize_utf8 (re_dfa_t *dfa) |
1084 | { |
1085 | Idx node; |
1086 | int i; |
1087 | bool mb_chars = false; |
1088 | bool has_period = false; |
1089 | |
1090 | for (node = 0; node < dfa->nodes_len; ++node) |
1091 | switch (dfa->nodes[node].type) |
1092 | { |
1093 | case CHARACTER: |
1094 | if (dfa->nodes[node].opr.c >= ASCII_CHARS) |
1095 | mb_chars = true; |
1096 | break; |
1097 | case ANCHOR: |
1098 | switch (dfa->nodes[node].opr.ctx_type) |
1099 | { |
1100 | case LINE_FIRST: |
1101 | case LINE_LAST: |
1102 | case BUF_FIRST: |
1103 | case BUF_LAST: |
1104 | break; |
1105 | default: |
1106 | /* Word anchors etc. cannot be handled. It's okay to test |
1107 | opr.ctx_type since constraints (for all DFA nodes) are |
1108 | created by ORing one or more opr.ctx_type values. */ |
1109 | return; |
1110 | } |
1111 | break; |
1112 | case OP_PERIOD: |
1113 | has_period = true; |
1114 | break; |
1115 | case OP_BACK_REF: |
1116 | case OP_ALT: |
1117 | case END_OF_RE: |
1118 | case OP_DUP_ASTERISK: |
1119 | case OP_OPEN_SUBEXP: |
1120 | case OP_CLOSE_SUBEXP: |
1121 | break; |
1122 | case COMPLEX_BRACKET: |
1123 | return; |
1124 | case SIMPLE_BRACKET: |
1125 | /* Just double check. */ |
1126 | { |
1127 | int rshift = (ASCII_CHARS % BITSET_WORD_BITS == 0 |
1128 | ? 0 |
1129 | : BITSET_WORD_BITS - ASCII_CHARS % BITSET_WORD_BITS); |
1130 | for (i = ASCII_CHARS / BITSET_WORD_BITS; i < BITSET_WORDS; ++i) |
1131 | { |
1132 | if (dfa->nodes[node].opr.sbcset[i] >> rshift != 0) |
1133 | return; |
1134 | rshift = 0; |
1135 | } |
1136 | } |
1137 | break; |
1138 | default: |
1139 | abort (); |
1140 | } |
1141 | |
1142 | if (mb_chars || has_period) |
1143 | for (node = 0; node < dfa->nodes_len; ++node) |
1144 | { |
1145 | if (dfa->nodes[node].type == CHARACTER |
1146 | && dfa->nodes[node].opr.c >= ASCII_CHARS) |
1147 | dfa->nodes[node].mb_partial = 0; |
1148 | else if (dfa->nodes[node].type == OP_PERIOD) |
1149 | dfa->nodes[node].type = OP_UTF8_PERIOD; |
1150 | } |
1151 | |
1152 | /* The search can be in single byte locale. */ |
1153 | dfa->mb_cur_max = 1; |
1154 | dfa->is_utf8 = 0; |
1155 | dfa->has_mb_node = dfa->nbackref > 0 || has_period; |
1156 | } |
1157 | #endif |
1158 | |
1159 | /* Analyze the structure tree, and calculate "first", "next", "edest", |
1160 | "eclosure", and "inveclosure". */ |
1161 | |
1162 | static reg_errcode_t |
1163 | analyze (regex_t *preg) |
1164 | { |
1165 | re_dfa_t *dfa = preg->buffer; |
1166 | reg_errcode_t ret; |
1167 | |
1168 | /* Allocate arrays. */ |
1169 | dfa->nexts = re_malloc (Idx, dfa->nodes_alloc); |
1170 | dfa->org_indices = re_malloc (Idx, dfa->nodes_alloc); |
1171 | dfa->edests = re_malloc (re_node_set, dfa->nodes_alloc); |
1172 | dfa->eclosures = re_malloc (re_node_set, dfa->nodes_alloc); |
1173 | if (__glibc_unlikely (dfa->nexts == NULL || dfa->org_indices == NULL |
1174 | || dfa->edests == NULL || dfa->eclosures == NULL)) |
1175 | return REG_ESPACE; |
1176 | |
1177 | dfa->subexp_map = re_malloc (Idx, preg->re_nsub); |
1178 | if (dfa->subexp_map != NULL) |
1179 | { |
1180 | Idx i; |
1181 | for (i = 0; i < preg->re_nsub; i++) |
1182 | dfa->subexp_map[i] = i; |
1183 | preorder (dfa->str_tree, optimize_subexps, dfa); |
1184 | for (i = 0; i < preg->re_nsub; i++) |
1185 | if (dfa->subexp_map[i] != i) |
1186 | break; |
1187 | if (i == preg->re_nsub) |
1188 | { |
1189 | re_free (dfa->subexp_map); |
1190 | dfa->subexp_map = NULL; |
1191 | } |
1192 | } |
1193 | |
1194 | ret = postorder (dfa->str_tree, lower_subexps, preg); |
1195 | if (__glibc_unlikely (ret != REG_NOERROR)) |
1196 | return ret; |
1197 | ret = postorder (dfa->str_tree, calc_first, dfa); |
1198 | if (__glibc_unlikely (ret != REG_NOERROR)) |
1199 | return ret; |
1200 | preorder (dfa->str_tree, calc_next, dfa); |
1201 | ret = preorder (dfa->str_tree, link_nfa_nodes, dfa); |
1202 | if (__glibc_unlikely (ret != REG_NOERROR)) |
1203 | return ret; |
1204 | ret = calc_eclosure (dfa); |
1205 | if (__glibc_unlikely (ret != REG_NOERROR)) |
1206 | return ret; |
1207 | |
1208 | /* We only need this during the prune_impossible_nodes pass in regexec.c; |
1209 | skip it if p_i_n will not run, as calc_inveclosure can be quadratic. */ |
1210 | if ((!preg->no_sub && preg->re_nsub > 0 && dfa->has_plural_match) |
1211 | || dfa->nbackref) |
1212 | { |
1213 | dfa->inveclosures = re_malloc (re_node_set, dfa->nodes_len); |
1214 | if (__glibc_unlikely (dfa->inveclosures == NULL)) |
1215 | return REG_ESPACE; |
1216 | ret = calc_inveclosure (dfa); |
1217 | } |
1218 | |
1219 | return ret; |
1220 | } |
1221 | |
1222 | /* Our parse trees are very unbalanced, so we cannot use a stack to |
1223 | implement parse tree visits. Instead, we use parent pointers and |
1224 | some hairy code in these two functions. */ |
1225 | static reg_errcode_t |
1226 | postorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)), |
1227 | void *) |
1228 | { |
1229 | bin_tree_t *node, *prev; |
1230 | |
1231 | for (node = root; ; ) |
1232 | { |
1233 | /* Descend down the tree, preferably to the left (or to the right |
1234 | if that's the only child). */ |
1235 | while (node->left || node->right) |
1236 | if (node->left) |
1237 | node = node->left; |
1238 | else |
1239 | node = node->right; |
1240 | |
1241 | do |
1242 | { |
1243 | reg_errcode_t err = fn (extra, node); |
1244 | if (__glibc_unlikely (err != REG_NOERROR)) |
1245 | return err; |
1246 | if (node->parent == NULL) |
1247 | return REG_NOERROR; |
1248 | prev = node; |
1249 | node = node->parent; |
1250 | } |
1251 | /* Go up while we have a node that is reached from the right. */ |
1252 | while (node->right == prev || node->right == NULL); |
1253 | node = node->right; |
1254 | } |
1255 | } |
1256 | |
1257 | static reg_errcode_t |
1258 | preorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)), |
1259 | void *) |
1260 | { |
1261 | bin_tree_t *node; |
1262 | |
1263 | for (node = root; ; ) |
1264 | { |
1265 | reg_errcode_t err = fn (extra, node); |
1266 | if (__glibc_unlikely (err != REG_NOERROR)) |
1267 | return err; |
1268 | |
1269 | /* Go to the left node, or up and to the right. */ |
1270 | if (node->left) |
1271 | node = node->left; |
1272 | else |
1273 | { |
1274 | bin_tree_t *prev = NULL; |
1275 | while (node->right == prev || node->right == NULL) |
1276 | { |
1277 | prev = node; |
1278 | node = node->parent; |
1279 | if (!node) |
1280 | return REG_NOERROR; |
1281 | } |
1282 | node = node->right; |
1283 | } |
1284 | } |
1285 | } |
1286 | |
1287 | /* Optimization pass: if a SUBEXP is entirely contained, strip it and tell |
1288 | re_search_internal to map the inner one's opr.idx to this one's. Adjust |
1289 | backreferences as well. Requires a preorder visit. */ |
1290 | static reg_errcode_t |
1291 | optimize_subexps (void *, bin_tree_t *node) |
1292 | { |
1293 | re_dfa_t *dfa = (re_dfa_t *) extra; |
1294 | |
1295 | if (node->token.type == OP_BACK_REF && dfa->subexp_map) |
1296 | { |
1297 | int idx = node->token.opr.idx; |
1298 | node->token.opr.idx = dfa->subexp_map[idx]; |
1299 | dfa->used_bkref_map |= 1 << node->token.opr.idx; |
1300 | } |
1301 | |
1302 | else if (node->token.type == SUBEXP |
1303 | && node->left && node->left->token.type == SUBEXP) |
1304 | { |
1305 | Idx other_idx = node->left->token.opr.idx; |
1306 | |
1307 | node->left = node->left->left; |
1308 | if (node->left) |
1309 | node->left->parent = node; |
1310 | |
1311 | dfa->subexp_map[other_idx] = dfa->subexp_map[node->token.opr.idx]; |
1312 | if (other_idx < BITSET_WORD_BITS) |
1313 | dfa->used_bkref_map &= ~((bitset_word_t) 1 << other_idx); |
1314 | } |
1315 | |
1316 | return REG_NOERROR; |
1317 | } |
1318 | |
1319 | /* Lowering pass: Turn each SUBEXP node into the appropriate concatenation |
1320 | of OP_OPEN_SUBEXP, the body of the SUBEXP (if any) and OP_CLOSE_SUBEXP. */ |
1321 | static reg_errcode_t |
1322 | lower_subexps (void *, bin_tree_t *node) |
1323 | { |
1324 | regex_t *preg = (regex_t *) extra; |
1325 | reg_errcode_t err = REG_NOERROR; |
1326 | |
1327 | if (node->left && node->left->token.type == SUBEXP) |
1328 | { |
1329 | node->left = lower_subexp (&err, preg, node->left); |
1330 | if (node->left) |
1331 | node->left->parent = node; |
1332 | } |
1333 | if (node->right && node->right->token.type == SUBEXP) |
1334 | { |
1335 | node->right = lower_subexp (&err, preg, node->right); |
1336 | if (node->right) |
1337 | node->right->parent = node; |
1338 | } |
1339 | |
1340 | return err; |
1341 | } |
1342 | |
1343 | static bin_tree_t * |
1344 | lower_subexp (reg_errcode_t *err, regex_t *preg, bin_tree_t *node) |
1345 | { |
1346 | re_dfa_t *dfa = preg->buffer; |
1347 | bin_tree_t *body = node->left; |
1348 | bin_tree_t *op, *cls, *tree1, *tree; |
1349 | |
1350 | if (preg->no_sub |
1351 | /* We do not optimize empty subexpressions, because otherwise we may |
1352 | have bad CONCAT nodes with NULL children. This is obviously not |
1353 | very common, so we do not lose much. An example that triggers |
1354 | this case is the sed "script" /\(\)/x. */ |
1355 | && node->left != NULL |
1356 | && (node->token.opr.idx >= BITSET_WORD_BITS |
1357 | || !(dfa->used_bkref_map |
1358 | & ((bitset_word_t) 1 << node->token.opr.idx)))) |
1359 | return node->left; |
1360 | |
1361 | /* Convert the SUBEXP node to the concatenation of an |
1362 | OP_OPEN_SUBEXP, the contents, and an OP_CLOSE_SUBEXP. */ |
1363 | op = create_tree (dfa, NULL, NULL, OP_OPEN_SUBEXP); |
1364 | cls = create_tree (dfa, NULL, NULL, OP_CLOSE_SUBEXP); |
1365 | tree1 = body ? create_tree (dfa, body, cls, CONCAT) : cls; |
1366 | tree = create_tree (dfa, op, tree1, CONCAT); |
1367 | if (__glibc_unlikely (tree == NULL || tree1 == NULL |
1368 | || op == NULL || cls == NULL)) |
1369 | { |
1370 | *err = REG_ESPACE; |
1371 | return NULL; |
1372 | } |
1373 | |
1374 | op->token.opr.idx = cls->token.opr.idx = node->token.opr.idx; |
1375 | op->token.opt_subexp = cls->token.opt_subexp = node->token.opt_subexp; |
1376 | return tree; |
1377 | } |
1378 | |
1379 | /* Pass 1 in building the NFA: compute FIRST and create unlinked automaton |
1380 | nodes. Requires a postorder visit. */ |
1381 | static reg_errcode_t |
1382 | calc_first (void *, bin_tree_t *node) |
1383 | { |
1384 | re_dfa_t *dfa = (re_dfa_t *) extra; |
1385 | if (node->token.type == CONCAT) |
1386 | { |
1387 | node->first = node->left->first; |
1388 | node->node_idx = node->left->node_idx; |
1389 | } |
1390 | else |
1391 | { |
1392 | node->first = node; |
1393 | node->node_idx = re_dfa_add_node (dfa, node->token); |
1394 | if (__glibc_unlikely (node->node_idx == -1)) |
1395 | return REG_ESPACE; |
1396 | if (node->token.type == ANCHOR) |
1397 | dfa->nodes[node->node_idx].constraint = node->token.opr.ctx_type; |
1398 | } |
1399 | return REG_NOERROR; |
1400 | } |
1401 | |
1402 | /* Pass 2: compute NEXT on the tree. Preorder visit. */ |
1403 | static reg_errcode_t |
1404 | calc_next (void *, bin_tree_t *node) |
1405 | { |
1406 | switch (node->token.type) |
1407 | { |
1408 | case OP_DUP_ASTERISK: |
1409 | node->left->next = node; |
1410 | break; |
1411 | case CONCAT: |
1412 | node->left->next = node->right->first; |
1413 | node->right->next = node->next; |
1414 | break; |
1415 | default: |
1416 | if (node->left) |
1417 | node->left->next = node->next; |
1418 | if (node->right) |
1419 | node->right->next = node->next; |
1420 | break; |
1421 | } |
1422 | return REG_NOERROR; |
1423 | } |
1424 | |
1425 | /* Pass 3: link all DFA nodes to their NEXT node (any order will do). */ |
1426 | static reg_errcode_t |
1427 | link_nfa_nodes (void *, bin_tree_t *node) |
1428 | { |
1429 | re_dfa_t *dfa = (re_dfa_t *) extra; |
1430 | Idx idx = node->node_idx; |
1431 | reg_errcode_t err = REG_NOERROR; |
1432 | |
1433 | switch (node->token.type) |
1434 | { |
1435 | case CONCAT: |
1436 | break; |
1437 | |
1438 | case END_OF_RE: |
1439 | DEBUG_ASSERT (node->next == NULL); |
1440 | break; |
1441 | |
1442 | case OP_DUP_ASTERISK: |
1443 | case OP_ALT: |
1444 | { |
1445 | Idx left, right; |
1446 | dfa->has_plural_match = 1; |
1447 | if (node->left != NULL) |
1448 | left = node->left->first->node_idx; |
1449 | else |
1450 | left = node->next->node_idx; |
1451 | if (node->right != NULL) |
1452 | right = node->right->first->node_idx; |
1453 | else |
1454 | right = node->next->node_idx; |
1455 | DEBUG_ASSERT (left > -1); |
1456 | DEBUG_ASSERT (right > -1); |
1457 | err = re_node_set_init_2 (dfa->edests + idx, left, right); |
1458 | } |
1459 | break; |
1460 | |
1461 | case ANCHOR: |
1462 | case OP_OPEN_SUBEXP: |
1463 | case OP_CLOSE_SUBEXP: |
1464 | err = re_node_set_init_1 (dfa->edests + idx, node->next->node_idx); |
1465 | break; |
1466 | |
1467 | case OP_BACK_REF: |
1468 | dfa->nexts[idx] = node->next->node_idx; |
1469 | if (node->token.type == OP_BACK_REF) |
1470 | err = re_node_set_init_1 (dfa->edests + idx, dfa->nexts[idx]); |
1471 | break; |
1472 | |
1473 | default: |
1474 | DEBUG_ASSERT (!IS_EPSILON_NODE (node->token.type)); |
1475 | dfa->nexts[idx] = node->next->node_idx; |
1476 | break; |
1477 | } |
1478 | |
1479 | return err; |
1480 | } |
1481 | |
1482 | /* Duplicate the epsilon closure of the node ROOT_NODE. |
1483 | Note that duplicated nodes have constraint INIT_CONSTRAINT in addition |
1484 | to their own constraint. */ |
1485 | |
1486 | static reg_errcode_t |
1487 | duplicate_node_closure (re_dfa_t *dfa, Idx top_org_node, Idx top_clone_node, |
1488 | Idx root_node, unsigned int init_constraint) |
1489 | { |
1490 | Idx org_node, clone_node; |
1491 | bool ok; |
1492 | unsigned int constraint = init_constraint; |
1493 | for (org_node = top_org_node, clone_node = top_clone_node;;) |
1494 | { |
1495 | Idx org_dest, clone_dest; |
1496 | if (dfa->nodes[org_node].type == OP_BACK_REF) |
1497 | { |
1498 | /* If the back reference epsilon-transit, its destination must |
1499 | also have the constraint. Then duplicate the epsilon closure |
1500 | of the destination of the back reference, and store it in |
1501 | edests of the back reference. */ |
1502 | org_dest = dfa->nexts[org_node]; |
1503 | re_node_set_empty (dfa->edests + clone_node); |
1504 | clone_dest = duplicate_node (dfa, org_dest, constraint); |
1505 | if (__glibc_unlikely (clone_dest == -1)) |
1506 | return REG_ESPACE; |
1507 | dfa->nexts[clone_node] = dfa->nexts[org_node]; |
1508 | ok = re_node_set_insert (dfa->edests + clone_node, clone_dest); |
1509 | if (__glibc_unlikely (! ok)) |
1510 | return REG_ESPACE; |
1511 | } |
1512 | else if (dfa->edests[org_node].nelem == 0) |
1513 | { |
1514 | /* In case of the node can't epsilon-transit, don't duplicate the |
1515 | destination and store the original destination as the |
1516 | destination of the node. */ |
1517 | dfa->nexts[clone_node] = dfa->nexts[org_node]; |
1518 | break; |
1519 | } |
1520 | else if (dfa->edests[org_node].nelem == 1) |
1521 | { |
1522 | /* In case of the node can epsilon-transit, and it has only one |
1523 | destination. */ |
1524 | org_dest = dfa->edests[org_node].elems[0]; |
1525 | re_node_set_empty (dfa->edests + clone_node); |
1526 | /* If the node is root_node itself, it means the epsilon closure |
1527 | has a loop. Then tie it to the destination of the root_node. */ |
1528 | if (org_node == root_node && clone_node != org_node) |
1529 | { |
1530 | ok = re_node_set_insert (dfa->edests + clone_node, org_dest); |
1531 | if (__glibc_unlikely (! ok)) |
1532 | return REG_ESPACE; |
1533 | break; |
1534 | } |
1535 | /* In case the node has another constraint, append it. */ |
1536 | constraint |= dfa->nodes[org_node].constraint; |
1537 | clone_dest = duplicate_node (dfa, org_dest, constraint); |
1538 | if (__glibc_unlikely (clone_dest == -1)) |
1539 | return REG_ESPACE; |
1540 | ok = re_node_set_insert (dfa->edests + clone_node, clone_dest); |
1541 | if (__glibc_unlikely (! ok)) |
1542 | return REG_ESPACE; |
1543 | } |
1544 | else /* dfa->edests[org_node].nelem == 2 */ |
1545 | { |
1546 | /* In case of the node can epsilon-transit, and it has two |
1547 | destinations. In the bin_tree_t and DFA, that's '|' and '*'. */ |
1548 | org_dest = dfa->edests[org_node].elems[0]; |
1549 | re_node_set_empty (dfa->edests + clone_node); |
1550 | /* Search for a duplicated node which satisfies the constraint. */ |
1551 | clone_dest = search_duplicated_node (dfa, org_dest, constraint); |
1552 | if (clone_dest == -1) |
1553 | { |
1554 | /* There is no such duplicated node, create a new one. */ |
1555 | reg_errcode_t err; |
1556 | clone_dest = duplicate_node (dfa, org_dest, constraint); |
1557 | if (__glibc_unlikely (clone_dest == -1)) |
1558 | return REG_ESPACE; |
1559 | ok = re_node_set_insert (dfa->edests + clone_node, clone_dest); |
1560 | if (__glibc_unlikely (! ok)) |
1561 | return REG_ESPACE; |
1562 | err = duplicate_node_closure (dfa, org_dest, clone_dest, |
1563 | root_node, constraint); |
1564 | if (__glibc_unlikely (err != REG_NOERROR)) |
1565 | return err; |
1566 | } |
1567 | else |
1568 | { |
1569 | /* There is a duplicated node which satisfies the constraint, |
1570 | use it to avoid infinite loop. */ |
1571 | ok = re_node_set_insert (dfa->edests + clone_node, clone_dest); |
1572 | if (__glibc_unlikely (! ok)) |
1573 | return REG_ESPACE; |
1574 | } |
1575 | |
1576 | org_dest = dfa->edests[org_node].elems[1]; |
1577 | clone_dest = duplicate_node (dfa, org_dest, constraint); |
1578 | if (__glibc_unlikely (clone_dest == -1)) |
1579 | return REG_ESPACE; |
1580 | ok = re_node_set_insert (dfa->edests + clone_node, clone_dest); |
1581 | if (__glibc_unlikely (! ok)) |
1582 | return REG_ESPACE; |
1583 | } |
1584 | org_node = org_dest; |
1585 | clone_node = clone_dest; |
1586 | } |
1587 | return REG_NOERROR; |
1588 | } |
1589 | |
1590 | /* Search for a node which is duplicated from the node ORG_NODE, and |
1591 | satisfies the constraint CONSTRAINT. */ |
1592 | |
1593 | static Idx |
1594 | search_duplicated_node (const re_dfa_t *dfa, Idx org_node, |
1595 | unsigned int constraint) |
1596 | { |
1597 | Idx idx; |
1598 | for (idx = dfa->nodes_len - 1; dfa->nodes[idx].duplicated && idx > 0; --idx) |
1599 | { |
1600 | if (org_node == dfa->org_indices[idx] |
1601 | && constraint == dfa->nodes[idx].constraint) |
1602 | return idx; /* Found. */ |
1603 | } |
1604 | return -1; /* Not found. */ |
1605 | } |
1606 | |
1607 | /* Duplicate the node whose index is ORG_IDX and set the constraint CONSTRAINT. |
1608 | Return the index of the new node, or -1 if insufficient storage is |
1609 | available. */ |
1610 | |
1611 | static Idx |
1612 | duplicate_node (re_dfa_t *dfa, Idx org_idx, unsigned int constraint) |
1613 | { |
1614 | Idx dup_idx = re_dfa_add_node (dfa, dfa->nodes[org_idx]); |
1615 | if (__glibc_likely (dup_idx != -1)) |
1616 | { |
1617 | dfa->nodes[dup_idx].constraint = constraint; |
1618 | dfa->nodes[dup_idx].constraint |= dfa->nodes[org_idx].constraint; |
1619 | dfa->nodes[dup_idx].duplicated = 1; |
1620 | |
1621 | /* Store the index of the original node. */ |
1622 | dfa->org_indices[dup_idx] = org_idx; |
1623 | } |
1624 | return dup_idx; |
1625 | } |
1626 | |
1627 | static reg_errcode_t |
1628 | calc_inveclosure (re_dfa_t *dfa) |
1629 | { |
1630 | Idx src, idx; |
1631 | bool ok; |
1632 | for (idx = 0; idx < dfa->nodes_len; ++idx) |
1633 | re_node_set_init_empty (dfa->inveclosures + idx); |
1634 | |
1635 | for (src = 0; src < dfa->nodes_len; ++src) |
1636 | { |
1637 | Idx *elems = dfa->eclosures[src].elems; |
1638 | for (idx = 0; idx < dfa->eclosures[src].nelem; ++idx) |
1639 | { |
1640 | ok = re_node_set_insert_last (dfa->inveclosures + elems[idx], src); |
1641 | if (__glibc_unlikely (! ok)) |
1642 | return REG_ESPACE; |
1643 | } |
1644 | } |
1645 | |
1646 | return REG_NOERROR; |
1647 | } |
1648 | |
1649 | /* Calculate "eclosure" for all the node in DFA. */ |
1650 | |
1651 | static reg_errcode_t |
1652 | calc_eclosure (re_dfa_t *dfa) |
1653 | { |
1654 | Idx node_idx; |
1655 | bool incomplete; |
1656 | DEBUG_ASSERT (dfa->nodes_len > 0); |
1657 | incomplete = false; |
1658 | /* For each nodes, calculate epsilon closure. */ |
1659 | for (node_idx = 0; ; ++node_idx) |
1660 | { |
1661 | reg_errcode_t err; |
1662 | re_node_set eclosure_elem; |
1663 | if (node_idx == dfa->nodes_len) |
1664 | { |
1665 | if (!incomplete) |
1666 | break; |
1667 | incomplete = false; |
1668 | node_idx = 0; |
1669 | } |
1670 | |
1671 | DEBUG_ASSERT (dfa->eclosures[node_idx].nelem != -1); |
1672 | |
1673 | /* If we have already calculated, skip it. */ |
1674 | if (dfa->eclosures[node_idx].nelem != 0) |
1675 | continue; |
1676 | /* Calculate epsilon closure of 'node_idx'. */ |
1677 | err = calc_eclosure_iter (&eclosure_elem, dfa, node_idx, true); |
1678 | if (__glibc_unlikely (err != REG_NOERROR)) |
1679 | return err; |
1680 | |
1681 | if (dfa->eclosures[node_idx].nelem == 0) |
1682 | { |
1683 | incomplete = true; |
1684 | re_node_set_free (&eclosure_elem); |
1685 | } |
1686 | } |
1687 | return REG_NOERROR; |
1688 | } |
1689 | |
1690 | /* Calculate epsilon closure of NODE. */ |
1691 | |
1692 | static reg_errcode_t |
1693 | calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, Idx node, bool root) |
1694 | { |
1695 | reg_errcode_t err; |
1696 | Idx i; |
1697 | re_node_set eclosure; |
1698 | bool incomplete = false; |
1699 | err = re_node_set_alloc (&eclosure, dfa->edests[node].nelem + 1); |
1700 | if (__glibc_unlikely (err != REG_NOERROR)) |
1701 | return err; |
1702 | |
1703 | /* An epsilon closure includes itself. */ |
1704 | eclosure.elems[eclosure.nelem++] = node; |
1705 | |
1706 | /* This indicates that we are calculating this node now. |
1707 | We reference this value to avoid infinite loop. */ |
1708 | dfa->eclosures[node].nelem = -1; |
1709 | |
1710 | /* If the current node has constraints, duplicate all nodes |
1711 | since they must inherit the constraints. */ |
1712 | if (dfa->nodes[node].constraint |
1713 | && dfa->edests[node].nelem |
1714 | && !dfa->nodes[dfa->edests[node].elems[0]].duplicated) |
1715 | { |
1716 | err = duplicate_node_closure (dfa, node, node, node, |
1717 | dfa->nodes[node].constraint); |
1718 | if (__glibc_unlikely (err != REG_NOERROR)) |
1719 | return err; |
1720 | } |
1721 | |
1722 | /* Expand each epsilon destination nodes. */ |
1723 | if (IS_EPSILON_NODE(dfa->nodes[node].type)) |
1724 | for (i = 0; i < dfa->edests[node].nelem; ++i) |
1725 | { |
1726 | re_node_set eclosure_elem; |
1727 | Idx edest = dfa->edests[node].elems[i]; |
1728 | /* If calculating the epsilon closure of 'edest' is in progress, |
1729 | return intermediate result. */ |
1730 | if (dfa->eclosures[edest].nelem == -1) |
1731 | { |
1732 | incomplete = true; |
1733 | continue; |
1734 | } |
1735 | /* If we haven't calculated the epsilon closure of 'edest' yet, |
1736 | calculate now. Otherwise use calculated epsilon closure. */ |
1737 | if (dfa->eclosures[edest].nelem == 0) |
1738 | { |
1739 | err = calc_eclosure_iter (&eclosure_elem, dfa, edest, false); |
1740 | if (__glibc_unlikely (err != REG_NOERROR)) |
1741 | return err; |
1742 | } |
1743 | else |
1744 | eclosure_elem = dfa->eclosures[edest]; |
1745 | /* Merge the epsilon closure of 'edest'. */ |
1746 | err = re_node_set_merge (&eclosure, &eclosure_elem); |
1747 | if (__glibc_unlikely (err != REG_NOERROR)) |
1748 | return err; |
1749 | /* If the epsilon closure of 'edest' is incomplete, |
1750 | the epsilon closure of this node is also incomplete. */ |
1751 | if (dfa->eclosures[edest].nelem == 0) |
1752 | { |
1753 | incomplete = true; |
1754 | re_node_set_free (&eclosure_elem); |
1755 | } |
1756 | } |
1757 | |
1758 | if (incomplete && !root) |
1759 | dfa->eclosures[node].nelem = 0; |
1760 | else |
1761 | dfa->eclosures[node] = eclosure; |
1762 | *new_set = eclosure; |
1763 | return REG_NOERROR; |
1764 | } |
1765 | |
1766 | /* Functions for token which are used in the parser. */ |
1767 | |
1768 | /* Fetch a token from INPUT. |
1769 | We must not use this function inside bracket expressions. */ |
1770 | |
1771 | static void |
1772 | fetch_token (re_token_t *result, re_string_t *input, reg_syntax_t syntax) |
1773 | { |
1774 | re_string_skip_bytes (input, peek_token (result, input, syntax)); |
1775 | } |
1776 | |
1777 | /* Peek a token from INPUT, and return the length of the token. |
1778 | We must not use this function inside bracket expressions. */ |
1779 | |
1780 | static int |
1781 | peek_token (re_token_t *token, re_string_t *input, reg_syntax_t syntax) |
1782 | { |
1783 | unsigned char c; |
1784 | |
1785 | if (re_string_eoi (input)) |
1786 | { |
1787 | token->type = END_OF_RE; |
1788 | return 0; |
1789 | } |
1790 | |
1791 | c = re_string_peek_byte (input, 0); |
1792 | token->opr.c = c; |
1793 | |
1794 | token->word_char = 0; |
1795 | #ifdef RE_ENABLE_I18N |
1796 | token->mb_partial = 0; |
1797 | if (input->mb_cur_max > 1 |
1798 | && !re_string_first_byte (input, re_string_cur_idx (input))) |
1799 | { |
1800 | token->type = CHARACTER; |
1801 | token->mb_partial = 1; |
1802 | return 1; |
1803 | } |
1804 | #endif |
1805 | if (c == '\\') |
1806 | { |
1807 | unsigned char c2; |
1808 | if (re_string_cur_idx (input) + 1 >= re_string_length (input)) |
1809 | { |
1810 | token->type = BACK_SLASH; |
1811 | return 1; |
1812 | } |
1813 | |
1814 | c2 = re_string_peek_byte_case (input, 1); |
1815 | token->opr.c = c2; |
1816 | token->type = CHARACTER; |
1817 | #ifdef RE_ENABLE_I18N |
1818 | if (input->mb_cur_max > 1) |
1819 | { |
1820 | wint_t wc = re_string_wchar_at (input, |
1821 | re_string_cur_idx (input) + 1); |
1822 | token->word_char = IS_WIDE_WORD_CHAR (wc) != 0; |
1823 | } |
1824 | else |
1825 | #endif |
1826 | token->word_char = IS_WORD_CHAR (c2) != 0; |
1827 | |
1828 | switch (c2) |
1829 | { |
1830 | case '|': |
1831 | if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_NO_BK_VBAR)) |
1832 | token->type = OP_ALT; |
1833 | break; |
1834 | case '1': case '2': case '3': case '4': case '5': |
1835 | case '6': case '7': case '8': case '9': |
1836 | if (!(syntax & RE_NO_BK_REFS)) |
1837 | { |
1838 | token->type = OP_BACK_REF; |
1839 | token->opr.idx = c2 - '1'; |
1840 | } |
1841 | break; |
1842 | case '<': |
1843 | if (!(syntax & RE_NO_GNU_OPS)) |
1844 | { |
1845 | token->type = ANCHOR; |
1846 | token->opr.ctx_type = WORD_FIRST; |
1847 | } |
1848 | break; |
1849 | case '>': |
1850 | if (!(syntax & RE_NO_GNU_OPS)) |
1851 | { |
1852 | token->type = ANCHOR; |
1853 | token->opr.ctx_type = WORD_LAST; |
1854 | } |
1855 | break; |
1856 | case 'b': |
1857 | if (!(syntax & RE_NO_GNU_OPS)) |
1858 | { |
1859 | token->type = ANCHOR; |
1860 | token->opr.ctx_type = WORD_DELIM; |
1861 | } |
1862 | break; |
1863 | case 'B': |
1864 | if (!(syntax & RE_NO_GNU_OPS)) |
1865 | { |
1866 | token->type = ANCHOR; |
1867 | token->opr.ctx_type = NOT_WORD_DELIM; |
1868 | } |
1869 | break; |
1870 | case 'w': |
1871 | if (!(syntax & RE_NO_GNU_OPS)) |
1872 | token->type = OP_WORD; |
1873 | break; |
1874 | case 'W': |
1875 | if (!(syntax & RE_NO_GNU_OPS)) |
1876 | token->type = OP_NOTWORD; |
1877 | break; |
1878 | case 's': |
1879 | if (!(syntax & RE_NO_GNU_OPS)) |
1880 | token->type = OP_SPACE; |
1881 | break; |
1882 | case 'S': |
1883 | if (!(syntax & RE_NO_GNU_OPS)) |
1884 | token->type = OP_NOTSPACE; |
1885 | break; |
1886 | case '`': |
1887 | if (!(syntax & RE_NO_GNU_OPS)) |
1888 | { |
1889 | token->type = ANCHOR; |
1890 | token->opr.ctx_type = BUF_FIRST; |
1891 | } |
1892 | break; |
1893 | case '\'': |
1894 | if (!(syntax & RE_NO_GNU_OPS)) |
1895 | { |
1896 | token->type = ANCHOR; |
1897 | token->opr.ctx_type = BUF_LAST; |
1898 | } |
1899 | break; |
1900 | case '(': |
1901 | if (!(syntax & RE_NO_BK_PARENS)) |
1902 | token->type = OP_OPEN_SUBEXP; |
1903 | break; |
1904 | case ')': |
1905 | if (!(syntax & RE_NO_BK_PARENS)) |
1906 | token->type = OP_CLOSE_SUBEXP; |
1907 | break; |
1908 | case '+': |
1909 | if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM)) |
1910 | token->type = OP_DUP_PLUS; |
1911 | break; |
1912 | case '?': |
1913 | if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM)) |
1914 | token->type = OP_DUP_QUESTION; |
1915 | break; |
1916 | case '{': |
1917 | if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES))) |
1918 | token->type = OP_OPEN_DUP_NUM; |
1919 | break; |
1920 | case '}': |
1921 | if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES))) |
1922 | token->type = OP_CLOSE_DUP_NUM; |
1923 | break; |
1924 | default: |
1925 | break; |
1926 | } |
1927 | return 2; |
1928 | } |
1929 | |
1930 | token->type = CHARACTER; |
1931 | #ifdef RE_ENABLE_I18N |
1932 | if (input->mb_cur_max > 1) |
1933 | { |
1934 | wint_t wc = re_string_wchar_at (input, re_string_cur_idx (input)); |
1935 | token->word_char = IS_WIDE_WORD_CHAR (wc) != 0; |
1936 | } |
1937 | else |
1938 | #endif |
1939 | token->word_char = IS_WORD_CHAR (token->opr.c); |
1940 | |
1941 | switch (c) |
1942 | { |
1943 | case '\n': |
1944 | if (syntax & RE_NEWLINE_ALT) |
1945 | token->type = OP_ALT; |
1946 | break; |
1947 | case '|': |
1948 | if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_NO_BK_VBAR)) |
1949 | token->type = OP_ALT; |
1950 | break; |
1951 | case '*': |
1952 | token->type = OP_DUP_ASTERISK; |
1953 | break; |
1954 | case '+': |
1955 | if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM)) |
1956 | token->type = OP_DUP_PLUS; |
1957 | break; |
1958 | case '?': |
1959 | if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM)) |
1960 | token->type = OP_DUP_QUESTION; |
1961 | break; |
1962 | case '{': |
1963 | if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) |
1964 | token->type = OP_OPEN_DUP_NUM; |
1965 | break; |
1966 | case '}': |
1967 | if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) |
1968 | token->type = OP_CLOSE_DUP_NUM; |
1969 | break; |
1970 | case '(': |
1971 | if (syntax & RE_NO_BK_PARENS) |
1972 | token->type = OP_OPEN_SUBEXP; |
1973 | break; |
1974 | case ')': |
1975 | if (syntax & RE_NO_BK_PARENS) |
1976 | token->type = OP_CLOSE_SUBEXP; |
1977 | break; |
1978 | case '[': |
1979 | token->type = OP_OPEN_BRACKET; |
1980 | break; |
1981 | case '.': |
1982 | token->type = OP_PERIOD; |
1983 | break; |
1984 | case '^': |
1985 | if (!(syntax & (RE_CONTEXT_INDEP_ANCHORS | RE_CARET_ANCHORS_HERE)) |
1986 | && re_string_cur_idx (input) != 0) |
1987 | { |
1988 | char prev = re_string_peek_byte (input, -1); |
1989 | if (!(syntax & RE_NEWLINE_ALT) || prev != '\n') |
1990 | break; |
1991 | } |
1992 | token->type = ANCHOR; |
1993 | token->opr.ctx_type = LINE_FIRST; |
1994 | break; |
1995 | case '$': |
1996 | if (!(syntax & RE_CONTEXT_INDEP_ANCHORS) |
1997 | && re_string_cur_idx (input) + 1 != re_string_length (input)) |
1998 | { |
1999 | re_token_t next; |
2000 | re_string_skip_bytes (input, 1); |
2001 | peek_token (&next, input, syntax); |
2002 | re_string_skip_bytes (input, -1); |
2003 | if (next.type != OP_ALT && next.type != OP_CLOSE_SUBEXP) |
2004 | break; |
2005 | } |
2006 | token->type = ANCHOR; |
2007 | token->opr.ctx_type = LINE_LAST; |
2008 | break; |
2009 | default: |
2010 | break; |
2011 | } |
2012 | return 1; |
2013 | } |
2014 | |
2015 | /* Peek a token from INPUT, and return the length of the token. |
2016 | We must not use this function out of bracket expressions. */ |
2017 | |
2018 | static int |
2019 | peek_token_bracket (re_token_t *token, re_string_t *input, reg_syntax_t syntax) |
2020 | { |
2021 | unsigned char c; |
2022 | if (re_string_eoi (input)) |
2023 | { |
2024 | token->type = END_OF_RE; |
2025 | return 0; |
2026 | } |
2027 | c = re_string_peek_byte (input, 0); |
2028 | token->opr.c = c; |
2029 | |
2030 | #ifdef RE_ENABLE_I18N |
2031 | if (input->mb_cur_max > 1 |
2032 | && !re_string_first_byte (input, re_string_cur_idx (input))) |
2033 | { |
2034 | token->type = CHARACTER; |
2035 | return 1; |
2036 | } |
2037 | #endif /* RE_ENABLE_I18N */ |
2038 | |
2039 | if (c == '\\' && (syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) |
2040 | && re_string_cur_idx (input) + 1 < re_string_length (input)) |
2041 | { |
2042 | /* In this case, '\' escape a character. */ |
2043 | unsigned char c2; |
2044 | re_string_skip_bytes (input, 1); |
2045 | c2 = re_string_peek_byte (input, 0); |
2046 | token->opr.c = c2; |
2047 | token->type = CHARACTER; |
2048 | return 1; |
2049 | } |
2050 | if (c == '[') /* '[' is a special char in a bracket exps. */ |
2051 | { |
2052 | unsigned char c2; |
2053 | int token_len; |
2054 | if (re_string_cur_idx (input) + 1 < re_string_length (input)) |
2055 | c2 = re_string_peek_byte (input, 1); |
2056 | else |
2057 | c2 = 0; |
2058 | token->opr.c = c2; |
2059 | token_len = 2; |
2060 | switch (c2) |
2061 | { |
2062 | case '.': |
2063 | token->type = OP_OPEN_COLL_ELEM; |
2064 | break; |
2065 | |
2066 | case '=': |
2067 | token->type = OP_OPEN_EQUIV_CLASS; |
2068 | break; |
2069 | |
2070 | case ':': |
2071 | if (syntax & RE_CHAR_CLASSES) |
2072 | { |
2073 | token->type = OP_OPEN_CHAR_CLASS; |
2074 | break; |
2075 | } |
2076 | FALLTHROUGH; |
2077 | default: |
2078 | token->type = CHARACTER; |
2079 | token->opr.c = c; |
2080 | token_len = 1; |
2081 | break; |
2082 | } |
2083 | return token_len; |
2084 | } |
2085 | switch (c) |
2086 | { |
2087 | case '-': |
2088 | token->type = OP_CHARSET_RANGE; |
2089 | break; |
2090 | case ']': |
2091 | token->type = OP_CLOSE_BRACKET; |
2092 | break; |
2093 | case '^': |
2094 | token->type = OP_NON_MATCH_LIST; |
2095 | break; |
2096 | default: |
2097 | token->type = CHARACTER; |
2098 | } |
2099 | return 1; |
2100 | } |
2101 | |
2102 | /* Functions for parser. */ |
2103 | |
2104 | /* Entry point of the parser. |
2105 | Parse the regular expression REGEXP and return the structure tree. |
2106 | If an error occurs, ERR is set by error code, and return NULL. |
2107 | This function build the following tree, from regular expression <reg_exp>: |
2108 | CAT |
2109 | / \ |
2110 | / \ |
2111 | <reg_exp> EOR |
2112 | |
2113 | CAT means concatenation. |
2114 | EOR means end of regular expression. */ |
2115 | |
2116 | static bin_tree_t * |
2117 | parse (re_string_t *regexp, regex_t *preg, reg_syntax_t syntax, |
2118 | reg_errcode_t *err) |
2119 | { |
2120 | re_dfa_t *dfa = preg->buffer; |
2121 | bin_tree_t *tree, *eor, *root; |
2122 | re_token_t current_token; |
2123 | dfa->syntax = syntax; |
2124 | fetch_token (¤t_token, regexp, syntax | RE_CARET_ANCHORS_HERE); |
2125 | tree = parse_reg_exp (regexp, preg, ¤t_token, syntax, 0, err); |
2126 | if (__glibc_unlikely (*err != REG_NOERROR && tree == NULL)) |
2127 | return NULL; |
2128 | eor = create_tree (dfa, NULL, NULL, END_OF_RE); |
2129 | if (tree != NULL) |
2130 | root = create_tree (dfa, tree, eor, CONCAT); |
2131 | else |
2132 | root = eor; |
2133 | if (__glibc_unlikely (eor == NULL || root == NULL)) |
2134 | { |
2135 | *err = REG_ESPACE; |
2136 | return NULL; |
2137 | } |
2138 | return root; |
2139 | } |
2140 | |
2141 | /* This function build the following tree, from regular expression |
2142 | <branch1>|<branch2>: |
2143 | ALT |
2144 | / \ |
2145 | / \ |
2146 | <branch1> <branch2> |
2147 | |
2148 | ALT means alternative, which represents the operator '|'. */ |
2149 | |
2150 | static bin_tree_t * |
2151 | parse_reg_exp (re_string_t *regexp, regex_t *preg, re_token_t *token, |
2152 | reg_syntax_t syntax, Idx nest, reg_errcode_t *err) |
2153 | { |
2154 | re_dfa_t *dfa = preg->buffer; |
2155 | bin_tree_t *tree, *branch = NULL; |
2156 | bitset_word_t initial_bkref_map = dfa->completed_bkref_map; |
2157 | tree = parse_branch (regexp, preg, token, syntax, nest, err); |
2158 | if (__glibc_unlikely (*err != REG_NOERROR && tree == NULL)) |
2159 | return NULL; |
2160 | |
2161 | while (token->type == OP_ALT) |
2162 | { |
2163 | fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE); |
2164 | if (token->type != OP_ALT && token->type != END_OF_RE |
2165 | && (nest == 0 || token->type != OP_CLOSE_SUBEXP)) |
2166 | { |
2167 | bitset_word_t accumulated_bkref_map = dfa->completed_bkref_map; |
2168 | dfa->completed_bkref_map = initial_bkref_map; |
2169 | branch = parse_branch (regexp, preg, token, syntax, nest, err); |
2170 | if (__glibc_unlikely (*err != REG_NOERROR && branch == NULL)) |
2171 | { |
2172 | if (tree != NULL) |
2173 | postorder (tree, free_tree, NULL); |
2174 | return NULL; |
2175 | } |
2176 | dfa->completed_bkref_map |= accumulated_bkref_map; |
2177 | } |
2178 | else |
2179 | branch = NULL; |
2180 | tree = create_tree (dfa, tree, branch, OP_ALT); |
2181 | if (__glibc_unlikely (tree == NULL)) |
2182 | { |
2183 | *err = REG_ESPACE; |
2184 | return NULL; |
2185 | } |
2186 | } |
2187 | return tree; |
2188 | } |
2189 | |
2190 | /* This function build the following tree, from regular expression |
2191 | <exp1><exp2>: |
2192 | CAT |
2193 | / \ |
2194 | / \ |
2195 | <exp1> <exp2> |
2196 | |
2197 | CAT means concatenation. */ |
2198 | |
2199 | static bin_tree_t * |
2200 | parse_branch (re_string_t *regexp, regex_t *preg, re_token_t *token, |
2201 | reg_syntax_t syntax, Idx nest, reg_errcode_t *err) |
2202 | { |
2203 | bin_tree_t *tree, *expr; |
2204 | re_dfa_t *dfa = preg->buffer; |
2205 | tree = parse_expression (regexp, preg, token, syntax, nest, err); |
2206 | if (__glibc_unlikely (*err != REG_NOERROR && tree == NULL)) |
2207 | return NULL; |
2208 | |
2209 | while (token->type != OP_ALT && token->type != END_OF_RE |
2210 | && (nest == 0 || token->type != OP_CLOSE_SUBEXP)) |
2211 | { |
2212 | expr = parse_expression (regexp, preg, token, syntax, nest, err); |
2213 | if (__glibc_unlikely (*err != REG_NOERROR && expr == NULL)) |
2214 | { |
2215 | if (tree != NULL) |
2216 | postorder (tree, free_tree, NULL); |
2217 | return NULL; |
2218 | } |
2219 | if (tree != NULL && expr != NULL) |
2220 | { |
2221 | bin_tree_t *newtree = create_tree (dfa, tree, expr, CONCAT); |
2222 | if (newtree == NULL) |
2223 | { |
2224 | postorder (expr, free_tree, NULL); |
2225 | postorder (tree, free_tree, NULL); |
2226 | *err = REG_ESPACE; |
2227 | return NULL; |
2228 | } |
2229 | tree = newtree; |
2230 | } |
2231 | else if (tree == NULL) |
2232 | tree = expr; |
2233 | /* Otherwise expr == NULL, we don't need to create new tree. */ |
2234 | } |
2235 | return tree; |
2236 | } |
2237 | |
2238 | /* This function build the following tree, from regular expression a*: |
2239 | * |
2240 | | |
2241 | a |
2242 | */ |
2243 | |
2244 | static bin_tree_t * |
2245 | parse_expression (re_string_t *regexp, regex_t *preg, re_token_t *token, |
2246 | reg_syntax_t syntax, Idx nest, reg_errcode_t *err) |
2247 | { |
2248 | re_dfa_t *dfa = preg->buffer; |
2249 | bin_tree_t *tree; |
2250 | switch (token->type) |
2251 | { |
2252 | case CHARACTER: |
2253 | tree = create_token_tree (dfa, NULL, NULL, token); |
2254 | if (__glibc_unlikely (tree == NULL)) |
2255 | { |
2256 | *err = REG_ESPACE; |
2257 | return NULL; |
2258 | } |
2259 | #ifdef RE_ENABLE_I18N |
2260 | if (dfa->mb_cur_max > 1) |
2261 | { |
2262 | while (!re_string_eoi (regexp) |
2263 | && !re_string_first_byte (regexp, re_string_cur_idx (regexp))) |
2264 | { |
2265 | bin_tree_t *mbc_remain; |
2266 | fetch_token (token, regexp, syntax); |
2267 | mbc_remain = create_token_tree (dfa, NULL, NULL, token); |
2268 | tree = create_tree (dfa, tree, mbc_remain, CONCAT); |
2269 | if (__glibc_unlikely (mbc_remain == NULL || tree == NULL)) |
2270 | { |
2271 | *err = REG_ESPACE; |
2272 | return NULL; |
2273 | } |
2274 | } |
2275 | } |
2276 | #endif |
2277 | break; |
2278 | |
2279 | case OP_OPEN_SUBEXP: |
2280 | tree = parse_sub_exp (regexp, preg, token, syntax, nest + 1, err); |
2281 | if (__glibc_unlikely (*err != REG_NOERROR && tree == NULL)) |
2282 | return NULL; |
2283 | break; |
2284 | |
2285 | case OP_OPEN_BRACKET: |
2286 | tree = parse_bracket_exp (regexp, dfa, token, syntax, err); |
2287 | if (__glibc_unlikely (*err != REG_NOERROR && tree == NULL)) |
2288 | return NULL; |
2289 | break; |
2290 | |
2291 | case OP_BACK_REF: |
2292 | if (!__glibc_likely (dfa->completed_bkref_map & (1 << token->opr.idx))) |
2293 | { |
2294 | *err = REG_ESUBREG; |
2295 | return NULL; |
2296 | } |
2297 | dfa->used_bkref_map |= 1 << token->opr.idx; |
2298 | tree = create_token_tree (dfa, NULL, NULL, token); |
2299 | if (__glibc_unlikely (tree == NULL)) |
2300 | { |
2301 | *err = REG_ESPACE; |
2302 | return NULL; |
2303 | } |
2304 | ++dfa->nbackref; |
2305 | dfa->has_mb_node = 1; |
2306 | break; |
2307 | |
2308 | case OP_OPEN_DUP_NUM: |
2309 | if (syntax & RE_CONTEXT_INVALID_DUP) |
2310 | { |
2311 | *err = REG_BADRPT; |
2312 | return NULL; |
2313 | } |
2314 | FALLTHROUGH; |
2315 | case OP_DUP_ASTERISK: |
2316 | case OP_DUP_PLUS: |
2317 | case OP_DUP_QUESTION: |
2318 | if (syntax & RE_CONTEXT_INVALID_OPS) |
2319 | { |
2320 | *err = REG_BADRPT; |
2321 | return NULL; |
2322 | } |
2323 | else if (syntax & RE_CONTEXT_INDEP_OPS) |
2324 | { |
2325 | fetch_token (token, regexp, syntax); |
2326 | return parse_expression (regexp, preg, token, syntax, nest, err); |
2327 | } |
2328 | FALLTHROUGH; |
2329 | case OP_CLOSE_SUBEXP: |
2330 | if ((token->type == OP_CLOSE_SUBEXP) |
2331 | && !(syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)) |
2332 | { |
2333 | *err = REG_ERPAREN; |
2334 | return NULL; |
2335 | } |
2336 | FALLTHROUGH; |
2337 | case OP_CLOSE_DUP_NUM: |
2338 | /* We treat it as a normal character. */ |
2339 | |
2340 | /* Then we can these characters as normal characters. */ |
2341 | token->type = CHARACTER; |
2342 | /* mb_partial and word_char bits should be initialized already |
2343 | by peek_token. */ |
2344 | tree = create_token_tree (dfa, NULL, NULL, token); |
2345 | if (__glibc_unlikely (tree == NULL)) |
2346 | { |
2347 | *err = REG_ESPACE; |
2348 | return NULL; |
2349 | } |
2350 | break; |
2351 | |
2352 | case ANCHOR: |
2353 | if ((token->opr.ctx_type |
2354 | & (WORD_DELIM | NOT_WORD_DELIM | WORD_FIRST | WORD_LAST)) |
2355 | && dfa->word_ops_used == 0) |
2356 | init_word_char (dfa); |
2357 | if (token->opr.ctx_type == WORD_DELIM |
2358 | || token->opr.ctx_type == NOT_WORD_DELIM) |
2359 | { |
2360 | bin_tree_t *tree_first, *tree_last; |
2361 | if (token->opr.ctx_type == WORD_DELIM) |
2362 | { |
2363 | token->opr.ctx_type = WORD_FIRST; |
2364 | tree_first = create_token_tree (dfa, NULL, NULL, token); |
2365 | token->opr.ctx_type = WORD_LAST; |
2366 | } |
2367 | else |
2368 | { |
2369 | token->opr.ctx_type = INSIDE_WORD; |
2370 | tree_first = create_token_tree (dfa, NULL, NULL, token); |
2371 | token->opr.ctx_type = INSIDE_NOTWORD; |
2372 | } |
2373 | tree_last = create_token_tree (dfa, NULL, NULL, token); |
2374 | tree = create_tree (dfa, tree_first, tree_last, OP_ALT); |
2375 | if (__glibc_unlikely (tree_first == NULL || tree_last == NULL |
2376 | || tree == NULL)) |
2377 | { |
2378 | *err = REG_ESPACE; |
2379 | return NULL; |
2380 | } |
2381 | } |
2382 | else |
2383 | { |
2384 | tree = create_token_tree (dfa, NULL, NULL, token); |
2385 | if (__glibc_unlikely (tree == NULL)) |
2386 | { |
2387 | *err = REG_ESPACE; |
2388 | return NULL; |
2389 | } |
2390 | } |
2391 | /* We must return here, since ANCHORs can't be followed |
2392 | by repetition operators. |
2393 | eg. RE"^*" is invalid or "<ANCHOR(^)><CHAR(*)>", |
2394 | it must not be "<ANCHOR(^)><REPEAT(*)>". */ |
2395 | fetch_token (token, regexp, syntax); |
2396 | return tree; |
2397 | |
2398 | case OP_PERIOD: |
2399 | tree = create_token_tree (dfa, NULL, NULL, token); |
2400 | if (__glibc_unlikely (tree == NULL)) |
2401 | { |
2402 | *err = REG_ESPACE; |
2403 | return NULL; |
2404 | } |
2405 | if (dfa->mb_cur_max > 1) |
2406 | dfa->has_mb_node = 1; |
2407 | break; |
2408 | |
2409 | case OP_WORD: |
2410 | case OP_NOTWORD: |
2411 | tree = build_charclass_op (dfa, regexp->trans, |
2412 | "alnum" , |
2413 | "_" , |
2414 | token->type == OP_NOTWORD, err); |
2415 | if (__glibc_unlikely (*err != REG_NOERROR && tree == NULL)) |
2416 | return NULL; |
2417 | break; |
2418 | |
2419 | case OP_SPACE: |
2420 | case OP_NOTSPACE: |
2421 | tree = build_charclass_op (dfa, regexp->trans, |
2422 | "space" , |
2423 | "" , |
2424 | token->type == OP_NOTSPACE, err); |
2425 | if (__glibc_unlikely (*err != REG_NOERROR && tree == NULL)) |
2426 | return NULL; |
2427 | break; |
2428 | |
2429 | case OP_ALT: |
2430 | case END_OF_RE: |
2431 | return NULL; |
2432 | |
2433 | case BACK_SLASH: |
2434 | *err = REG_EESCAPE; |
2435 | return NULL; |
2436 | |
2437 | default: |
2438 | /* Must not happen? */ |
2439 | DEBUG_ASSERT (false); |
2440 | return NULL; |
2441 | } |
2442 | fetch_token (token, regexp, syntax); |
2443 | |
2444 | while (token->type == OP_DUP_ASTERISK || token->type == OP_DUP_PLUS |
2445 | || token->type == OP_DUP_QUESTION || token->type == OP_OPEN_DUP_NUM) |
2446 | { |
2447 | bin_tree_t *dup_tree = parse_dup_op (tree, regexp, dfa, token, |
2448 | syntax, err); |
2449 | if (__glibc_unlikely (*err != REG_NOERROR && dup_tree == NULL)) |
2450 | { |
2451 | if (tree != NULL) |
2452 | postorder (tree, free_tree, NULL); |
2453 | return NULL; |
2454 | } |
2455 | tree = dup_tree; |
2456 | /* In BRE consecutive duplications are not allowed. */ |
2457 | if ((syntax & RE_CONTEXT_INVALID_DUP) |
2458 | && (token->type == OP_DUP_ASTERISK |
2459 | || token->type == OP_OPEN_DUP_NUM)) |
2460 | { |
2461 | if (tree != NULL) |
2462 | postorder (tree, free_tree, NULL); |
2463 | *err = REG_BADRPT; |
2464 | return NULL; |
2465 | } |
2466 | } |
2467 | |
2468 | return tree; |
2469 | } |
2470 | |
2471 | /* This function build the following tree, from regular expression |
2472 | (<reg_exp>): |
2473 | SUBEXP |
2474 | | |
2475 | <reg_exp> |
2476 | */ |
2477 | |
2478 | static bin_tree_t * |
2479 | parse_sub_exp (re_string_t *regexp, regex_t *preg, re_token_t *token, |
2480 | reg_syntax_t syntax, Idx nest, reg_errcode_t *err) |
2481 | { |
2482 | re_dfa_t *dfa = preg->buffer; |
2483 | bin_tree_t *tree; |
2484 | size_t cur_nsub; |
2485 | cur_nsub = preg->re_nsub++; |
2486 | |
2487 | fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE); |
2488 | |
2489 | /* The subexpression may be a null string. */ |
2490 | if (token->type == OP_CLOSE_SUBEXP) |
2491 | tree = NULL; |
2492 | else |
2493 | { |
2494 | tree = parse_reg_exp (regexp, preg, token, syntax, nest, err); |
2495 | if (__glibc_unlikely (*err == REG_NOERROR |
2496 | && token->type != OP_CLOSE_SUBEXP)) |
2497 | { |
2498 | if (tree != NULL) |
2499 | postorder (tree, free_tree, NULL); |
2500 | *err = REG_EPAREN; |
2501 | } |
2502 | if (__glibc_unlikely (*err != REG_NOERROR)) |
2503 | return NULL; |
2504 | } |
2505 | |
2506 | if (cur_nsub <= '9' - '1') |
2507 | dfa->completed_bkref_map |= 1 << cur_nsub; |
2508 | |
2509 | tree = create_tree (dfa, tree, NULL, SUBEXP); |
2510 | if (__glibc_unlikely (tree == NULL)) |
2511 | { |
2512 | *err = REG_ESPACE; |
2513 | return NULL; |
2514 | } |
2515 | tree->token.opr.idx = cur_nsub; |
2516 | return tree; |
2517 | } |
2518 | |
2519 | /* This function parse repetition operators like "*", "+", "{1,3}" etc. */ |
2520 | |
2521 | static bin_tree_t * |
2522 | parse_dup_op (bin_tree_t *elem, re_string_t *regexp, re_dfa_t *dfa, |
2523 | re_token_t *token, reg_syntax_t syntax, reg_errcode_t *err) |
2524 | { |
2525 | bin_tree_t *tree = NULL, *old_tree = NULL; |
2526 | Idx i, start, end, start_idx = re_string_cur_idx (regexp); |
2527 | re_token_t start_token = *token; |
2528 | |
2529 | if (token->type == OP_OPEN_DUP_NUM) |
2530 | { |
2531 | end = 0; |
2532 | start = fetch_number (regexp, token, syntax); |
2533 | if (start == -1) |
2534 | { |
2535 | if (token->type == CHARACTER && token->opr.c == ',') |
2536 | start = 0; /* We treat "{,m}" as "{0,m}". */ |
2537 | else |
2538 | { |
2539 | *err = REG_BADBR; /* <re>{} is invalid. */ |
2540 | return NULL; |
2541 | } |
2542 | } |
2543 | if (__glibc_likely (start != -2)) |
2544 | { |
2545 | /* We treat "{n}" as "{n,n}". */ |
2546 | end = ((token->type == OP_CLOSE_DUP_NUM) ? start |
2547 | : ((token->type == CHARACTER && token->opr.c == ',') |
2548 | ? fetch_number (regexp, token, syntax) : -2)); |
2549 | } |
2550 | if (__glibc_unlikely (start == -2 || end == -2)) |
2551 | { |
2552 | /* Invalid sequence. */ |
2553 | if (__glibc_unlikely (!(syntax & RE_INVALID_INTERVAL_ORD))) |
2554 | { |
2555 | if (token->type == END_OF_RE) |
2556 | *err = REG_EBRACE; |
2557 | else |
2558 | *err = REG_BADBR; |
2559 | |
2560 | return NULL; |
2561 | } |
2562 | |
2563 | /* If the syntax bit is set, rollback. */ |
2564 | re_string_set_index (regexp, start_idx); |
2565 | *token = start_token; |
2566 | token->type = CHARACTER; |
2567 | /* mb_partial and word_char bits should be already initialized by |
2568 | peek_token. */ |
2569 | return elem; |
2570 | } |
2571 | |
2572 | if (__glibc_unlikely ((end != -1 && start > end) |
2573 | || token->type != OP_CLOSE_DUP_NUM)) |
2574 | { |
2575 | /* First number greater than second. */ |
2576 | *err = REG_BADBR; |
2577 | return NULL; |
2578 | } |
2579 | |
2580 | if (__glibc_unlikely (RE_DUP_MAX < (end == -1 ? start : end))) |
2581 | { |
2582 | *err = REG_ESIZE; |
2583 | return NULL; |
2584 | } |
2585 | } |
2586 | else |
2587 | { |
2588 | start = (token->type == OP_DUP_PLUS) ? 1 : 0; |
2589 | end = (token->type == OP_DUP_QUESTION) ? 1 : -1; |
2590 | } |
2591 | |
2592 | fetch_token (token, regexp, syntax); |
2593 | |
2594 | if (__glibc_unlikely (elem == NULL)) |
2595 | return NULL; |
2596 | if (__glibc_unlikely (start == 0 && end == 0)) |
2597 | { |
2598 | postorder (elem, free_tree, NULL); |
2599 | return NULL; |
2600 | } |
2601 | |
2602 | /* Extract "<re>{n,m}" to "<re><re>...<re><re>{0,<m-n>}". */ |
2603 | if (__glibc_unlikely (start > 0)) |
2604 | { |
2605 | tree = elem; |
2606 | for (i = 2; i <= start; ++i) |
2607 | { |
2608 | elem = duplicate_tree (elem, dfa); |
2609 | tree = create_tree (dfa, tree, elem, CONCAT); |
2610 | if (__glibc_unlikely (elem == NULL || tree == NULL)) |
2611 | goto parse_dup_op_espace; |
2612 | } |
2613 | |
2614 | if (start == end) |
2615 | return tree; |
2616 | |
2617 | /* Duplicate ELEM before it is marked optional. */ |
2618 | elem = duplicate_tree (elem, dfa); |
2619 | if (__glibc_unlikely (elem == NULL)) |
2620 | goto parse_dup_op_espace; |
2621 | old_tree = tree; |
2622 | } |
2623 | else |
2624 | old_tree = NULL; |
2625 | |
2626 | if (elem->token.type == SUBEXP) |
2627 | { |
2628 | uintptr_t subidx = elem->token.opr.idx; |
2629 | postorder (elem, mark_opt_subexp, (void *) subidx); |
2630 | } |
2631 | |
2632 | tree = create_tree (dfa, elem, NULL, |
2633 | (end == -1 ? OP_DUP_ASTERISK : OP_ALT)); |
2634 | if (__glibc_unlikely (tree == NULL)) |
2635 | goto parse_dup_op_espace; |
2636 | |
2637 | /* This loop is actually executed only when end != -1, |
2638 | to rewrite <re>{0,n} as (<re>(<re>...<re>?)?)?... We have |
2639 | already created the start+1-th copy. */ |
2640 | if (TYPE_SIGNED (Idx) || end != -1) |
2641 | for (i = start + 2; i <= end; ++i) |
2642 | { |
2643 | elem = duplicate_tree (elem, dfa); |
2644 | tree = create_tree (dfa, tree, elem, CONCAT); |
2645 | if (__glibc_unlikely (elem == NULL || tree == NULL)) |
2646 | goto parse_dup_op_espace; |
2647 | |
2648 | tree = create_tree (dfa, tree, NULL, OP_ALT); |
2649 | if (__glibc_unlikely (tree == NULL)) |
2650 | goto parse_dup_op_espace; |
2651 | } |
2652 | |
2653 | if (old_tree) |
2654 | tree = create_tree (dfa, old_tree, tree, CONCAT); |
2655 | |
2656 | return tree; |
2657 | |
2658 | parse_dup_op_espace: |
2659 | *err = REG_ESPACE; |
2660 | return NULL; |
2661 | } |
2662 | |
2663 | /* Size of the names for collating symbol/equivalence_class/character_class. |
2664 | I'm not sure, but maybe enough. */ |
2665 | #define BRACKET_NAME_BUF_SIZE 32 |
2666 | |
2667 | #ifndef _LIBC |
2668 | |
2669 | # ifdef RE_ENABLE_I18N |
2670 | /* Convert the byte B to the corresponding wide character. In a |
2671 | unibyte locale, treat B as itself. In a multibyte locale, return |
2672 | WEOF if B is an encoding error. */ |
2673 | static wint_t |
2674 | parse_byte (unsigned char b, re_charset_t *mbcset) |
2675 | { |
2676 | return mbcset == NULL ? b : __btowc (b); |
2677 | } |
2678 | # endif |
2679 | |
2680 | /* Local function for parse_bracket_exp only used in case of NOT _LIBC. |
2681 | Build the range expression which starts from START_ELEM, and ends |
2682 | at END_ELEM. The result are written to MBCSET and SBCSET. |
2683 | RANGE_ALLOC is the allocated size of mbcset->range_starts, and |
2684 | mbcset->range_ends, is a pointer argument since we may |
2685 | update it. */ |
2686 | |
2687 | static reg_errcode_t |
2688 | # ifdef RE_ENABLE_I18N |
2689 | build_range_exp (const reg_syntax_t syntax, |
2690 | bitset_t sbcset, |
2691 | re_charset_t *mbcset, |
2692 | Idx *range_alloc, |
2693 | const bracket_elem_t *start_elem, |
2694 | const bracket_elem_t *end_elem) |
2695 | # else /* not RE_ENABLE_I18N */ |
2696 | build_range_exp (const reg_syntax_t syntax, |
2697 | bitset_t sbcset, |
2698 | const bracket_elem_t *start_elem, |
2699 | const bracket_elem_t *end_elem) |
2700 | # endif /* not RE_ENABLE_I18N */ |
2701 | { |
2702 | unsigned int start_ch, end_ch; |
2703 | /* Equivalence Classes and Character Classes can't be a range start/end. */ |
2704 | if (__glibc_unlikely (start_elem->type == EQUIV_CLASS |
2705 | || start_elem->type == CHAR_CLASS |
2706 | || end_elem->type == EQUIV_CLASS |
2707 | || end_elem->type == CHAR_CLASS)) |
2708 | return REG_ERANGE; |
2709 | |
2710 | /* We can handle no multi character collating elements without libc |
2711 | support. */ |
2712 | if (__glibc_unlikely ((start_elem->type == COLL_SYM |
2713 | && strlen ((char *) start_elem->opr.name) > 1) |
2714 | || (end_elem->type == COLL_SYM |
2715 | && strlen ((char *) end_elem->opr.name) > 1))) |
2716 | return REG_ECOLLATE; |
2717 | |
2718 | # ifdef RE_ENABLE_I18N |
2719 | { |
2720 | wchar_t wc; |
2721 | wint_t start_wc; |
2722 | wint_t end_wc; |
2723 | |
2724 | start_ch = ((start_elem->type == SB_CHAR) ? start_elem->opr.ch |
2725 | : ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0] |
2726 | : 0)); |
2727 | end_ch = ((end_elem->type == SB_CHAR) ? end_elem->opr.ch |
2728 | : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0] |
2729 | : 0)); |
2730 | start_wc = ((start_elem->type == SB_CHAR || start_elem->type == COLL_SYM) |
2731 | ? parse_byte (start_ch, mbcset) : start_elem->opr.wch); |
2732 | end_wc = ((end_elem->type == SB_CHAR || end_elem->type == COLL_SYM) |
2733 | ? parse_byte (end_ch, mbcset) : end_elem->opr.wch); |
2734 | if (start_wc == WEOF || end_wc == WEOF) |
2735 | return REG_ECOLLATE; |
2736 | else if (__glibc_unlikely ((syntax & RE_NO_EMPTY_RANGES) |
2737 | && start_wc > end_wc)) |
2738 | return REG_ERANGE; |
2739 | |
2740 | /* Got valid collation sequence values, add them as a new entry. |
2741 | However, for !_LIBC we have no collation elements: if the |
2742 | character set is single byte, the single byte character set |
2743 | that we build below suffices. parse_bracket_exp passes |
2744 | no MBCSET if dfa->mb_cur_max == 1. */ |
2745 | if (mbcset) |
2746 | { |
2747 | /* Check the space of the arrays. */ |
2748 | if (__glibc_unlikely (*range_alloc == mbcset->nranges)) |
2749 | { |
2750 | /* There is not enough space, need realloc. */ |
2751 | wchar_t *new_array_start, *new_array_end; |
2752 | Idx new_nranges; |
2753 | |
2754 | /* +1 in case of mbcset->nranges is 0. */ |
2755 | new_nranges = 2 * mbcset->nranges + 1; |
2756 | /* Use realloc since mbcset->range_starts and mbcset->range_ends |
2757 | are NULL if *range_alloc == 0. */ |
2758 | new_array_start = re_realloc (mbcset->range_starts, wchar_t, |
2759 | new_nranges); |
2760 | new_array_end = re_realloc (mbcset->range_ends, wchar_t, |
2761 | new_nranges); |
2762 | |
2763 | if (__glibc_unlikely (new_array_start == NULL |
2764 | || new_array_end == NULL)) |
2765 | { |
2766 | re_free (new_array_start); |
2767 | re_free (new_array_end); |
2768 | return REG_ESPACE; |
2769 | } |
2770 | |
2771 | mbcset->range_starts = new_array_start; |
2772 | mbcset->range_ends = new_array_end; |
2773 | *range_alloc = new_nranges; |
2774 | } |
2775 | |
2776 | mbcset->range_starts[mbcset->nranges] = start_wc; |
2777 | mbcset->range_ends[mbcset->nranges++] = end_wc; |
2778 | } |
2779 | |
2780 | /* Build the table for single byte characters. */ |
2781 | for (wc = 0; wc < SBC_MAX; ++wc) |
2782 | { |
2783 | if (start_wc <= wc && wc <= end_wc) |
2784 | bitset_set (sbcset, wc); |
2785 | } |
2786 | } |
2787 | # else /* not RE_ENABLE_I18N */ |
2788 | { |
2789 | unsigned int ch; |
2790 | start_ch = ((start_elem->type == SB_CHAR ) ? start_elem->opr.ch |
2791 | : ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0] |
2792 | : 0)); |
2793 | end_ch = ((end_elem->type == SB_CHAR ) ? end_elem->opr.ch |
2794 | : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0] |
2795 | : 0)); |
2796 | if (start_ch > end_ch) |
2797 | return REG_ERANGE; |
2798 | /* Build the table for single byte characters. */ |
2799 | for (ch = 0; ch < SBC_MAX; ++ch) |
2800 | if (start_ch <= ch && ch <= end_ch) |
2801 | bitset_set (sbcset, ch); |
2802 | } |
2803 | # endif /* not RE_ENABLE_I18N */ |
2804 | return REG_NOERROR; |
2805 | } |
2806 | #endif /* not _LIBC */ |
2807 | |
2808 | #ifndef _LIBC |
2809 | /* Helper function for parse_bracket_exp only used in case of NOT _LIBC.. |
2810 | Build the collating element which is represented by NAME. |
2811 | The result are written to MBCSET and SBCSET. |
2812 | COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a |
2813 | pointer argument since we may update it. */ |
2814 | |
2815 | static reg_errcode_t |
2816 | # ifdef RE_ENABLE_I18N |
2817 | build_collating_symbol (bitset_t sbcset, re_charset_t *mbcset, |
2818 | Idx *coll_sym_alloc, const unsigned char *name) |
2819 | # else /* not RE_ENABLE_I18N */ |
2820 | build_collating_symbol (bitset_t sbcset, const unsigned char *name) |
2821 | # endif /* not RE_ENABLE_I18N */ |
2822 | { |
2823 | size_t name_len = strlen ((const char *) name); |
2824 | if (__glibc_unlikely (name_len != 1)) |
2825 | return REG_ECOLLATE; |
2826 | else |
2827 | { |
2828 | bitset_set (sbcset, name[0]); |
2829 | return REG_NOERROR; |
2830 | } |
2831 | } |
2832 | #endif /* not _LIBC */ |
2833 | |
2834 | #ifdef _LIBC |
2835 | /* Local function for parse_bracket_exp used in _LIBC environment. |
2836 | Seek the collating symbol entry corresponding to NAME. |
2837 | Return the index of the symbol in the SYMB_TABLE, |
2838 | or -1 if not found. */ |
2839 | |
2840 | static inline int32_t |
2841 | __attribute__ ((always_inline)) |
2842 | seek_collating_symbol_entry (const unsigned char *name, size_t name_len, |
2843 | const int32_t *symb_table, int32_t table_size, |
2844 | const unsigned char *) |
2845 | { |
2846 | int32_t elem; |
2847 | |
2848 | for (elem = 0; elem < table_size; elem++) |
2849 | if (symb_table[2 * elem] != 0) |
2850 | { |
2851 | int32_t idx = symb_table[2 * elem + 1]; |
2852 | /* Skip the name of collating element name. */ |
2853 | idx += 1 + extra[idx]; |
2854 | if (/* Compare the length of the name. */ |
2855 | name_len == extra[idx] |
2856 | /* Compare the name. */ |
2857 | && memcmp (name, &extra[idx + 1], name_len) == 0) |
2858 | /* Yep, this is the entry. */ |
2859 | return elem; |
2860 | } |
2861 | return -1; |
2862 | } |
2863 | |
2864 | /* Local function for parse_bracket_exp used in _LIBC environment. |
2865 | Look up the collation sequence value of BR_ELEM. |
2866 | Return the value if succeeded, UINT_MAX otherwise. */ |
2867 | |
2868 | static inline unsigned int |
2869 | __attribute__ ((always_inline)) |
2870 | lookup_collation_sequence_value (bracket_elem_t *br_elem, uint32_t nrules, |
2871 | const unsigned char *collseqmb, |
2872 | const char *collseqwc, int32_t table_size, |
2873 | const int32_t *symb_table, |
2874 | const unsigned char *) |
2875 | { |
2876 | if (br_elem->type == SB_CHAR) |
2877 | { |
2878 | /* if (MB_CUR_MAX == 1) */ |
2879 | if (nrules == 0) |
2880 | return collseqmb[br_elem->opr.ch]; |
2881 | else |
2882 | { |
2883 | wint_t wc = __btowc (br_elem->opr.ch); |
2884 | return __collseq_table_lookup (collseqwc, wc); |
2885 | } |
2886 | } |
2887 | else if (br_elem->type == MB_CHAR) |
2888 | { |
2889 | if (nrules != 0) |
2890 | return __collseq_table_lookup (collseqwc, br_elem->opr.wch); |
2891 | } |
2892 | else if (br_elem->type == COLL_SYM) |
2893 | { |
2894 | size_t sym_name_len = strlen ((char *) br_elem->opr.name); |
2895 | if (nrules != 0) |
2896 | { |
2897 | int32_t elem, idx; |
2898 | elem = seek_collating_symbol_entry (br_elem->opr.name, |
2899 | sym_name_len, |
2900 | symb_table, table_size, |
2901 | extra); |
2902 | if (elem != -1) |
2903 | { |
2904 | /* We found the entry. */ |
2905 | idx = symb_table[2 * elem + 1]; |
2906 | /* Skip the name of collating element name. */ |
2907 | idx += 1 + extra[idx]; |
2908 | /* Skip the byte sequence of the collating element. */ |
2909 | idx += 1 + extra[idx]; |
2910 | /* Adjust for the alignment. */ |
2911 | idx = (idx + 3) & ~3; |
2912 | /* Skip the multibyte collation sequence value. */ |
2913 | idx += sizeof (unsigned int); |
2914 | /* Skip the wide char sequence of the collating element. */ |
2915 | idx += sizeof (unsigned int) * |
2916 | (1 + *(unsigned int *) (extra + idx)); |
2917 | /* Return the collation sequence value. */ |
2918 | return *(unsigned int *) (extra + idx); |
2919 | } |
2920 | else if (sym_name_len == 1) |
2921 | { |
2922 | /* No valid character. Match it as a single byte |
2923 | character. */ |
2924 | return collseqmb[br_elem->opr.name[0]]; |
2925 | } |
2926 | } |
2927 | else if (sym_name_len == 1) |
2928 | return collseqmb[br_elem->opr.name[0]]; |
2929 | } |
2930 | return UINT_MAX; |
2931 | } |
2932 | |
2933 | /* Local function for parse_bracket_exp used in _LIBC environment. |
2934 | Build the range expression which starts from START_ELEM, and ends |
2935 | at END_ELEM. The result are written to MBCSET and SBCSET. |
2936 | RANGE_ALLOC is the allocated size of mbcset->range_starts, and |
2937 | mbcset->range_ends, is a pointer argument since we may |
2938 | update it. */ |
2939 | |
2940 | static inline reg_errcode_t |
2941 | __attribute__ ((always_inline)) |
2942 | build_range_exp (bitset_t sbcset, re_charset_t *mbcset, int *range_alloc, |
2943 | bracket_elem_t *start_elem, bracket_elem_t *end_elem, |
2944 | re_dfa_t *dfa, reg_syntax_t syntax, uint32_t nrules, |
2945 | const unsigned char *collseqmb, const char *collseqwc, |
2946 | int32_t table_size, const int32_t *symb_table, |
2947 | const unsigned char *) |
2948 | { |
2949 | unsigned int ch; |
2950 | uint32_t start_collseq; |
2951 | uint32_t end_collseq; |
2952 | |
2953 | /* Equivalence Classes and Character Classes can't be a range |
2954 | start/end. */ |
2955 | if (__glibc_unlikely (start_elem->type == EQUIV_CLASS |
2956 | || start_elem->type == CHAR_CLASS |
2957 | || end_elem->type == EQUIV_CLASS |
2958 | || end_elem->type == CHAR_CLASS)) |
2959 | return REG_ERANGE; |
2960 | |
2961 | /* FIXME: Implement rational ranges here, too. */ |
2962 | start_collseq = lookup_collation_sequence_value (start_elem, nrules, collseqmb, collseqwc, |
2963 | table_size, symb_table, extra); |
2964 | end_collseq = lookup_collation_sequence_value (end_elem, nrules, collseqmb, collseqwc, |
2965 | table_size, symb_table, extra); |
2966 | /* Check start/end collation sequence values. */ |
2967 | if (__glibc_unlikely (start_collseq == UINT_MAX |
2968 | || end_collseq == UINT_MAX)) |
2969 | return REG_ECOLLATE; |
2970 | if (__glibc_unlikely ((syntax & RE_NO_EMPTY_RANGES) |
2971 | && start_collseq > end_collseq)) |
2972 | return REG_ERANGE; |
2973 | |
2974 | /* Got valid collation sequence values, add them as a new entry. |
2975 | However, if we have no collation elements, and the character set |
2976 | is single byte, the single byte character set that we |
2977 | build below suffices. */ |
2978 | if (nrules > 0 || dfa->mb_cur_max > 1) |
2979 | { |
2980 | /* Check the space of the arrays. */ |
2981 | if (__glibc_unlikely (*range_alloc == mbcset->nranges)) |
2982 | { |
2983 | /* There is not enough space, need realloc. */ |
2984 | uint32_t *new_array_start; |
2985 | uint32_t *new_array_end; |
2986 | int new_nranges; |
2987 | |
2988 | /* +1 in case of mbcset->nranges is 0. */ |
2989 | new_nranges = 2 * mbcset->nranges + 1; |
2990 | new_array_start = re_realloc (mbcset->range_starts, uint32_t, |
2991 | new_nranges); |
2992 | new_array_end = re_realloc (mbcset->range_ends, uint32_t, |
2993 | new_nranges); |
2994 | |
2995 | if (__glibc_unlikely (new_array_start == NULL |
2996 | || new_array_end == NULL)) |
2997 | return REG_ESPACE; |
2998 | |
2999 | mbcset->range_starts = new_array_start; |
3000 | mbcset->range_ends = new_array_end; |
3001 | *range_alloc = new_nranges; |
3002 | } |
3003 | |
3004 | mbcset->range_starts[mbcset->nranges] = start_collseq; |
3005 | mbcset->range_ends[mbcset->nranges++] = end_collseq; |
3006 | } |
3007 | |
3008 | /* Build the table for single byte characters. */ |
3009 | for (ch = 0; ch < SBC_MAX; ch++) |
3010 | { |
3011 | uint32_t ch_collseq; |
3012 | /* if (MB_CUR_MAX == 1) */ |
3013 | if (nrules == 0) |
3014 | ch_collseq = collseqmb[ch]; |
3015 | else |
3016 | ch_collseq = __collseq_table_lookup (collseqwc, __btowc (ch)); |
3017 | if (start_collseq <= ch_collseq && ch_collseq <= end_collseq) |
3018 | bitset_set (sbcset, ch); |
3019 | } |
3020 | return REG_NOERROR; |
3021 | } |
3022 | |
3023 | /* Local function for parse_bracket_exp used in _LIBC environment. |
3024 | Build the collating element which is represented by NAME. |
3025 | The result are written to MBCSET and SBCSET. |
3026 | COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a |
3027 | pointer argument since we may update it. */ |
3028 | |
3029 | static inline reg_errcode_t |
3030 | __attribute__ ((always_inline)) |
3031 | build_collating_symbol (bitset_t sbcset, re_charset_t *mbcset, |
3032 | int *coll_sym_alloc, const unsigned char *name, |
3033 | uint32_t nrules, int32_t table_size, |
3034 | const int32_t *symb_table, const unsigned char *) |
3035 | { |
3036 | int32_t elem, idx; |
3037 | size_t name_len = strlen ((const char *) name); |
3038 | if (nrules != 0) |
3039 | { |
3040 | elem = seek_collating_symbol_entry (name, name_len, symb_table, |
3041 | table_size, extra); |
3042 | if (elem != -1) |
3043 | { |
3044 | /* We found the entry. */ |
3045 | idx = symb_table[2 * elem + 1]; |
3046 | /* Skip the name of collating element name. */ |
3047 | idx += 1 + extra[idx]; |
3048 | } |
3049 | else if (name_len == 1) |
3050 | { |
3051 | /* No valid character, treat it as a normal |
3052 | character. */ |
3053 | bitset_set (sbcset, name[0]); |
3054 | return REG_NOERROR; |
3055 | } |
3056 | else |
3057 | return REG_ECOLLATE; |
3058 | |
3059 | /* Got valid collation sequence, add it as a new entry. */ |
3060 | /* Check the space of the arrays. */ |
3061 | if (__glibc_unlikely (*coll_sym_alloc == mbcset->ncoll_syms)) |
3062 | { |
3063 | /* Not enough, realloc it. */ |
3064 | /* +1 in case of mbcset->ncoll_syms is 0. */ |
3065 | int new_coll_sym_alloc = 2 * mbcset->ncoll_syms + 1; |
3066 | /* Use realloc since mbcset->coll_syms is NULL |
3067 | if *alloc == 0. */ |
3068 | int32_t *new_coll_syms = re_realloc (mbcset->coll_syms, int32_t, |
3069 | new_coll_sym_alloc); |
3070 | if (__glibc_unlikely (new_coll_syms == NULL)) |
3071 | return REG_ESPACE; |
3072 | mbcset->coll_syms = new_coll_syms; |
3073 | *coll_sym_alloc = new_coll_sym_alloc; |
3074 | } |
3075 | mbcset->coll_syms[mbcset->ncoll_syms++] = idx; |
3076 | return REG_NOERROR; |
3077 | } |
3078 | else |
3079 | { |
3080 | if (__glibc_unlikely (name_len != 1)) |
3081 | return REG_ECOLLATE; |
3082 | else |
3083 | { |
3084 | bitset_set (sbcset, name[0]); |
3085 | return REG_NOERROR; |
3086 | } |
3087 | } |
3088 | } |
3089 | #endif /* _LIBC */ |
3090 | |
3091 | /* This function parse bracket expression like "[abc]", "[a-c]", |
3092 | "[[.a-a.]]" etc. */ |
3093 | |
3094 | static bin_tree_t * |
3095 | parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, re_token_t *token, |
3096 | reg_syntax_t syntax, reg_errcode_t *err) |
3097 | { |
3098 | #ifdef _LIBC |
3099 | const unsigned char *collseqmb; |
3100 | const char *collseqwc = NULL; |
3101 | uint32_t nrules; |
3102 | int32_t table_size = 0; |
3103 | const int32_t *symb_table = NULL; |
3104 | const unsigned char * = NULL; |
3105 | #endif |
3106 | |
3107 | re_token_t br_token; |
3108 | re_bitset_ptr_t sbcset; |
3109 | #ifdef RE_ENABLE_I18N |
3110 | re_charset_t *mbcset; |
3111 | Idx coll_sym_alloc = 0, range_alloc = 0, mbchar_alloc = 0; |
3112 | Idx equiv_class_alloc = 0, char_class_alloc = 0; |
3113 | #endif /* not RE_ENABLE_I18N */ |
3114 | bool non_match = false; |
3115 | bin_tree_t *work_tree; |
3116 | int token_len; |
3117 | bool first_round = true; |
3118 | #ifdef _LIBC |
3119 | collseqmb = (const unsigned char *) |
3120 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); |
3121 | nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); |
3122 | if (nrules) |
3123 | { |
3124 | /* |
3125 | if (MB_CUR_MAX > 1) |
3126 | */ |
3127 | collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); |
3128 | table_size = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_SYMB_HASH_SIZEMB); |
3129 | symb_table = (const int32_t *) _NL_CURRENT (LC_COLLATE, |
3130 | _NL_COLLATE_SYMB_TABLEMB); |
3131 | extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, |
3132 | _NL_COLLATE_SYMB_EXTRAMB); |
3133 | } |
3134 | #endif |
3135 | sbcset = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1); |
3136 | #ifdef RE_ENABLE_I18N |
3137 | mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1); |
3138 | #endif /* RE_ENABLE_I18N */ |
3139 | #ifdef RE_ENABLE_I18N |
3140 | if (__glibc_unlikely (sbcset == NULL || mbcset == NULL)) |
3141 | #else |
3142 | if (__glibc_unlikely (sbcset == NULL)) |
3143 | #endif /* RE_ENABLE_I18N */ |
3144 | { |
3145 | re_free (sbcset); |
3146 | #ifdef RE_ENABLE_I18N |
3147 | re_free (mbcset); |
3148 | #endif |
3149 | *err = REG_ESPACE; |
3150 | return NULL; |
3151 | } |
3152 | |
3153 | token_len = peek_token_bracket (token, regexp, syntax); |
3154 | if (__glibc_unlikely (token->type == END_OF_RE)) |
3155 | { |
3156 | *err = REG_BADPAT; |
3157 | goto parse_bracket_exp_free_return; |
3158 | } |
3159 | if (token->type == OP_NON_MATCH_LIST) |
3160 | { |
3161 | #ifdef RE_ENABLE_I18N |
3162 | mbcset->non_match = 1; |
3163 | #endif /* not RE_ENABLE_I18N */ |
3164 | non_match = true; |
3165 | if (syntax & RE_HAT_LISTS_NOT_NEWLINE) |
3166 | bitset_set (sbcset, '\n'); |
3167 | re_string_skip_bytes (regexp, token_len); /* Skip a token. */ |
3168 | token_len = peek_token_bracket (token, regexp, syntax); |
3169 | if (__glibc_unlikely (token->type == END_OF_RE)) |
3170 | { |
3171 | *err = REG_BADPAT; |
3172 | goto parse_bracket_exp_free_return; |
3173 | } |
3174 | } |
3175 | |
3176 | /* We treat the first ']' as a normal character. */ |
3177 | if (token->type == OP_CLOSE_BRACKET) |
3178 | token->type = CHARACTER; |
3179 | |
3180 | while (1) |
3181 | { |
3182 | bracket_elem_t start_elem, end_elem; |
3183 | unsigned char start_name_buf[BRACKET_NAME_BUF_SIZE]; |
3184 | unsigned char end_name_buf[BRACKET_NAME_BUF_SIZE]; |
3185 | reg_errcode_t ret; |
3186 | int token_len2 = 0; |
3187 | bool is_range_exp = false; |
3188 | re_token_t token2; |
3189 | |
3190 | start_elem.opr.name = start_name_buf; |
3191 | start_elem.type = COLL_SYM; |
3192 | ret = parse_bracket_element (&start_elem, regexp, token, token_len, dfa, |
3193 | syntax, first_round); |
3194 | if (__glibc_unlikely (ret != REG_NOERROR)) |
3195 | { |
3196 | *err = ret; |
3197 | goto parse_bracket_exp_free_return; |
3198 | } |
3199 | first_round = false; |
3200 | |
3201 | /* Get information about the next token. We need it in any case. */ |
3202 | token_len = peek_token_bracket (token, regexp, syntax); |
3203 | |
3204 | /* Do not check for ranges if we know they are not allowed. */ |
3205 | if (start_elem.type != CHAR_CLASS && start_elem.type != EQUIV_CLASS) |
3206 | { |
3207 | if (__glibc_unlikely (token->type == END_OF_RE)) |
3208 | { |
3209 | *err = REG_EBRACK; |
3210 | goto parse_bracket_exp_free_return; |
3211 | } |
3212 | if (token->type == OP_CHARSET_RANGE) |
3213 | { |
3214 | re_string_skip_bytes (regexp, token_len); /* Skip '-'. */ |
3215 | token_len2 = peek_token_bracket (&token2, regexp, syntax); |
3216 | if (__glibc_unlikely (token2.type == END_OF_RE)) |
3217 | { |
3218 | *err = REG_EBRACK; |
3219 | goto parse_bracket_exp_free_return; |
3220 | } |
3221 | if (token2.type == OP_CLOSE_BRACKET) |
3222 | { |
3223 | /* We treat the last '-' as a normal character. */ |
3224 | re_string_skip_bytes (regexp, -token_len); |
3225 | token->type = CHARACTER; |
3226 | } |
3227 | else |
3228 | is_range_exp = true; |
3229 | } |
3230 | } |
3231 | |
3232 | if (is_range_exp == true) |
3233 | { |
3234 | end_elem.opr.name = end_name_buf; |
3235 | end_elem.type = COLL_SYM; |
3236 | ret = parse_bracket_element (&end_elem, regexp, &token2, token_len2, |
3237 | dfa, syntax, true); |
3238 | if (__glibc_unlikely (ret != REG_NOERROR)) |
3239 | { |
3240 | *err = ret; |
3241 | goto parse_bracket_exp_free_return; |
3242 | } |
3243 | |
3244 | token_len = peek_token_bracket (token, regexp, syntax); |
3245 | |
3246 | #ifdef _LIBC |
3247 | *err = build_range_exp (sbcset, mbcset, &range_alloc, |
3248 | &start_elem, &end_elem, |
3249 | dfa, syntax, nrules, collseqmb, collseqwc, |
3250 | table_size, symb_table, extra); |
3251 | #else |
3252 | # ifdef RE_ENABLE_I18N |
3253 | *err = build_range_exp (syntax, sbcset, |
3254 | dfa->mb_cur_max > 1 ? mbcset : NULL, |
3255 | &range_alloc, &start_elem, &end_elem); |
3256 | # else |
3257 | *err = build_range_exp (syntax, sbcset, &start_elem, &end_elem); |
3258 | # endif |
3259 | #endif /* RE_ENABLE_I18N */ |
3260 | if (__glibc_unlikely (*err != REG_NOERROR)) |
3261 | goto parse_bracket_exp_free_return; |
3262 | } |
3263 | else |
3264 | { |
3265 | switch (start_elem.type) |
3266 | { |
3267 | case SB_CHAR: |
3268 | bitset_set (sbcset, start_elem.opr.ch); |
3269 | break; |
3270 | #ifdef RE_ENABLE_I18N |
3271 | case MB_CHAR: |
3272 | /* Check whether the array has enough space. */ |
3273 | if (__glibc_unlikely (mbchar_alloc == mbcset->nmbchars)) |
3274 | { |
3275 | wchar_t *new_mbchars; |
3276 | /* Not enough, realloc it. */ |
3277 | /* +1 in case of mbcset->nmbchars is 0. */ |
3278 | mbchar_alloc = 2 * mbcset->nmbchars + 1; |
3279 | /* Use realloc since array is NULL if *alloc == 0. */ |
3280 | new_mbchars = re_realloc (mbcset->mbchars, wchar_t, |
3281 | mbchar_alloc); |
3282 | if (__glibc_unlikely (new_mbchars == NULL)) |
3283 | goto parse_bracket_exp_espace; |
3284 | mbcset->mbchars = new_mbchars; |
3285 | } |
3286 | mbcset->mbchars[mbcset->nmbchars++] = start_elem.opr.wch; |
3287 | break; |
3288 | #endif /* RE_ENABLE_I18N */ |
3289 | case EQUIV_CLASS: |
3290 | *err = build_equiv_class (sbcset, |
3291 | #ifdef RE_ENABLE_I18N |
3292 | mbcset, &equiv_class_alloc, |
3293 | #endif /* RE_ENABLE_I18N */ |
3294 | start_elem.opr.name); |
3295 | if (__glibc_unlikely (*err != REG_NOERROR)) |
3296 | goto parse_bracket_exp_free_return; |
3297 | break; |
3298 | case COLL_SYM: |
3299 | *err = build_collating_symbol (sbcset, |
3300 | #ifdef RE_ENABLE_I18N |
3301 | mbcset, &coll_sym_alloc, |
3302 | #endif /* RE_ENABLE_I18N */ |
3303 | start_elem.opr.name, |
3304 | nrules, table_size, symb_table, extra); |
3305 | if (__glibc_unlikely (*err != REG_NOERROR)) |
3306 | goto parse_bracket_exp_free_return; |
3307 | break; |
3308 | case CHAR_CLASS: |
3309 | *err = build_charclass (regexp->trans, sbcset, |
3310 | #ifdef RE_ENABLE_I18N |
3311 | mbcset, &char_class_alloc, |
3312 | #endif /* RE_ENABLE_I18N */ |
3313 | (const char *) start_elem.opr.name, |
3314 | syntax); |
3315 | if (__glibc_unlikely (*err != REG_NOERROR)) |
3316 | goto parse_bracket_exp_free_return; |
3317 | break; |
3318 | default: |
3319 | DEBUG_ASSERT (false); |
3320 | break; |
3321 | } |
3322 | } |
3323 | if (__glibc_unlikely (token->type == END_OF_RE)) |
3324 | { |
3325 | *err = REG_EBRACK; |
3326 | goto parse_bracket_exp_free_return; |
3327 | } |
3328 | if (token->type == OP_CLOSE_BRACKET) |
3329 | break; |
3330 | } |
3331 | |
3332 | re_string_skip_bytes (regexp, token_len); /* Skip a token. */ |
3333 | |
3334 | /* If it is non-matching list. */ |
3335 | if (non_match) |
3336 | bitset_not (sbcset); |
3337 | |
3338 | #ifdef RE_ENABLE_I18N |
3339 | /* Ensure only single byte characters are set. */ |
3340 | if (dfa->mb_cur_max > 1) |
3341 | bitset_mask (sbcset, dfa->sb_char); |
3342 | |
3343 | if (mbcset->nmbchars || mbcset->ncoll_syms || mbcset->nequiv_classes |
3344 | || mbcset->nranges || (dfa->mb_cur_max > 1 && (mbcset->nchar_classes |
3345 | || mbcset->non_match))) |
3346 | { |
3347 | bin_tree_t *mbc_tree; |
3348 | int sbc_idx; |
3349 | /* Build a tree for complex bracket. */ |
3350 | dfa->has_mb_node = 1; |
3351 | br_token.type = COMPLEX_BRACKET; |
3352 | br_token.opr.mbcset = mbcset; |
3353 | mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token); |
3354 | if (__glibc_unlikely (mbc_tree == NULL)) |
3355 | goto parse_bracket_exp_espace; |
3356 | for (sbc_idx = 0; sbc_idx < BITSET_WORDS; ++sbc_idx) |
3357 | if (sbcset[sbc_idx]) |
3358 | break; |
3359 | /* If there are no bits set in sbcset, there is no point |
3360 | of having both SIMPLE_BRACKET and COMPLEX_BRACKET. */ |
3361 | if (sbc_idx < BITSET_WORDS) |
3362 | { |
3363 | /* Build a tree for simple bracket. */ |
3364 | br_token.type = SIMPLE_BRACKET; |
3365 | br_token.opr.sbcset = sbcset; |
3366 | work_tree = create_token_tree (dfa, NULL, NULL, &br_token); |
3367 | if (__glibc_unlikely (work_tree == NULL)) |
3368 | goto parse_bracket_exp_espace; |
3369 | |
3370 | /* Then join them by ALT node. */ |
3371 | work_tree = create_tree (dfa, work_tree, mbc_tree, OP_ALT); |
3372 | if (__glibc_unlikely (work_tree == NULL)) |
3373 | goto parse_bracket_exp_espace; |
3374 | } |
3375 | else |
3376 | { |
3377 | re_free (sbcset); |
3378 | work_tree = mbc_tree; |
3379 | } |
3380 | } |
3381 | else |
3382 | #endif /* not RE_ENABLE_I18N */ |
3383 | { |
3384 | #ifdef RE_ENABLE_I18N |
3385 | free_charset (mbcset); |
3386 | #endif |
3387 | /* Build a tree for simple bracket. */ |
3388 | br_token.type = SIMPLE_BRACKET; |
3389 | br_token.opr.sbcset = sbcset; |
3390 | work_tree = create_token_tree (dfa, NULL, NULL, &br_token); |
3391 | if (__glibc_unlikely (work_tree == NULL)) |
3392 | goto parse_bracket_exp_espace; |
3393 | } |
3394 | return work_tree; |
3395 | |
3396 | parse_bracket_exp_espace: |
3397 | *err = REG_ESPACE; |
3398 | parse_bracket_exp_free_return: |
3399 | re_free (sbcset); |
3400 | #ifdef RE_ENABLE_I18N |
3401 | free_charset (mbcset); |
3402 | #endif /* RE_ENABLE_I18N */ |
3403 | return NULL; |
3404 | } |
3405 | |
3406 | /* Parse an element in the bracket expression. */ |
3407 | |
3408 | static reg_errcode_t |
3409 | parse_bracket_element (bracket_elem_t *elem, re_string_t *regexp, |
3410 | re_token_t *token, int token_len, re_dfa_t *dfa, |
3411 | reg_syntax_t syntax, bool accept_hyphen) |
3412 | { |
3413 | #ifdef RE_ENABLE_I18N |
3414 | int cur_char_size; |
3415 | cur_char_size = re_string_char_size_at (regexp, re_string_cur_idx (regexp)); |
3416 | if (cur_char_size > 1) |
3417 | { |
3418 | elem->type = MB_CHAR; |
3419 | elem->opr.wch = re_string_wchar_at (regexp, re_string_cur_idx (regexp)); |
3420 | re_string_skip_bytes (regexp, cur_char_size); |
3421 | return REG_NOERROR; |
3422 | } |
3423 | #endif /* RE_ENABLE_I18N */ |
3424 | re_string_skip_bytes (regexp, token_len); /* Skip a token. */ |
3425 | if (token->type == OP_OPEN_COLL_ELEM || token->type == OP_OPEN_CHAR_CLASS |
3426 | || token->type == OP_OPEN_EQUIV_CLASS) |
3427 | return parse_bracket_symbol (elem, regexp, token); |
3428 | if (__glibc_unlikely (token->type == OP_CHARSET_RANGE) && !accept_hyphen) |
3429 | { |
3430 | /* A '-' must only appear as anything but a range indicator before |
3431 | the closing bracket. Everything else is an error. */ |
3432 | re_token_t token2; |
3433 | (void) peek_token_bracket (&token2, regexp, syntax); |
3434 | if (token2.type != OP_CLOSE_BRACKET) |
3435 | /* The actual error value is not standardized since this whole |
3436 | case is undefined. But ERANGE makes good sense. */ |
3437 | return REG_ERANGE; |
3438 | } |
3439 | elem->type = SB_CHAR; |
3440 | elem->opr.ch = token->opr.c; |
3441 | return REG_NOERROR; |
3442 | } |
3443 | |
3444 | /* Parse a bracket symbol in the bracket expression. Bracket symbols are |
3445 | such as [:<character_class>:], [.<collating_element>.], and |
3446 | [=<equivalent_class>=]. */ |
3447 | |
3448 | static reg_errcode_t |
3449 | parse_bracket_symbol (bracket_elem_t *elem, re_string_t *regexp, |
3450 | re_token_t *token) |
3451 | { |
3452 | unsigned char ch, delim = token->opr.c; |
3453 | int i = 0; |
3454 | if (re_string_eoi(regexp)) |
3455 | return REG_EBRACK; |
3456 | for (;; ++i) |
3457 | { |
3458 | if (i >= BRACKET_NAME_BUF_SIZE) |
3459 | return REG_EBRACK; |
3460 | if (token->type == OP_OPEN_CHAR_CLASS) |
3461 | ch = re_string_fetch_byte_case (regexp); |
3462 | else |
3463 | ch = re_string_fetch_byte (regexp); |
3464 | if (re_string_eoi(regexp)) |
3465 | return REG_EBRACK; |
3466 | if (ch == delim && re_string_peek_byte (regexp, 0) == ']') |
3467 | break; |
3468 | elem->opr.name[i] = ch; |
3469 | } |
3470 | re_string_skip_bytes (regexp, 1); |
3471 | elem->opr.name[i] = '\0'; |
3472 | switch (token->type) |
3473 | { |
3474 | case OP_OPEN_COLL_ELEM: |
3475 | elem->type = COLL_SYM; |
3476 | break; |
3477 | case OP_OPEN_EQUIV_CLASS: |
3478 | elem->type = EQUIV_CLASS; |
3479 | break; |
3480 | case OP_OPEN_CHAR_CLASS: |
3481 | elem->type = CHAR_CLASS; |
3482 | break; |
3483 | default: |
3484 | break; |
3485 | } |
3486 | return REG_NOERROR; |
3487 | } |
3488 | |
3489 | /* Helper function for parse_bracket_exp. |
3490 | Build the equivalence class which is represented by NAME. |
3491 | The result are written to MBCSET and SBCSET. |
3492 | EQUIV_CLASS_ALLOC is the allocated size of mbcset->equiv_classes, |
3493 | is a pointer argument since we may update it. */ |
3494 | |
3495 | static reg_errcode_t |
3496 | #ifdef RE_ENABLE_I18N |
3497 | build_equiv_class (bitset_t sbcset, re_charset_t *mbcset, |
3498 | Idx *equiv_class_alloc, const unsigned char *name) |
3499 | #else /* not RE_ENABLE_I18N */ |
3500 | build_equiv_class (bitset_t sbcset, const unsigned char *name) |
3501 | #endif /* not RE_ENABLE_I18N */ |
3502 | { |
3503 | #ifdef _LIBC |
3504 | uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); |
3505 | if (nrules != 0) |
3506 | { |
3507 | const int32_t *table, *indirect; |
3508 | const unsigned char *weights, *, *cp; |
3509 | unsigned char char_buf[2]; |
3510 | int32_t idx1, idx2; |
3511 | unsigned int ch; |
3512 | size_t len; |
3513 | /* Calculate the index for equivalence class. */ |
3514 | cp = name; |
3515 | table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); |
3516 | weights = (const unsigned char *) _NL_CURRENT (LC_COLLATE, |
3517 | _NL_COLLATE_WEIGHTMB); |
3518 | extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, |
3519 | _NL_COLLATE_EXTRAMB); |
3520 | indirect = (const int32_t *) _NL_CURRENT (LC_COLLATE, |
3521 | _NL_COLLATE_INDIRECTMB); |
3522 | idx1 = findidx (table, indirect, extra, &cp, -1); |
3523 | if (__glibc_unlikely (idx1 == 0 || *cp != '\0')) |
3524 | /* This isn't a valid character. */ |
3525 | return REG_ECOLLATE; |
3526 | |
3527 | /* Build single byte matching table for this equivalence class. */ |
3528 | len = weights[idx1 & 0xffffff]; |
3529 | for (ch = 0; ch < SBC_MAX; ++ch) |
3530 | { |
3531 | char_buf[0] = ch; |
3532 | cp = char_buf; |
3533 | idx2 = findidx (table, indirect, extra, &cp, 1); |
3534 | /* |
3535 | idx2 = table[ch]; |
3536 | */ |
3537 | if (idx2 == 0) |
3538 | /* This isn't a valid character. */ |
3539 | continue; |
3540 | /* Compare only if the length matches and the collation rule |
3541 | index is the same. */ |
3542 | if (len == weights[idx2 & 0xffffff] && (idx1 >> 24) == (idx2 >> 24) |
3543 | && memcmp (weights + (idx1 & 0xffffff) + 1, |
3544 | weights + (idx2 & 0xffffff) + 1, len) == 0) |
3545 | bitset_set (sbcset, ch); |
3546 | } |
3547 | /* Check whether the array has enough space. */ |
3548 | if (__glibc_unlikely (*equiv_class_alloc == mbcset->nequiv_classes)) |
3549 | { |
3550 | /* Not enough, realloc it. */ |
3551 | /* +1 in case of mbcset->nequiv_classes is 0. */ |
3552 | Idx new_equiv_class_alloc = 2 * mbcset->nequiv_classes + 1; |
3553 | /* Use realloc since the array is NULL if *alloc == 0. */ |
3554 | int32_t *new_equiv_classes = re_realloc (mbcset->equiv_classes, |
3555 | int32_t, |
3556 | new_equiv_class_alloc); |
3557 | if (__glibc_unlikely (new_equiv_classes == NULL)) |
3558 | return REG_ESPACE; |
3559 | mbcset->equiv_classes = new_equiv_classes; |
3560 | *equiv_class_alloc = new_equiv_class_alloc; |
3561 | } |
3562 | mbcset->equiv_classes[mbcset->nequiv_classes++] = idx1; |
3563 | } |
3564 | else |
3565 | #endif /* _LIBC */ |
3566 | { |
3567 | if (__glibc_unlikely (strlen ((const char *) name) != 1)) |
3568 | return REG_ECOLLATE; |
3569 | bitset_set (sbcset, *name); |
3570 | } |
3571 | return REG_NOERROR; |
3572 | } |
3573 | |
3574 | /* Helper function for parse_bracket_exp. |
3575 | Build the character class which is represented by NAME. |
3576 | The result are written to MBCSET and SBCSET. |
3577 | CHAR_CLASS_ALLOC is the allocated size of mbcset->char_classes, |
3578 | is a pointer argument since we may update it. */ |
3579 | |
3580 | static reg_errcode_t |
3581 | #ifdef RE_ENABLE_I18N |
3582 | build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset, |
3583 | re_charset_t *mbcset, Idx *char_class_alloc, |
3584 | const char *class_name, reg_syntax_t syntax) |
3585 | #else /* not RE_ENABLE_I18N */ |
3586 | build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset, |
3587 | const char *class_name, reg_syntax_t syntax) |
3588 | #endif /* not RE_ENABLE_I18N */ |
3589 | { |
3590 | int i; |
3591 | const char *name = class_name; |
3592 | |
3593 | /* In case of REG_ICASE "upper" and "lower" match the both of |
3594 | upper and lower cases. */ |
3595 | if ((syntax & RE_ICASE) |
3596 | && (strcmp (name, "upper" ) == 0 || strcmp (name, "lower" ) == 0)) |
3597 | name = "alpha" ; |
3598 | |
3599 | #ifdef RE_ENABLE_I18N |
3600 | /* Check the space of the arrays. */ |
3601 | if (__glibc_unlikely (*char_class_alloc == mbcset->nchar_classes)) |
3602 | { |
3603 | /* Not enough, realloc it. */ |
3604 | /* +1 in case of mbcset->nchar_classes is 0. */ |
3605 | Idx new_char_class_alloc = 2 * mbcset->nchar_classes + 1; |
3606 | /* Use realloc since array is NULL if *alloc == 0. */ |
3607 | wctype_t *new_char_classes = re_realloc (mbcset->char_classes, wctype_t, |
3608 | new_char_class_alloc); |
3609 | if (__glibc_unlikely (new_char_classes == NULL)) |
3610 | return REG_ESPACE; |
3611 | mbcset->char_classes = new_char_classes; |
3612 | *char_class_alloc = new_char_class_alloc; |
3613 | } |
3614 | mbcset->char_classes[mbcset->nchar_classes++] = __wctype (name); |
3615 | #endif /* RE_ENABLE_I18N */ |
3616 | |
3617 | #define BUILD_CHARCLASS_LOOP(ctype_func) \ |
3618 | do { \ |
3619 | if (__glibc_unlikely (trans != NULL)) \ |
3620 | { \ |
3621 | for (i = 0; i < SBC_MAX; ++i) \ |
3622 | if (ctype_func (i)) \ |
3623 | bitset_set (sbcset, trans[i]); \ |
3624 | } \ |
3625 | else \ |
3626 | { \ |
3627 | for (i = 0; i < SBC_MAX; ++i) \ |
3628 | if (ctype_func (i)) \ |
3629 | bitset_set (sbcset, i); \ |
3630 | } \ |
3631 | } while (0) |
3632 | |
3633 | if (strcmp (name, "alnum" ) == 0) |
3634 | BUILD_CHARCLASS_LOOP (isalnum); |
3635 | else if (strcmp (name, "cntrl" ) == 0) |
3636 | BUILD_CHARCLASS_LOOP (iscntrl); |
3637 | else if (strcmp (name, "lower" ) == 0) |
3638 | BUILD_CHARCLASS_LOOP (islower); |
3639 | else if (strcmp (name, "space" ) == 0) |
3640 | BUILD_CHARCLASS_LOOP (isspace); |
3641 | else if (strcmp (name, "alpha" ) == 0) |
3642 | BUILD_CHARCLASS_LOOP (isalpha); |
3643 | else if (strcmp (name, "digit" ) == 0) |
3644 | BUILD_CHARCLASS_LOOP (isdigit); |
3645 | else if (strcmp (name, "print" ) == 0) |
3646 | BUILD_CHARCLASS_LOOP (isprint); |
3647 | else if (strcmp (name, "upper" ) == 0) |
3648 | BUILD_CHARCLASS_LOOP (isupper); |
3649 | else if (strcmp (name, "blank" ) == 0) |
3650 | BUILD_CHARCLASS_LOOP (isblank); |
3651 | else if (strcmp (name, "graph" ) == 0) |
3652 | BUILD_CHARCLASS_LOOP (isgraph); |
3653 | else if (strcmp (name, "punct" ) == 0) |
3654 | BUILD_CHARCLASS_LOOP (ispunct); |
3655 | else if (strcmp (name, "xdigit" ) == 0) |
3656 | BUILD_CHARCLASS_LOOP (isxdigit); |
3657 | else |
3658 | return REG_ECTYPE; |
3659 | |
3660 | return REG_NOERROR; |
3661 | } |
3662 | |
3663 | static bin_tree_t * |
3664 | build_charclass_op (re_dfa_t *dfa, RE_TRANSLATE_TYPE trans, |
3665 | const char *class_name, |
3666 | const char *, bool non_match, |
3667 | reg_errcode_t *err) |
3668 | { |
3669 | re_bitset_ptr_t sbcset; |
3670 | #ifdef RE_ENABLE_I18N |
3671 | re_charset_t *mbcset; |
3672 | Idx alloc = 0; |
3673 | #endif /* not RE_ENABLE_I18N */ |
3674 | reg_errcode_t ret; |
3675 | bin_tree_t *tree; |
3676 | |
3677 | sbcset = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1); |
3678 | if (__glibc_unlikely (sbcset == NULL)) |
3679 | { |
3680 | *err = REG_ESPACE; |
3681 | return NULL; |
3682 | } |
3683 | #ifdef RE_ENABLE_I18N |
3684 | mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1); |
3685 | if (__glibc_unlikely (mbcset == NULL)) |
3686 | { |
3687 | re_free (sbcset); |
3688 | *err = REG_ESPACE; |
3689 | return NULL; |
3690 | } |
3691 | mbcset->non_match = non_match; |
3692 | #endif /* RE_ENABLE_I18N */ |
3693 | |
3694 | /* We don't care the syntax in this case. */ |
3695 | ret = build_charclass (trans, sbcset, |
3696 | #ifdef RE_ENABLE_I18N |
3697 | mbcset, &alloc, |
3698 | #endif /* RE_ENABLE_I18N */ |
3699 | class_name, 0); |
3700 | |
3701 | if (__glibc_unlikely (ret != REG_NOERROR)) |
3702 | { |
3703 | re_free (sbcset); |
3704 | #ifdef RE_ENABLE_I18N |
3705 | free_charset (mbcset); |
3706 | #endif /* RE_ENABLE_I18N */ |
3707 | *err = ret; |
3708 | return NULL; |
3709 | } |
3710 | /* \w match '_' also. */ |
3711 | for (; *extra; extra++) |
3712 | bitset_set (sbcset, *extra); |
3713 | |
3714 | /* If it is non-matching list. */ |
3715 | if (non_match) |
3716 | bitset_not (sbcset); |
3717 | |
3718 | #ifdef RE_ENABLE_I18N |
3719 | /* Ensure only single byte characters are set. */ |
3720 | if (dfa->mb_cur_max > 1) |
3721 | bitset_mask (sbcset, dfa->sb_char); |
3722 | #endif |
3723 | |
3724 | /* Build a tree for simple bracket. */ |
3725 | re_token_t br_token = { .type = SIMPLE_BRACKET, .opr.sbcset = sbcset }; |
3726 | tree = create_token_tree (dfa, NULL, NULL, &br_token); |
3727 | if (__glibc_unlikely (tree == NULL)) |
3728 | goto build_word_op_espace; |
3729 | |
3730 | #ifdef RE_ENABLE_I18N |
3731 | if (dfa->mb_cur_max > 1) |
3732 | { |
3733 | bin_tree_t *mbc_tree; |
3734 | /* Build a tree for complex bracket. */ |
3735 | br_token.type = COMPLEX_BRACKET; |
3736 | br_token.opr.mbcset = mbcset; |
3737 | dfa->has_mb_node = 1; |
3738 | mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token); |
3739 | if (__glibc_unlikely (mbc_tree == NULL)) |
3740 | goto build_word_op_espace; |
3741 | /* Then join them by ALT node. */ |
3742 | tree = create_tree (dfa, tree, mbc_tree, OP_ALT); |
3743 | if (__glibc_likely (mbc_tree != NULL)) |
3744 | return tree; |
3745 | } |
3746 | else |
3747 | { |
3748 | free_charset (mbcset); |
3749 | return tree; |
3750 | } |
3751 | #else /* not RE_ENABLE_I18N */ |
3752 | return tree; |
3753 | #endif /* not RE_ENABLE_I18N */ |
3754 | |
3755 | build_word_op_espace: |
3756 | re_free (sbcset); |
3757 | #ifdef RE_ENABLE_I18N |
3758 | free_charset (mbcset); |
3759 | #endif /* RE_ENABLE_I18N */ |
3760 | *err = REG_ESPACE; |
3761 | return NULL; |
3762 | } |
3763 | |
3764 | /* This is intended for the expressions like "a{1,3}". |
3765 | Fetch a number from 'input', and return the number. |
3766 | Return -1 if the number field is empty like "{,1}". |
3767 | Return RE_DUP_MAX + 1 if the number field is too large. |
3768 | Return -2 if an error occurred. */ |
3769 | |
3770 | static Idx |
3771 | fetch_number (re_string_t *input, re_token_t *token, reg_syntax_t syntax) |
3772 | { |
3773 | Idx num = -1; |
3774 | unsigned char c; |
3775 | while (1) |
3776 | { |
3777 | fetch_token (token, input, syntax); |
3778 | c = token->opr.c; |
3779 | if (__glibc_unlikely (token->type == END_OF_RE)) |
3780 | return -2; |
3781 | if (token->type == OP_CLOSE_DUP_NUM || c == ',') |
3782 | break; |
3783 | num = ((token->type != CHARACTER || c < '0' || '9' < c || num == -2) |
3784 | ? -2 |
3785 | : num == -1 |
3786 | ? c - '0' |
3787 | : MIN (RE_DUP_MAX + 1, num * 10 + c - '0')); |
3788 | } |
3789 | return num; |
3790 | } |
3791 | |
3792 | #ifdef RE_ENABLE_I18N |
3793 | static void |
3794 | free_charset (re_charset_t *cset) |
3795 | { |
3796 | re_free (cset->mbchars); |
3797 | # ifdef _LIBC |
3798 | re_free (cset->coll_syms); |
3799 | re_free (cset->equiv_classes); |
3800 | # endif |
3801 | re_free (cset->range_starts); |
3802 | re_free (cset->range_ends); |
3803 | re_free (cset->char_classes); |
3804 | re_free (cset); |
3805 | } |
3806 | #endif /* RE_ENABLE_I18N */ |
3807 | |
3808 | /* Functions for binary tree operation. */ |
3809 | |
3810 | /* Create a tree node. */ |
3811 | |
3812 | static bin_tree_t * |
3813 | create_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right, |
3814 | re_token_type_t type) |
3815 | { |
3816 | re_token_t t = { .type = type }; |
3817 | return create_token_tree (dfa, left, right, &t); |
3818 | } |
3819 | |
3820 | static bin_tree_t * |
3821 | create_token_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right, |
3822 | const re_token_t *token) |
3823 | { |
3824 | bin_tree_t *tree; |
3825 | if (__glibc_unlikely (dfa->str_tree_storage_idx == BIN_TREE_STORAGE_SIZE)) |
3826 | { |
3827 | bin_tree_storage_t *storage = re_malloc (bin_tree_storage_t, 1); |
3828 | |
3829 | if (storage == NULL) |
3830 | return NULL; |
3831 | storage->next = dfa->str_tree_storage; |
3832 | dfa->str_tree_storage = storage; |
3833 | dfa->str_tree_storage_idx = 0; |
3834 | } |
3835 | tree = &dfa->str_tree_storage->data[dfa->str_tree_storage_idx++]; |
3836 | |
3837 | tree->parent = NULL; |
3838 | tree->left = left; |
3839 | tree->right = right; |
3840 | tree->token = *token; |
3841 | tree->token.duplicated = 0; |
3842 | tree->token.opt_subexp = 0; |
3843 | tree->first = NULL; |
3844 | tree->next = NULL; |
3845 | tree->node_idx = -1; |
3846 | |
3847 | if (left != NULL) |
3848 | left->parent = tree; |
3849 | if (right != NULL) |
3850 | right->parent = tree; |
3851 | return tree; |
3852 | } |
3853 | |
3854 | /* Mark the tree SRC as an optional subexpression. |
3855 | To be called from preorder or postorder. */ |
3856 | |
3857 | static reg_errcode_t |
3858 | mark_opt_subexp (void *, bin_tree_t *node) |
3859 | { |
3860 | Idx idx = (uintptr_t) extra; |
3861 | if (node->token.type == SUBEXP && node->token.opr.idx == idx) |
3862 | node->token.opt_subexp = 1; |
3863 | |
3864 | return REG_NOERROR; |
3865 | } |
3866 | |
3867 | /* Free the allocated memory inside NODE. */ |
3868 | |
3869 | static void |
3870 | free_token (re_token_t *node) |
3871 | { |
3872 | #ifdef RE_ENABLE_I18N |
3873 | if (node->type == COMPLEX_BRACKET && node->duplicated == 0) |
3874 | free_charset (node->opr.mbcset); |
3875 | else |
3876 | #endif /* RE_ENABLE_I18N */ |
3877 | if (node->type == SIMPLE_BRACKET && node->duplicated == 0) |
3878 | re_free (node->opr.sbcset); |
3879 | } |
3880 | |
3881 | /* Worker function for tree walking. Free the allocated memory inside NODE |
3882 | and its children. */ |
3883 | |
3884 | static reg_errcode_t |
3885 | free_tree (void *, bin_tree_t *node) |
3886 | { |
3887 | free_token (&node->token); |
3888 | return REG_NOERROR; |
3889 | } |
3890 | |
3891 | |
3892 | /* Duplicate the node SRC, and return new node. This is a preorder |
3893 | visit similar to the one implemented by the generic visitor, but |
3894 | we need more infrastructure to maintain two parallel trees --- so, |
3895 | it's easier to duplicate. */ |
3896 | |
3897 | static bin_tree_t * |
3898 | duplicate_tree (const bin_tree_t *root, re_dfa_t *dfa) |
3899 | { |
3900 | const bin_tree_t *node; |
3901 | bin_tree_t *dup_root; |
3902 | bin_tree_t **p_new = &dup_root, *dup_node = root->parent; |
3903 | |
3904 | for (node = root; ; ) |
3905 | { |
3906 | /* Create a new tree and link it back to the current parent. */ |
3907 | *p_new = create_token_tree (dfa, NULL, NULL, &node->token); |
3908 | if (*p_new == NULL) |
3909 | return NULL; |
3910 | (*p_new)->parent = dup_node; |
3911 | (*p_new)->token.duplicated = 1; |
3912 | dup_node = *p_new; |
3913 | |
3914 | /* Go to the left node, or up and to the right. */ |
3915 | if (node->left) |
3916 | { |
3917 | node = node->left; |
3918 | p_new = &dup_node->left; |
3919 | } |
3920 | else |
3921 | { |
3922 | const bin_tree_t *prev = NULL; |
3923 | while (node->right == prev || node->right == NULL) |
3924 | { |
3925 | prev = node; |
3926 | node = node->parent; |
3927 | dup_node = dup_node->parent; |
3928 | if (!node) |
3929 | return dup_root; |
3930 | } |
3931 | node = node->right; |
3932 | p_new = &dup_node->right; |
3933 | } |
3934 | } |
3935 | } |
3936 | |