1 | /* One way encryption based on SHA512 sum. |
2 | Copyright (C) 2007-2022 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #include <assert.h> |
20 | #include <errno.h> |
21 | #include <stdbool.h> |
22 | #include <stdlib.h> |
23 | #include <string.h> |
24 | #include <stdint.h> |
25 | #include <sys/param.h> |
26 | |
27 | #include "sha512.h" |
28 | #include "crypt-private.h" |
29 | |
30 | |
31 | #ifdef USE_NSS |
32 | typedef int PRBool; |
33 | # include <hasht.h> |
34 | # include <nsslowhash.h> |
35 | |
36 | # define sha512_init_ctx(ctxp, nss_ctxp) \ |
37 | do \ |
38 | { \ |
39 | if (((nss_ctxp = NSSLOWHASH_NewContext (nss_ictx, HASH_AlgSHA512)) \ |
40 | == NULL)) \ |
41 | { \ |
42 | if (nss_ctx != NULL) \ |
43 | NSSLOWHASH_Destroy (nss_ctx); \ |
44 | if (nss_alt_ctx != NULL) \ |
45 | NSSLOWHASH_Destroy (nss_alt_ctx); \ |
46 | return NULL; \ |
47 | } \ |
48 | NSSLOWHASH_Begin (nss_ctxp); \ |
49 | } \ |
50 | while (0) |
51 | |
52 | # define sha512_process_bytes(buf, len, ctxp, nss_ctxp) \ |
53 | NSSLOWHASH_Update (nss_ctxp, (const unsigned char *) buf, len) |
54 | |
55 | # define sha512_finish_ctx(ctxp, nss_ctxp, result) \ |
56 | do \ |
57 | { \ |
58 | unsigned int ret; \ |
59 | NSSLOWHASH_End (nss_ctxp, result, &ret, sizeof (result)); \ |
60 | assert (ret == sizeof (result)); \ |
61 | NSSLOWHASH_Destroy (nss_ctxp); \ |
62 | nss_ctxp = NULL; \ |
63 | } \ |
64 | while (0) |
65 | #else |
66 | # define sha512_init_ctx(ctxp, nss_ctxp) \ |
67 | __sha512_init_ctx (ctxp) |
68 | |
69 | # define sha512_process_bytes(buf, len, ctxp, nss_ctxp) \ |
70 | __sha512_process_bytes(buf, len, ctxp) |
71 | |
72 | # define sha512_finish_ctx(ctxp, nss_ctxp, result) \ |
73 | __sha512_finish_ctx (ctxp, result) |
74 | #endif |
75 | |
76 | |
77 | /* Define our magic string to mark salt for SHA512 "encryption" |
78 | replacement. */ |
79 | static const char sha512_salt_prefix[] = "$6$" ; |
80 | |
81 | /* Prefix for optional rounds specification. */ |
82 | static const char sha512_rounds_prefix[] = "rounds=" ; |
83 | |
84 | /* Maximum salt string length. */ |
85 | #define SALT_LEN_MAX 16 |
86 | /* Default number of rounds if not explicitly specified. */ |
87 | #define ROUNDS_DEFAULT 5000 |
88 | /* Minimum number of rounds. */ |
89 | #define ROUNDS_MIN 1000 |
90 | /* Maximum number of rounds. */ |
91 | #define ROUNDS_MAX 999999999 |
92 | |
93 | |
94 | /* Prototypes for local functions. */ |
95 | extern char *__sha512_crypt_r (const char *key, const char *salt, |
96 | char *buffer, int buflen); |
97 | extern char *__sha512_crypt (const char *key, const char *salt); |
98 | |
99 | |
100 | char * |
101 | __sha512_crypt_r (const char *key, const char *salt, char *buffer, int buflen) |
102 | { |
103 | unsigned char alt_result[64] |
104 | __attribute__ ((__aligned__ (__alignof__ (uint64_t)))); |
105 | unsigned char temp_result[64] |
106 | __attribute__ ((__aligned__ (__alignof__ (uint64_t)))); |
107 | size_t salt_len; |
108 | size_t key_len; |
109 | size_t cnt; |
110 | char *cp; |
111 | char *copied_key = NULL; |
112 | char *copied_salt = NULL; |
113 | char *p_bytes; |
114 | char *s_bytes; |
115 | /* Default number of rounds. */ |
116 | size_t rounds = ROUNDS_DEFAULT; |
117 | bool rounds_custom = false; |
118 | size_t alloca_used = 0; |
119 | char *free_key = NULL; |
120 | char *free_pbytes = NULL; |
121 | |
122 | /* Find beginning of salt string. The prefix should normally always |
123 | be present. Just in case it is not. */ |
124 | if (strncmp (sha512_salt_prefix, salt, sizeof (sha512_salt_prefix) - 1) == 0) |
125 | /* Skip salt prefix. */ |
126 | salt += sizeof (sha512_salt_prefix) - 1; |
127 | |
128 | if (strncmp (salt, sha512_rounds_prefix, sizeof (sha512_rounds_prefix) - 1) |
129 | == 0) |
130 | { |
131 | const char *num = salt + sizeof (sha512_rounds_prefix) - 1; |
132 | char *endp; |
133 | unsigned long int srounds = strtoul (num, &endp, 10); |
134 | if (*endp == '$') |
135 | { |
136 | salt = endp + 1; |
137 | rounds = MAX (ROUNDS_MIN, MIN (srounds, ROUNDS_MAX)); |
138 | rounds_custom = true; |
139 | } |
140 | } |
141 | |
142 | salt_len = MIN (strcspn (salt, "$" ), SALT_LEN_MAX); |
143 | key_len = strlen (key); |
144 | |
145 | if ((key - (char *) 0) % __alignof__ (uint64_t) != 0) |
146 | { |
147 | char *tmp; |
148 | |
149 | if (__libc_use_alloca (alloca_used + key_len + __alignof__ (uint64_t))) |
150 | tmp = alloca_account (key_len + __alignof__ (uint64_t), alloca_used); |
151 | else |
152 | { |
153 | free_key = tmp = (char *) malloc (key_len + __alignof__ (uint64_t)); |
154 | if (tmp == NULL) |
155 | return NULL; |
156 | } |
157 | |
158 | key = copied_key = |
159 | memcpy (tmp + __alignof__ (uint64_t) |
160 | - (tmp - (char *) 0) % __alignof__ (uint64_t), |
161 | key, key_len); |
162 | assert ((key - (char *) 0) % __alignof__ (uint64_t) == 0); |
163 | } |
164 | |
165 | if ((salt - (char *) 0) % __alignof__ (uint64_t) != 0) |
166 | { |
167 | char *tmp = (char *) alloca (salt_len + __alignof__ (uint64_t)); |
168 | salt = copied_salt = |
169 | memcpy (tmp + __alignof__ (uint64_t) |
170 | - (tmp - (char *) 0) % __alignof__ (uint64_t), |
171 | salt, salt_len); |
172 | assert ((salt - (char *) 0) % __alignof__ (uint64_t) == 0); |
173 | } |
174 | |
175 | #ifdef USE_NSS |
176 | /* Initialize libfreebl3. */ |
177 | NSSLOWInitContext *nss_ictx = NSSLOW_Init (); |
178 | if (nss_ictx == NULL) |
179 | { |
180 | free (free_key); |
181 | return NULL; |
182 | } |
183 | NSSLOWHASHContext *nss_ctx = NULL; |
184 | NSSLOWHASHContext *nss_alt_ctx = NULL; |
185 | #else |
186 | struct sha512_ctx ctx; |
187 | struct sha512_ctx alt_ctx; |
188 | #endif |
189 | |
190 | /* Prepare for the real work. */ |
191 | sha512_init_ctx (&ctx, nss_ctx); |
192 | |
193 | /* Add the key string. */ |
194 | sha512_process_bytes (key, key_len, &ctx, nss_ctx); |
195 | |
196 | /* The last part is the salt string. This must be at most 16 |
197 | characters and it ends at the first `$' character. */ |
198 | sha512_process_bytes (salt, salt_len, &ctx, nss_ctx); |
199 | |
200 | |
201 | /* Compute alternate SHA512 sum with input KEY, SALT, and KEY. The |
202 | final result will be added to the first context. */ |
203 | sha512_init_ctx (&alt_ctx, nss_alt_ctx); |
204 | |
205 | /* Add key. */ |
206 | sha512_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx); |
207 | |
208 | /* Add salt. */ |
209 | sha512_process_bytes (salt, salt_len, &alt_ctx, nss_alt_ctx); |
210 | |
211 | /* Add key again. */ |
212 | sha512_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx); |
213 | |
214 | /* Now get result of this (64 bytes) and add it to the other |
215 | context. */ |
216 | sha512_finish_ctx (&alt_ctx, nss_alt_ctx, alt_result); |
217 | |
218 | /* Add for any character in the key one byte of the alternate sum. */ |
219 | for (cnt = key_len; cnt > 64; cnt -= 64) |
220 | sha512_process_bytes (alt_result, 64, &ctx, nss_ctx); |
221 | sha512_process_bytes (alt_result, cnt, &ctx, nss_ctx); |
222 | |
223 | /* Take the binary representation of the length of the key and for every |
224 | 1 add the alternate sum, for every 0 the key. */ |
225 | for (cnt = key_len; cnt > 0; cnt >>= 1) |
226 | if ((cnt & 1) != 0) |
227 | sha512_process_bytes (alt_result, 64, &ctx, nss_ctx); |
228 | else |
229 | sha512_process_bytes (key, key_len, &ctx, nss_ctx); |
230 | |
231 | /* Create intermediate result. */ |
232 | sha512_finish_ctx (&ctx, nss_ctx, alt_result); |
233 | |
234 | /* Start computation of P byte sequence. */ |
235 | sha512_init_ctx (&alt_ctx, nss_alt_ctx); |
236 | |
237 | /* For every character in the password add the entire password. */ |
238 | for (cnt = 0; cnt < key_len; ++cnt) |
239 | sha512_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx); |
240 | |
241 | /* Finish the digest. */ |
242 | sha512_finish_ctx (&alt_ctx, nss_alt_ctx, temp_result); |
243 | |
244 | /* Create byte sequence P. */ |
245 | if (__libc_use_alloca (alloca_used + key_len)) |
246 | cp = p_bytes = (char *) alloca (key_len); |
247 | else |
248 | { |
249 | free_pbytes = cp = p_bytes = (char *)malloc (key_len); |
250 | if (free_pbytes == NULL) |
251 | { |
252 | free (free_key); |
253 | return NULL; |
254 | } |
255 | } |
256 | |
257 | for (cnt = key_len; cnt >= 64; cnt -= 64) |
258 | cp = mempcpy (cp, temp_result, 64); |
259 | memcpy (cp, temp_result, cnt); |
260 | |
261 | /* Start computation of S byte sequence. */ |
262 | sha512_init_ctx (&alt_ctx, nss_alt_ctx); |
263 | |
264 | /* For every character in the password add the entire password. */ |
265 | for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt) |
266 | sha512_process_bytes (salt, salt_len, &alt_ctx, nss_alt_ctx); |
267 | |
268 | /* Finish the digest. */ |
269 | sha512_finish_ctx (&alt_ctx, nss_alt_ctx, temp_result); |
270 | |
271 | /* Create byte sequence S. */ |
272 | cp = s_bytes = alloca (salt_len); |
273 | for (cnt = salt_len; cnt >= 64; cnt -= 64) |
274 | cp = mempcpy (cp, temp_result, 64); |
275 | memcpy (cp, temp_result, cnt); |
276 | |
277 | /* Repeatedly run the collected hash value through SHA512 to burn |
278 | CPU cycles. */ |
279 | for (cnt = 0; cnt < rounds; ++cnt) |
280 | { |
281 | /* New context. */ |
282 | sha512_init_ctx (&ctx, nss_ctx); |
283 | |
284 | /* Add key or last result. */ |
285 | if ((cnt & 1) != 0) |
286 | sha512_process_bytes (p_bytes, key_len, &ctx, nss_ctx); |
287 | else |
288 | sha512_process_bytes (alt_result, 64, &ctx, nss_ctx); |
289 | |
290 | /* Add salt for numbers not divisible by 3. */ |
291 | if (cnt % 3 != 0) |
292 | sha512_process_bytes (s_bytes, salt_len, &ctx, nss_ctx); |
293 | |
294 | /* Add key for numbers not divisible by 7. */ |
295 | if (cnt % 7 != 0) |
296 | sha512_process_bytes (p_bytes, key_len, &ctx, nss_ctx); |
297 | |
298 | /* Add key or last result. */ |
299 | if ((cnt & 1) != 0) |
300 | sha512_process_bytes (alt_result, 64, &ctx, nss_ctx); |
301 | else |
302 | sha512_process_bytes (p_bytes, key_len, &ctx, nss_ctx); |
303 | |
304 | /* Create intermediate result. */ |
305 | sha512_finish_ctx (&ctx, nss_ctx, alt_result); |
306 | } |
307 | |
308 | #ifdef USE_NSS |
309 | /* Free libfreebl3 resources. */ |
310 | NSSLOW_Shutdown (nss_ictx); |
311 | #endif |
312 | |
313 | /* Now we can construct the result string. It consists of three |
314 | parts. */ |
315 | cp = __stpncpy (buffer, sha512_salt_prefix, MAX (0, buflen)); |
316 | buflen -= sizeof (sha512_salt_prefix) - 1; |
317 | |
318 | if (rounds_custom) |
319 | { |
320 | int n = __snprintf (cp, MAX (0, buflen), "%s%zu$" , |
321 | sha512_rounds_prefix, rounds); |
322 | cp += n; |
323 | buflen -= n; |
324 | } |
325 | |
326 | cp = __stpncpy (cp, salt, MIN ((size_t) MAX (0, buflen), salt_len)); |
327 | buflen -= MIN ((size_t) MAX (0, buflen), salt_len); |
328 | |
329 | if (buflen > 0) |
330 | { |
331 | *cp++ = '$'; |
332 | --buflen; |
333 | } |
334 | |
335 | __b64_from_24bit (&cp, &buflen, |
336 | alt_result[0], alt_result[21], alt_result[42], 4); |
337 | __b64_from_24bit (&cp, &buflen, |
338 | alt_result[22], alt_result[43], alt_result[1], 4); |
339 | __b64_from_24bit (&cp, &buflen, |
340 | alt_result[44], alt_result[2], alt_result[23], 4); |
341 | __b64_from_24bit (&cp, &buflen, |
342 | alt_result[3], alt_result[24], alt_result[45], 4); |
343 | __b64_from_24bit (&cp, &buflen, |
344 | alt_result[25], alt_result[46], alt_result[4], 4); |
345 | __b64_from_24bit (&cp, &buflen, |
346 | alt_result[47], alt_result[5], alt_result[26], 4); |
347 | __b64_from_24bit (&cp, &buflen, |
348 | alt_result[6], alt_result[27], alt_result[48], 4); |
349 | __b64_from_24bit (&cp, &buflen, |
350 | alt_result[28], alt_result[49], alt_result[7], 4); |
351 | __b64_from_24bit (&cp, &buflen, |
352 | alt_result[50], alt_result[8], alt_result[29], 4); |
353 | __b64_from_24bit (&cp, &buflen, |
354 | alt_result[9], alt_result[30], alt_result[51], 4); |
355 | __b64_from_24bit (&cp, &buflen, |
356 | alt_result[31], alt_result[52], alt_result[10], 4); |
357 | __b64_from_24bit (&cp, &buflen, |
358 | alt_result[53], alt_result[11], alt_result[32], 4); |
359 | __b64_from_24bit (&cp, &buflen, |
360 | alt_result[12], alt_result[33], alt_result[54], 4); |
361 | __b64_from_24bit (&cp, &buflen, |
362 | alt_result[34], alt_result[55], alt_result[13], 4); |
363 | __b64_from_24bit (&cp, &buflen, |
364 | alt_result[56], alt_result[14], alt_result[35], 4); |
365 | __b64_from_24bit (&cp, &buflen, |
366 | alt_result[15], alt_result[36], alt_result[57], 4); |
367 | __b64_from_24bit (&cp, &buflen, |
368 | alt_result[37], alt_result[58], alt_result[16], 4); |
369 | __b64_from_24bit (&cp, &buflen, |
370 | alt_result[59], alt_result[17], alt_result[38], 4); |
371 | __b64_from_24bit (&cp, &buflen, |
372 | alt_result[18], alt_result[39], alt_result[60], 4); |
373 | __b64_from_24bit (&cp, &buflen, |
374 | alt_result[40], alt_result[61], alt_result[19], 4); |
375 | __b64_from_24bit (&cp, &buflen, |
376 | alt_result[62], alt_result[20], alt_result[41], 4); |
377 | __b64_from_24bit (&cp, &buflen, |
378 | 0, 0, alt_result[63], 2); |
379 | |
380 | if (buflen <= 0) |
381 | { |
382 | __set_errno (ERANGE); |
383 | buffer = NULL; |
384 | } |
385 | else |
386 | *cp = '\0'; /* Terminate the string. */ |
387 | |
388 | /* Clear the buffer for the intermediate result so that people |
389 | attaching to processes or reading core dumps cannot get any |
390 | information. We do it in this way to clear correct_words[] |
391 | inside the SHA512 implementation as well. */ |
392 | #ifndef USE_NSS |
393 | __sha512_init_ctx (&ctx); |
394 | __sha512_finish_ctx (&ctx, alt_result); |
395 | explicit_bzero (&ctx, sizeof (ctx)); |
396 | explicit_bzero (&alt_ctx, sizeof (alt_ctx)); |
397 | #endif |
398 | explicit_bzero (temp_result, sizeof (temp_result)); |
399 | explicit_bzero (p_bytes, key_len); |
400 | explicit_bzero (s_bytes, salt_len); |
401 | if (copied_key != NULL) |
402 | explicit_bzero (copied_key, key_len); |
403 | if (copied_salt != NULL) |
404 | explicit_bzero (copied_salt, salt_len); |
405 | |
406 | free (free_key); |
407 | free (free_pbytes); |
408 | return buffer; |
409 | } |
410 | |
411 | #ifndef _LIBC |
412 | # define libc_freeres_ptr(decl) decl |
413 | #endif |
414 | libc_freeres_ptr (static char *buffer); |
415 | |
416 | /* This entry point is equivalent to the `crypt' function in Unix |
417 | libcs. */ |
418 | char * |
419 | __sha512_crypt (const char *key, const char *salt) |
420 | { |
421 | /* We don't want to have an arbitrary limit in the size of the |
422 | password. We can compute an upper bound for the size of the |
423 | result in advance and so we can prepare the buffer we pass to |
424 | `sha512_crypt_r'. */ |
425 | static int buflen; |
426 | int needed = (sizeof (sha512_salt_prefix) - 1 |
427 | + sizeof (sha512_rounds_prefix) + 9 + 1 |
428 | + strlen (salt) + 1 + 86 + 1); |
429 | |
430 | if (buflen < needed) |
431 | { |
432 | char *new_buffer = (char *) realloc (buffer, needed); |
433 | if (new_buffer == NULL) |
434 | return NULL; |
435 | |
436 | buffer = new_buffer; |
437 | buflen = needed; |
438 | } |
439 | |
440 | return __sha512_crypt_r (key, salt, buffer, buflen); |
441 | } |
442 | |
443 | #ifndef _LIBC |
444 | static void |
445 | __attribute__ ((__destructor__)) |
446 | free_mem (void) |
447 | { |
448 | free (buffer); |
449 | } |
450 | #endif |
451 | |