| 1 | /* memchr/wmemchr optimized with 256-bit EVEX instructions. |
| 2 | Copyright (C) 2021 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #if IS_IN (libc) |
| 20 | |
| 21 | # include <sysdep.h> |
| 22 | |
| 23 | # ifndef MEMCHR |
| 24 | # define MEMCHR __memchr_evex |
| 25 | # endif |
| 26 | |
| 27 | # ifdef USE_AS_WMEMCHR |
| 28 | # define VPBROADCAST vpbroadcastd |
| 29 | # define VPMINU vpminud |
| 30 | # define VPCMP vpcmpd |
| 31 | # define VPCMPEQ vpcmpeqd |
| 32 | # define CHAR_SIZE 4 |
| 33 | # else |
| 34 | # define VPBROADCAST vpbroadcastb |
| 35 | # define VPMINU vpminub |
| 36 | # define VPCMP vpcmpb |
| 37 | # define VPCMPEQ vpcmpeqb |
| 38 | # define CHAR_SIZE 1 |
| 39 | # endif |
| 40 | |
| 41 | /* In the 4x loop the RTM and non-RTM versions have data pointer |
| 42 | off by VEC_SIZE * 4 with RTM version being VEC_SIZE * 4 greater. |
| 43 | This is represented by BASE_OFFSET. As well because the RTM |
| 44 | version uses vpcmp which stores a bit per element compared where |
| 45 | the non-RTM version uses vpcmpeq which stores a bit per byte |
| 46 | compared RET_SCALE of CHAR_SIZE is only relevant for the RTM |
| 47 | version. */ |
| 48 | # ifdef USE_IN_RTM |
| 49 | # define VZEROUPPER |
| 50 | # define BASE_OFFSET (VEC_SIZE * 4) |
| 51 | # define RET_SCALE CHAR_SIZE |
| 52 | # else |
| 53 | # define VZEROUPPER vzeroupper |
| 54 | # define BASE_OFFSET 0 |
| 55 | # define RET_SCALE 1 |
| 56 | # endif |
| 57 | |
| 58 | /* In the return from 4x loop memchr and rawmemchr versions have |
| 59 | data pointers off by VEC_SIZE * 4 with memchr version being |
| 60 | VEC_SIZE * 4 greater. */ |
| 61 | # ifdef USE_AS_RAWMEMCHR |
| 62 | # define RET_OFFSET (BASE_OFFSET - (VEC_SIZE * 4)) |
| 63 | # define RAW_PTR_REG rcx |
| 64 | # define ALGN_PTR_REG rdi |
| 65 | # else |
| 66 | # define RET_OFFSET BASE_OFFSET |
| 67 | # define RAW_PTR_REG rdi |
| 68 | # define ALGN_PTR_REG rcx |
| 69 | # endif |
| 70 | |
| 71 | # define XMMZERO xmm23 |
| 72 | # define YMMZERO ymm23 |
| 73 | # define XMMMATCH xmm16 |
| 74 | # define YMMMATCH ymm16 |
| 75 | # define YMM1 ymm17 |
| 76 | # define YMM2 ymm18 |
| 77 | # define YMM3 ymm19 |
| 78 | # define YMM4 ymm20 |
| 79 | # define YMM5 ymm21 |
| 80 | # define YMM6 ymm22 |
| 81 | |
| 82 | # ifndef SECTION |
| 83 | # define SECTION(p) p##.evex |
| 84 | # endif |
| 85 | |
| 86 | # define VEC_SIZE 32 |
| 87 | # define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE) |
| 88 | # define PAGE_SIZE 4096 |
| 89 | |
| 90 | .section SECTION(.text),"ax" ,@progbits |
| 91 | ENTRY (MEMCHR) |
| 92 | # ifndef USE_AS_RAWMEMCHR |
| 93 | /* Check for zero length. */ |
| 94 | test %RDX_LP, %RDX_LP |
| 95 | jz L(zero) |
| 96 | |
| 97 | # ifdef __ILP32__ |
| 98 | /* Clear the upper 32 bits. */ |
| 99 | movl %edx, %edx |
| 100 | # endif |
| 101 | # endif |
| 102 | /* Broadcast CHAR to YMMMATCH. */ |
| 103 | VPBROADCAST %esi, %YMMMATCH |
| 104 | /* Check if we may cross page boundary with one vector load. */ |
| 105 | movl %edi, %eax |
| 106 | andl $(PAGE_SIZE - 1), %eax |
| 107 | cmpl $(PAGE_SIZE - VEC_SIZE), %eax |
| 108 | ja L(cross_page_boundary) |
| 109 | |
| 110 | /* Check the first VEC_SIZE bytes. */ |
| 111 | VPCMP $0, (%rdi), %YMMMATCH, %k0 |
| 112 | kmovd %k0, %eax |
| 113 | # ifndef USE_AS_RAWMEMCHR |
| 114 | /* If length < CHAR_PER_VEC handle special. */ |
| 115 | cmpq $CHAR_PER_VEC, %rdx |
| 116 | jbe L(first_vec_x0) |
| 117 | # endif |
| 118 | testl %eax, %eax |
| 119 | jz L(aligned_more) |
| 120 | tzcntl %eax, %eax |
| 121 | # ifdef USE_AS_WMEMCHR |
| 122 | /* NB: Multiply bytes by CHAR_SIZE to get the wchar_t count. */ |
| 123 | leaq (%rdi, %rax, CHAR_SIZE), %rax |
| 124 | # else |
| 125 | addq %rdi, %rax |
| 126 | # endif |
| 127 | ret |
| 128 | |
| 129 | # ifndef USE_AS_RAWMEMCHR |
| 130 | L(zero): |
| 131 | xorl %eax, %eax |
| 132 | ret |
| 133 | |
| 134 | .p2align 5 |
| 135 | L(first_vec_x0): |
| 136 | /* Check if first match was before length. */ |
| 137 | tzcntl %eax, %eax |
| 138 | xorl %ecx, %ecx |
| 139 | cmpl %eax, %edx |
| 140 | leaq (%rdi, %rax, CHAR_SIZE), %rax |
| 141 | cmovle %rcx, %rax |
| 142 | ret |
| 143 | # else |
| 144 | /* NB: first_vec_x0 is 17 bytes which will leave |
| 145 | cross_page_boundary (which is relatively cold) close enough |
| 146 | to ideal alignment. So only realign L(cross_page_boundary) if |
| 147 | rawmemchr. */ |
| 148 | .p2align 4 |
| 149 | # endif |
| 150 | L(cross_page_boundary): |
| 151 | /* Save pointer before aligning as its original value is |
| 152 | necessary for computer return address if byte is found or |
| 153 | adjusting length if it is not and this is memchr. */ |
| 154 | movq %rdi, %rcx |
| 155 | /* Align data to VEC_SIZE. ALGN_PTR_REG is rcx for memchr and rdi |
| 156 | for rawmemchr. */ |
| 157 | andq $-VEC_SIZE, %ALGN_PTR_REG |
| 158 | VPCMP $0, (%ALGN_PTR_REG), %YMMMATCH, %k0 |
| 159 | kmovd %k0, %r8d |
| 160 | # ifdef USE_AS_WMEMCHR |
| 161 | /* NB: Divide shift count by 4 since each bit in K0 represent 4 |
| 162 | bytes. */ |
| 163 | sarl $2, %eax |
| 164 | # endif |
| 165 | # ifndef USE_AS_RAWMEMCHR |
| 166 | movl $(PAGE_SIZE / CHAR_SIZE), %esi |
| 167 | subl %eax, %esi |
| 168 | # endif |
| 169 | # ifdef USE_AS_WMEMCHR |
| 170 | andl $(CHAR_PER_VEC - 1), %eax |
| 171 | # endif |
| 172 | /* Remove the leading bytes. */ |
| 173 | sarxl %eax, %r8d, %eax |
| 174 | # ifndef USE_AS_RAWMEMCHR |
| 175 | /* Check the end of data. */ |
| 176 | cmpq %rsi, %rdx |
| 177 | jbe L(first_vec_x0) |
| 178 | # endif |
| 179 | testl %eax, %eax |
| 180 | jz L(cross_page_continue) |
| 181 | tzcntl %eax, %eax |
| 182 | # ifdef USE_AS_WMEMCHR |
| 183 | /* NB: Multiply bytes by CHAR_SIZE to get the wchar_t count. */ |
| 184 | leaq (%RAW_PTR_REG, %rax, CHAR_SIZE), %rax |
| 185 | # else |
| 186 | addq %RAW_PTR_REG, %rax |
| 187 | # endif |
| 188 | ret |
| 189 | |
| 190 | .p2align 4 |
| 191 | L(first_vec_x1): |
| 192 | tzcntl %eax, %eax |
| 193 | leaq VEC_SIZE(%rdi, %rax, CHAR_SIZE), %rax |
| 194 | ret |
| 195 | |
| 196 | .p2align 4 |
| 197 | L(first_vec_x2): |
| 198 | tzcntl %eax, %eax |
| 199 | leaq (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %rax |
| 200 | ret |
| 201 | |
| 202 | .p2align 4 |
| 203 | L(first_vec_x3): |
| 204 | tzcntl %eax, %eax |
| 205 | leaq (VEC_SIZE * 3)(%rdi, %rax, CHAR_SIZE), %rax |
| 206 | ret |
| 207 | |
| 208 | .p2align 4 |
| 209 | L(first_vec_x4): |
| 210 | tzcntl %eax, %eax |
| 211 | leaq (VEC_SIZE * 4)(%rdi, %rax, CHAR_SIZE), %rax |
| 212 | ret |
| 213 | |
| 214 | .p2align 5 |
| 215 | L(aligned_more): |
| 216 | /* Check the first 4 * VEC_SIZE. Only one VEC_SIZE at a time |
| 217 | since data is only aligned to VEC_SIZE. */ |
| 218 | |
| 219 | # ifndef USE_AS_RAWMEMCHR |
| 220 | /* Align data to VEC_SIZE. */ |
| 221 | L(cross_page_continue): |
| 222 | xorl %ecx, %ecx |
| 223 | subl %edi, %ecx |
| 224 | andq $-VEC_SIZE, %rdi |
| 225 | /* esi is for adjusting length to see if near the end. */ |
| 226 | leal (VEC_SIZE * 5)(%rdi, %rcx), %esi |
| 227 | # ifdef USE_AS_WMEMCHR |
| 228 | /* NB: Divide bytes by 4 to get the wchar_t count. */ |
| 229 | sarl $2, %esi |
| 230 | # endif |
| 231 | # else |
| 232 | andq $-VEC_SIZE, %rdi |
| 233 | L(cross_page_continue): |
| 234 | # endif |
| 235 | /* Load first VEC regardless. */ |
| 236 | VPCMP $0, (VEC_SIZE)(%rdi), %YMMMATCH, %k0 |
| 237 | kmovd %k0, %eax |
| 238 | # ifndef USE_AS_RAWMEMCHR |
| 239 | /* Adjust length. If near end handle specially. */ |
| 240 | subq %rsi, %rdx |
| 241 | jbe L(last_4x_vec_or_less) |
| 242 | # endif |
| 243 | testl %eax, %eax |
| 244 | jnz L(first_vec_x1) |
| 245 | |
| 246 | VPCMP $0, (VEC_SIZE * 2)(%rdi), %YMMMATCH, %k0 |
| 247 | kmovd %k0, %eax |
| 248 | testl %eax, %eax |
| 249 | jnz L(first_vec_x2) |
| 250 | |
| 251 | VPCMP $0, (VEC_SIZE * 3)(%rdi), %YMMMATCH, %k0 |
| 252 | kmovd %k0, %eax |
| 253 | testl %eax, %eax |
| 254 | jnz L(first_vec_x3) |
| 255 | |
| 256 | VPCMP $0, (VEC_SIZE * 4)(%rdi), %YMMMATCH, %k0 |
| 257 | kmovd %k0, %eax |
| 258 | testl %eax, %eax |
| 259 | jnz L(first_vec_x4) |
| 260 | |
| 261 | |
| 262 | # ifndef USE_AS_RAWMEMCHR |
| 263 | /* Check if at last CHAR_PER_VEC * 4 length. */ |
| 264 | subq $(CHAR_PER_VEC * 4), %rdx |
| 265 | jbe L(last_4x_vec_or_less_cmpeq) |
| 266 | /* +VEC_SIZE if USE_IN_RTM otherwise +VEC_SIZE * 5. */ |
| 267 | addq $(VEC_SIZE + (VEC_SIZE * 4 - BASE_OFFSET)), %rdi |
| 268 | |
| 269 | /* Align data to VEC_SIZE * 4 for the loop and readjust length. |
| 270 | */ |
| 271 | # ifdef USE_AS_WMEMCHR |
| 272 | movl %edi, %ecx |
| 273 | andq $-(4 * VEC_SIZE), %rdi |
| 274 | subl %edi, %ecx |
| 275 | /* NB: Divide bytes by 4 to get the wchar_t count. */ |
| 276 | sarl $2, %ecx |
| 277 | addq %rcx, %rdx |
| 278 | # else |
| 279 | addq %rdi, %rdx |
| 280 | andq $-(4 * VEC_SIZE), %rdi |
| 281 | subq %rdi, %rdx |
| 282 | # endif |
| 283 | # else |
| 284 | addq $(VEC_SIZE + (VEC_SIZE * 4 - BASE_OFFSET)), %rdi |
| 285 | andq $-(4 * VEC_SIZE), %rdi |
| 286 | # endif |
| 287 | # ifdef USE_IN_RTM |
| 288 | vpxorq %XMMZERO, %XMMZERO, %XMMZERO |
| 289 | # else |
| 290 | /* copy ymmmatch to ymm0 so we can use vpcmpeq which is not |
| 291 | encodable with EVEX registers (ymm16-ymm31). */ |
| 292 | vmovdqa64 %YMMMATCH, %ymm0 |
| 293 | # endif |
| 294 | |
| 295 | /* Compare 4 * VEC at a time forward. */ |
| 296 | .p2align 4 |
| 297 | L(loop_4x_vec): |
| 298 | /* Two versions of the loop. One that does not require |
| 299 | vzeroupper by not using ymm0-ymm15 and another does that require |
| 300 | vzeroupper because it uses ymm0-ymm15. The reason why ymm0-ymm15 |
| 301 | is used at all is because there is no EVEX encoding vpcmpeq and |
| 302 | with vpcmpeq this loop can be performed more efficiently. The |
| 303 | non-vzeroupper version is safe for RTM while the vzeroupper |
| 304 | version should be prefered if RTM are not supported. */ |
| 305 | # ifdef USE_IN_RTM |
| 306 | /* It would be possible to save some instructions using 4x VPCMP |
| 307 | but bottleneck on port 5 makes it not woth it. */ |
| 308 | VPCMP $4, (VEC_SIZE * 4)(%rdi), %YMMMATCH, %k1 |
| 309 | /* xor will set bytes match esi to zero. */ |
| 310 | vpxorq (VEC_SIZE * 5)(%rdi), %YMMMATCH, %YMM2 |
| 311 | vpxorq (VEC_SIZE * 6)(%rdi), %YMMMATCH, %YMM3 |
| 312 | VPCMP $0, (VEC_SIZE * 7)(%rdi), %YMMMATCH, %k3 |
| 313 | /* Reduce VEC2 / VEC3 with min and VEC1 with zero mask. */ |
| 314 | VPMINU %YMM2, %YMM3, %YMM3{%k1}{z} |
| 315 | VPCMP $0, %YMM3, %YMMZERO, %k2 |
| 316 | # else |
| 317 | /* Since vptern can only take 3x vectors fastest to do 1 vec |
| 318 | seperately with EVEX vpcmp. */ |
| 319 | # ifdef USE_AS_WMEMCHR |
| 320 | /* vptern can only accept masks for epi32/epi64 so can only save |
| 321 | instruction using not equals mask on vptern with wmemchr. */ |
| 322 | VPCMP $4, (%rdi), %YMMMATCH, %k1 |
| 323 | # else |
| 324 | VPCMP $0, (%rdi), %YMMMATCH, %k1 |
| 325 | # endif |
| 326 | /* Compare 3x with vpcmpeq and or them all together with vptern. |
| 327 | */ |
| 328 | VPCMPEQ VEC_SIZE(%rdi), %ymm0, %ymm2 |
| 329 | VPCMPEQ (VEC_SIZE * 2)(%rdi), %ymm0, %ymm3 |
| 330 | VPCMPEQ (VEC_SIZE * 3)(%rdi), %ymm0, %ymm4 |
| 331 | # ifdef USE_AS_WMEMCHR |
| 332 | /* This takes the not of or between ymm2, ymm3, ymm4 as well as |
| 333 | combines result from VEC0 with zero mask. */ |
| 334 | vpternlogd $1, %ymm2, %ymm3, %ymm4{%k1}{z} |
| 335 | vpmovmskb %ymm4, %ecx |
| 336 | # else |
| 337 | /* 254 is mask for oring ymm2, ymm3, ymm4 into ymm4. */ |
| 338 | vpternlogd $254, %ymm2, %ymm3, %ymm4 |
| 339 | vpmovmskb %ymm4, %ecx |
| 340 | kmovd %k1, %eax |
| 341 | # endif |
| 342 | # endif |
| 343 | |
| 344 | # ifdef USE_AS_RAWMEMCHR |
| 345 | subq $-(VEC_SIZE * 4), %rdi |
| 346 | # endif |
| 347 | # ifdef USE_IN_RTM |
| 348 | kortestd %k2, %k3 |
| 349 | # else |
| 350 | # ifdef USE_AS_WMEMCHR |
| 351 | /* ecx contains not of matches. All 1s means no matches. incl will |
| 352 | overflow and set zeroflag if that is the case. */ |
| 353 | incl %ecx |
| 354 | # else |
| 355 | /* If either VEC1 (eax) or VEC2-VEC4 (ecx) are not zero. Adding |
| 356 | to ecx is not an issue because if eax is non-zero it will be |
| 357 | used for returning the match. If it is zero the add does |
| 358 | nothing. */ |
| 359 | addq %rax, %rcx |
| 360 | # endif |
| 361 | # endif |
| 362 | # ifdef USE_AS_RAWMEMCHR |
| 363 | jz L(loop_4x_vec) |
| 364 | # else |
| 365 | jnz L(loop_4x_vec_end) |
| 366 | |
| 367 | subq $-(VEC_SIZE * 4), %rdi |
| 368 | |
| 369 | subq $(CHAR_PER_VEC * 4), %rdx |
| 370 | ja L(loop_4x_vec) |
| 371 | |
| 372 | /* Fall through into less than 4 remaining vectors of length case. |
| 373 | */ |
| 374 | VPCMP $0, BASE_OFFSET(%rdi), %YMMMATCH, %k0 |
| 375 | addq $(BASE_OFFSET - VEC_SIZE), %rdi |
| 376 | kmovd %k0, %eax |
| 377 | VZEROUPPER |
| 378 | |
| 379 | L(last_4x_vec_or_less): |
| 380 | /* Check if first VEC contained match. */ |
| 381 | testl %eax, %eax |
| 382 | jnz L(first_vec_x1_check) |
| 383 | |
| 384 | /* If remaining length > CHAR_PER_VEC * 2. */ |
| 385 | addl $(CHAR_PER_VEC * 2), %edx |
| 386 | jg L(last_4x_vec) |
| 387 | |
| 388 | L(last_2x_vec): |
| 389 | /* If remaining length < CHAR_PER_VEC. */ |
| 390 | addl $CHAR_PER_VEC, %edx |
| 391 | jle L(zero_end) |
| 392 | |
| 393 | /* Check VEC2 and compare any match with remaining length. */ |
| 394 | VPCMP $0, (VEC_SIZE * 2)(%rdi), %YMMMATCH, %k0 |
| 395 | kmovd %k0, %eax |
| 396 | tzcntl %eax, %eax |
| 397 | cmpl %eax, %edx |
| 398 | jbe L(set_zero_end) |
| 399 | leaq (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %rax |
| 400 | L(zero_end): |
| 401 | ret |
| 402 | |
| 403 | |
| 404 | .p2align 4 |
| 405 | L(first_vec_x1_check): |
| 406 | tzcntl %eax, %eax |
| 407 | /* Adjust length. */ |
| 408 | subl $-(CHAR_PER_VEC * 4), %edx |
| 409 | /* Check if match within remaining length. */ |
| 410 | cmpl %eax, %edx |
| 411 | jbe L(set_zero_end) |
| 412 | /* NB: Multiply bytes by CHAR_SIZE to get the wchar_t count. */ |
| 413 | leaq VEC_SIZE(%rdi, %rax, CHAR_SIZE), %rax |
| 414 | ret |
| 415 | L(set_zero_end): |
| 416 | xorl %eax, %eax |
| 417 | ret |
| 418 | |
| 419 | .p2align 4 |
| 420 | L(loop_4x_vec_end): |
| 421 | # endif |
| 422 | /* rawmemchr will fall through into this if match was found in |
| 423 | loop. */ |
| 424 | |
| 425 | # if defined USE_IN_RTM || defined USE_AS_WMEMCHR |
| 426 | /* k1 has not of matches with VEC1. */ |
| 427 | kmovd %k1, %eax |
| 428 | # ifdef USE_AS_WMEMCHR |
| 429 | subl $((1 << CHAR_PER_VEC) - 1), %eax |
| 430 | # else |
| 431 | incl %eax |
| 432 | # endif |
| 433 | # else |
| 434 | /* eax already has matches for VEC1. */ |
| 435 | testl %eax, %eax |
| 436 | # endif |
| 437 | jnz L(last_vec_x1_return) |
| 438 | |
| 439 | # ifdef USE_IN_RTM |
| 440 | VPCMP $0, %YMM2, %YMMZERO, %k0 |
| 441 | kmovd %k0, %eax |
| 442 | # else |
| 443 | vpmovmskb %ymm2, %eax |
| 444 | # endif |
| 445 | testl %eax, %eax |
| 446 | jnz L(last_vec_x2_return) |
| 447 | |
| 448 | # ifdef USE_IN_RTM |
| 449 | kmovd %k2, %eax |
| 450 | testl %eax, %eax |
| 451 | jnz L(last_vec_x3_return) |
| 452 | |
| 453 | kmovd %k3, %eax |
| 454 | tzcntl %eax, %eax |
| 455 | leaq (VEC_SIZE * 3 + RET_OFFSET)(%rdi, %rax, CHAR_SIZE), %rax |
| 456 | # else |
| 457 | vpmovmskb %ymm3, %eax |
| 458 | /* Combine matches in VEC3 (eax) with matches in VEC4 (ecx). */ |
| 459 | salq $VEC_SIZE, %rcx |
| 460 | orq %rcx, %rax |
| 461 | tzcntq %rax, %rax |
| 462 | leaq (VEC_SIZE * 2 + RET_OFFSET)(%rdi, %rax), %rax |
| 463 | VZEROUPPER |
| 464 | # endif |
| 465 | ret |
| 466 | |
| 467 | .p2align 4 |
| 468 | L(last_vec_x1_return): |
| 469 | tzcntl %eax, %eax |
| 470 | # if defined USE_AS_WMEMCHR || RET_OFFSET != 0 |
| 471 | /* NB: Multiply bytes by CHAR_SIZE to get the wchar_t count. */ |
| 472 | leaq RET_OFFSET(%rdi, %rax, CHAR_SIZE), %rax |
| 473 | # else |
| 474 | addq %rdi, %rax |
| 475 | # endif |
| 476 | VZEROUPPER |
| 477 | ret |
| 478 | |
| 479 | .p2align 4 |
| 480 | L(last_vec_x2_return): |
| 481 | tzcntl %eax, %eax |
| 482 | /* NB: Multiply bytes by RET_SCALE to get the wchar_t count |
| 483 | if relevant (RET_SCALE = CHAR_SIZE if USE_AS_WMEMCHAR and |
| 484 | USE_IN_RTM are both defined. Otherwise RET_SCALE = 1. */ |
| 485 | leaq (VEC_SIZE + RET_OFFSET)(%rdi, %rax, RET_SCALE), %rax |
| 486 | VZEROUPPER |
| 487 | ret |
| 488 | |
| 489 | # ifdef USE_IN_RTM |
| 490 | .p2align 4 |
| 491 | L(last_vec_x3_return): |
| 492 | tzcntl %eax, %eax |
| 493 | /* NB: Multiply bytes by CHAR_SIZE to get the wchar_t count. */ |
| 494 | leaq (VEC_SIZE * 2 + RET_OFFSET)(%rdi, %rax, CHAR_SIZE), %rax |
| 495 | ret |
| 496 | # endif |
| 497 | |
| 498 | # ifndef USE_AS_RAWMEMCHR |
| 499 | L(last_4x_vec_or_less_cmpeq): |
| 500 | VPCMP $0, (VEC_SIZE * 5)(%rdi), %YMMMATCH, %k0 |
| 501 | kmovd %k0, %eax |
| 502 | subq $-(VEC_SIZE * 4), %rdi |
| 503 | /* Check first VEC regardless. */ |
| 504 | testl %eax, %eax |
| 505 | jnz L(first_vec_x1_check) |
| 506 | |
| 507 | /* If remaining length <= CHAR_PER_VEC * 2. */ |
| 508 | addl $(CHAR_PER_VEC * 2), %edx |
| 509 | jle L(last_2x_vec) |
| 510 | |
| 511 | .p2align 4 |
| 512 | L(last_4x_vec): |
| 513 | VPCMP $0, (VEC_SIZE * 2)(%rdi), %YMMMATCH, %k0 |
| 514 | kmovd %k0, %eax |
| 515 | testl %eax, %eax |
| 516 | jnz L(last_vec_x2) |
| 517 | |
| 518 | |
| 519 | VPCMP $0, (VEC_SIZE * 3)(%rdi), %YMMMATCH, %k0 |
| 520 | kmovd %k0, %eax |
| 521 | /* Create mask for possible matches within remaining length. */ |
| 522 | # ifdef USE_AS_WMEMCHR |
| 523 | movl $((1 << (CHAR_PER_VEC * 2)) - 1), %ecx |
| 524 | bzhil %edx, %ecx, %ecx |
| 525 | # else |
| 526 | movq $-1, %rcx |
| 527 | bzhiq %rdx, %rcx, %rcx |
| 528 | # endif |
| 529 | /* Test matches in data against length match. */ |
| 530 | andl %ecx, %eax |
| 531 | jnz L(last_vec_x3) |
| 532 | |
| 533 | /* if remaining length <= CHAR_PER_VEC * 3 (Note this is after |
| 534 | remaining length was found to be > CHAR_PER_VEC * 2. */ |
| 535 | subl $CHAR_PER_VEC, %edx |
| 536 | jbe L(zero_end2) |
| 537 | |
| 538 | |
| 539 | VPCMP $0, (VEC_SIZE * 4)(%rdi), %YMMMATCH, %k0 |
| 540 | kmovd %k0, %eax |
| 541 | /* Shift remaining length mask for last VEC. */ |
| 542 | # ifdef USE_AS_WMEMCHR |
| 543 | shrl $CHAR_PER_VEC, %ecx |
| 544 | # else |
| 545 | shrq $CHAR_PER_VEC, %rcx |
| 546 | # endif |
| 547 | andl %ecx, %eax |
| 548 | jz L(zero_end2) |
| 549 | tzcntl %eax, %eax |
| 550 | leaq (VEC_SIZE * 4)(%rdi, %rax, CHAR_SIZE), %rax |
| 551 | L(zero_end2): |
| 552 | ret |
| 553 | |
| 554 | L(last_vec_x2): |
| 555 | tzcntl %eax, %eax |
| 556 | leaq (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %rax |
| 557 | ret |
| 558 | |
| 559 | .p2align 4 |
| 560 | L(last_vec_x3): |
| 561 | tzcntl %eax, %eax |
| 562 | leaq (VEC_SIZE * 3)(%rdi, %rax, CHAR_SIZE), %rax |
| 563 | ret |
| 564 | # endif |
| 565 | |
| 566 | END (MEMCHR) |
| 567 | #endif |
| 568 | |