1 | /* Compute remainder and a congruent to the quotient. |
2 | Copyright (C) 1997-2021 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, see |
18 | <https://www.gnu.org/licenses/>. */ |
19 | |
20 | #include <math.h> |
21 | |
22 | #include <math_private.h> |
23 | #include <libm-alias-ldouble.h> |
24 | |
25 | |
26 | static const long double zero = 0.0; |
27 | |
28 | |
29 | long double |
30 | __remquol (long double x, long double p, int *quo) |
31 | { |
32 | int32_t ex,ep,hx,hp; |
33 | uint32_t sx,lx,lp; |
34 | int cquo,qs; |
35 | |
36 | GET_LDOUBLE_WORDS (ex, hx, lx, x); |
37 | GET_LDOUBLE_WORDS (ep, hp, lp, p); |
38 | sx = ex & 0x8000; |
39 | qs = (sx ^ (ep & 0x8000)) >> 15; |
40 | ep &= 0x7fff; |
41 | ex &= 0x7fff; |
42 | |
43 | /* Purge off exception values. */ |
44 | if ((ep | hp | lp) == 0) |
45 | return (x * p) / (x * p); /* p = 0 */ |
46 | if ((ex == 0x7fff) /* x not finite */ |
47 | || ((ep == 0x7fff) /* p is NaN */ |
48 | && (((hp & 0x7fffffff) | lp) != 0))) |
49 | return (x * p) / (x * p); |
50 | |
51 | if (ep <= 0x7ffb) |
52 | x = __ieee754_fmodl (x, 8 * p); /* now x < 8p */ |
53 | |
54 | if (((ex - ep) | (hx - hp) | (lx - lp)) == 0) |
55 | { |
56 | *quo = qs ? -1 : 1; |
57 | return zero * x; |
58 | } |
59 | |
60 | x = fabsl (x); |
61 | p = fabsl (p); |
62 | cquo = 0; |
63 | |
64 | if (ep <= 0x7ffc && x >= 4 * p) |
65 | { |
66 | x -= 4 * p; |
67 | cquo += 4; |
68 | } |
69 | if (ep <= 0x7ffd && x >= 2 * p) |
70 | { |
71 | x -= 2 * p; |
72 | cquo += 2; |
73 | } |
74 | |
75 | if (ep < 0x0002) |
76 | { |
77 | if (x + x > p) |
78 | { |
79 | x -= p; |
80 | ++cquo; |
81 | if (x + x >= p) |
82 | { |
83 | x -= p; |
84 | ++cquo; |
85 | } |
86 | } |
87 | } |
88 | else |
89 | { |
90 | long double p_half = 0.5 * p; |
91 | if (x > p_half) |
92 | { |
93 | x -= p; |
94 | ++cquo; |
95 | if (x >= p_half) |
96 | { |
97 | x -= p; |
98 | ++cquo; |
99 | } |
100 | } |
101 | } |
102 | |
103 | *quo = qs ? -cquo : cquo; |
104 | |
105 | /* Ensure correct sign of zero result in round-downward mode. */ |
106 | if (x == 0.0L) |
107 | x = 0.0L; |
108 | if (sx) |
109 | x = -x; |
110 | return x; |
111 | } |
112 | libm_alias_ldouble (__remquo, remquo) |
113 | |