1 | /* lgammal expanding around zeros. |
2 | Copyright (C) 2015-2021 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #include <float.h> |
20 | #include <math.h> |
21 | #include <math_private.h> |
22 | #include <fenv_private.h> |
23 | |
24 | static const long double lgamma_zeros[][2] = |
25 | { |
26 | { -0x2.74ff92c01f0d82acp+0L, 0x1.360cea0e5f8ed3ccp-68L }, |
27 | { -0x2.bf6821437b201978p+0L, -0x1.95a4b4641eaebf4cp-64L }, |
28 | { -0x3.24c1b793cb35efb8p+0L, -0xb.e699ad3d9ba6545p-68L }, |
29 | { -0x3.f48e2a8f85fca17p+0L, -0xd.4561291236cc321p-68L }, |
30 | { -0x4.0a139e16656030cp+0L, -0x3.9f0b0de18112ac18p-64L }, |
31 | { -0x4.fdd5de9bbabf351p+0L, -0xd.0aa4076988501d8p-68L }, |
32 | { -0x5.021a95fc2db64328p+0L, -0x2.4c56e595394decc8p-64L }, |
33 | { -0x5.ffa4bd647d0357ep+0L, 0x2.b129d342ce12071cp-64L }, |
34 | { -0x6.005ac9625f233b6p+0L, -0x7.c2d96d16385cb868p-68L }, |
35 | { -0x6.fff2fddae1bbff4p+0L, 0x2.9d949a3dc02de0cp-64L }, |
36 | { -0x7.000cff7b7f87adf8p+0L, 0x3.b7d23246787d54d8p-64L }, |
37 | { -0x7.fffe5fe05673c3c8p+0L, -0x2.9e82b522b0ca9d3p-64L }, |
38 | { -0x8.0001a01459fc9f6p+0L, -0xc.b3cec1cec857667p-68L }, |
39 | { -0x8.ffffd1c425e81p+0L, 0x3.79b16a8b6da6181cp-64L }, |
40 | { -0x9.00002e3bb47d86dp+0L, -0x6.d843fedc351deb78p-64L }, |
41 | { -0x9.fffffb606bdfdcdp+0L, -0x6.2ae77a50547c69dp-68L }, |
42 | { -0xa.0000049f93bb992p+0L, -0x7.b45d95e15441e03p-64L }, |
43 | { -0xa.ffffff9466e9f1bp+0L, -0x3.6dacd2adbd18d05cp-64L }, |
44 | { -0xb.0000006b9915316p+0L, 0x2.69a590015bf1b414p-64L }, |
45 | { -0xb.fffffff70893874p+0L, 0x7.821be533c2c36878p-64L }, |
46 | { -0xc.00000008f76c773p+0L, -0x1.567c0f0250f38792p-64L }, |
47 | { -0xc.ffffffff4f6dcf6p+0L, -0x1.7f97a5ffc757d548p-64L }, |
48 | { -0xd.00000000b09230ap+0L, 0x3.f997c22e46fc1c9p-64L }, |
49 | { -0xd.fffffffff36345bp+0L, 0x4.61e7b5c1f62ee89p-64L }, |
50 | { -0xe.000000000c9cba5p+0L, -0x4.5e94e75ec5718f78p-64L }, |
51 | { -0xe.ffffffffff28c06p+0L, -0xc.6604ef30371f89dp-68L }, |
52 | { -0xf.0000000000d73fap+0L, 0xc.6642f1bdf07a161p-68L }, |
53 | { -0xf.fffffffffff28cp+0L, -0x6.0c6621f512e72e5p-64L }, |
54 | { -0x1.000000000000d74p+4L, 0x6.0c6625ebdb406c48p-64L }, |
55 | { -0x1.0ffffffffffff356p+4L, -0x9.c47e7a93e1c46a1p-64L }, |
56 | { -0x1.1000000000000caap+4L, 0x9.c47e7a97778935ap-64L }, |
57 | { -0x1.1fffffffffffff4cp+4L, 0x1.3c31dcbecd2f74d4p-64L }, |
58 | { -0x1.20000000000000b4p+4L, -0x1.3c31dcbeca4c3b3p-64L }, |
59 | { -0x1.2ffffffffffffff6p+4L, -0x8.5b25cbf5f545ceep-64L }, |
60 | { -0x1.300000000000000ap+4L, 0x8.5b25cbf5f547e48p-64L }, |
61 | { -0x1.4p+4L, 0x7.950ae90080894298p-64L }, |
62 | { -0x1.4p+4L, -0x7.950ae9008089414p-64L }, |
63 | { -0x1.5p+4L, 0x5.c6e3bdb73d5c63p-68L }, |
64 | { -0x1.5p+4L, -0x5.c6e3bdb73d5c62f8p-68L }, |
65 | { -0x1.6p+4L, 0x4.338e5b6dfe14a518p-72L }, |
66 | { -0x1.6p+4L, -0x4.338e5b6dfe14a51p-72L }, |
67 | { -0x1.7p+4L, 0x2.ec368262c7033b3p-76L }, |
68 | { -0x1.7p+4L, -0x2.ec368262c7033b3p-76L }, |
69 | { -0x1.8p+4L, 0x1.f2cf01972f577ccap-80L }, |
70 | { -0x1.8p+4L, -0x1.f2cf01972f577ccap-80L }, |
71 | { -0x1.9p+4L, 0x1.3f3ccdd165fa8d4ep-84L }, |
72 | { -0x1.9p+4L, -0x1.3f3ccdd165fa8d4ep-84L }, |
73 | { -0x1.ap+4L, 0xc.4742fe35272cd1cp-92L }, |
74 | { -0x1.ap+4L, -0xc.4742fe35272cd1cp-92L }, |
75 | { -0x1.bp+4L, 0x7.46ac70b733a8c828p-96L }, |
76 | { -0x1.bp+4L, -0x7.46ac70b733a8c828p-96L }, |
77 | { -0x1.cp+4L, 0x4.2862898d42174ddp-100L }, |
78 | { -0x1.cp+4L, -0x4.2862898d42174ddp-100L }, |
79 | { -0x1.dp+4L, 0x2.4b3f31686b15af58p-104L }, |
80 | { -0x1.dp+4L, -0x2.4b3f31686b15af58p-104L }, |
81 | { -0x1.ep+4L, 0x1.3932c5047d60e60cp-108L }, |
82 | { -0x1.ep+4L, -0x1.3932c5047d60e60cp-108L }, |
83 | { -0x1.fp+4L, 0xa.1a6973c1fade217p-116L }, |
84 | { -0x1.fp+4L, -0xa.1a6973c1fade217p-116L }, |
85 | { -0x2p+4L, 0x5.0d34b9e0fd6f10b8p-120L }, |
86 | { -0x2p+4L, -0x5.0d34b9e0fd6f10b8p-120L }, |
87 | { -0x2.1p+4L, 0x2.73024a9ba1aa36a8p-124L }, |
88 | }; |
89 | |
90 | static const long double e_hi = 0x2.b7e151628aed2a6cp+0L; |
91 | static const long double e_lo = -0x1.408ea77f630b0c38p-64L; |
92 | |
93 | /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) in Stirling's |
94 | approximation to lgamma function. */ |
95 | |
96 | static const long double lgamma_coeff[] = |
97 | { |
98 | 0x1.5555555555555556p-4L, |
99 | -0xb.60b60b60b60b60bp-12L, |
100 | 0x3.4034034034034034p-12L, |
101 | -0x2.7027027027027028p-12L, |
102 | 0x3.72a3c5631fe46aep-12L, |
103 | -0x7.daac36664f1f208p-12L, |
104 | 0x1.a41a41a41a41a41ap-8L, |
105 | -0x7.90a1b2c3d4e5f708p-8L, |
106 | 0x2.dfd2c703c0cfff44p-4L, |
107 | -0x1.6476701181f39edcp+0L, |
108 | 0xd.672219167002d3ap+0L, |
109 | -0x9.cd9292e6660d55bp+4L, |
110 | 0x8.911a740da740da7p+8L, |
111 | -0x8.d0cc570e255bf5ap+12L, |
112 | 0xa.8d1044d3708d1c2p+16L, |
113 | -0xe.8844d8a169abbc4p+20L, |
114 | }; |
115 | |
116 | #define NCOEFF (sizeof (lgamma_coeff) / sizeof (lgamma_coeff[0])) |
117 | |
118 | /* Polynomial approximations to (|gamma(x)|-1)(x-n)/(x-x0), where n is |
119 | the integer end-point of the half-integer interval containing x and |
120 | x0 is the zero of lgamma in that half-integer interval. Each |
121 | polynomial is expressed in terms of x-xm, where xm is the midpoint |
122 | of the interval for which the polynomial applies. */ |
123 | |
124 | static const long double poly_coeff[] = |
125 | { |
126 | /* Interval [-2.125, -2] (polynomial degree 13). */ |
127 | -0x1.0b71c5c54d42eb6cp+0L, |
128 | -0xc.73a1dc05f349517p-4L, |
129 | -0x1.ec841408528b6baep-4L, |
130 | -0xe.37c9da26fc3b492p-4L, |
131 | -0x1.03cd87c5178991ap-4L, |
132 | -0xe.ae9ada65ece2f39p-4L, |
133 | 0x9.b1185505edac18dp-8L, |
134 | -0xe.f28c130b54d3cb2p-4L, |
135 | 0x2.6ec1666cf44a63bp-4L, |
136 | -0xf.57cb2774193bbd5p-4L, |
137 | 0x4.5ae64671a41b1c4p-4L, |
138 | -0xf.f48ea8b5bd3a7cep-4L, |
139 | 0x6.7d73788a8d30ef58p-4L, |
140 | -0x1.11e0e4b506bd272ep+0L, |
141 | /* Interval [-2.25, -2.125] (polynomial degree 13). */ |
142 | -0xf.2930890d7d675a8p-4L, |
143 | -0xc.a5cfde054eab5cdp-4L, |
144 | 0x3.9c9e0fdebb0676e4p-4L, |
145 | -0x1.02a5ad35605f0d8cp+0L, |
146 | 0x9.6e9b1185d0b92edp-4L, |
147 | -0x1.4d8332f3d6a3959p+0L, |
148 | 0x1.1c0c8cacd0ced3eap+0L, |
149 | -0x1.c9a6f592a67b1628p+0L, |
150 | 0x1.d7e9476f96aa4bd6p+0L, |
151 | -0x2.921cedb488bb3318p+0L, |
152 | 0x2.e8b3fd6ca193e4c8p+0L, |
153 | -0x3.cb69d9d6628e4a2p+0L, |
154 | 0x4.95f12c73b558638p+0L, |
155 | -0x5.d392d0b97c02ab6p+0L, |
156 | /* Interval [-2.375, -2.25] (polynomial degree 14). */ |
157 | -0xd.7d28d505d618122p-4L, |
158 | -0xe.69649a304098532p-4L, |
159 | 0xb.0d74a2827d055c5p-4L, |
160 | -0x1.924b09228531c00ep+0L, |
161 | 0x1.d49b12bccee4f888p+0L, |
162 | -0x3.0898bb7dbb21e458p+0L, |
163 | 0x4.207a6cad6fa10a2p+0L, |
164 | -0x6.39ee630b46093ad8p+0L, |
165 | 0x8.e2e25211a3fb5ccp+0L, |
166 | -0xd.0e85ccd8e79c08p+0L, |
167 | 0x1.2e45882bc17f9e16p+4L, |
168 | -0x1.b8b6e841815ff314p+4L, |
169 | 0x2.7ff8bf7504fa04dcp+4L, |
170 | -0x3.c192e9c903352974p+4L, |
171 | 0x5.8040b75f4ef07f98p+4L, |
172 | /* Interval [-2.5, -2.375] (polynomial degree 15). */ |
173 | -0xb.74ea1bcfff94b2cp-4L, |
174 | -0x1.2a82bd590c375384p+0L, |
175 | 0x1.88020f828b968634p+0L, |
176 | -0x3.32279f040eb80fa4p+0L, |
177 | 0x5.57ac825175943188p+0L, |
178 | -0x9.c2aedcfe10f129ep+0L, |
179 | 0x1.12c132f2df02881ep+4L, |
180 | -0x1.ea94e26c0b6ffa6p+4L, |
181 | 0x3.66b4a8bb0290013p+4L, |
182 | -0x6.0cf735e01f5990bp+4L, |
183 | 0xa.c10a8db7ae99343p+4L, |
184 | -0x1.31edb212b315feeap+8L, |
185 | 0x2.1f478592298b3ebp+8L, |
186 | -0x3.c546da5957ace6ccp+8L, |
187 | 0x7.0e3d2a02579ba4bp+8L, |
188 | -0xc.b1ea961c39302f8p+8L, |
189 | /* Interval [-2.625, -2.5] (polynomial degree 16). */ |
190 | -0x3.d10108c27ebafad4p-4L, |
191 | 0x1.cd557caff7d2b202p+0L, |
192 | 0x3.819b4856d3995034p+0L, |
193 | 0x6.8505cbad03dd3bd8p+0L, |
194 | 0xb.c1b2e653aa0b924p+0L, |
195 | 0x1.50a53a38f05f72d6p+4L, |
196 | 0x2.57ae00cbd06efb34p+4L, |
197 | 0x4.2b1563077a577e9p+4L, |
198 | 0x7.6989ed790138a7f8p+4L, |
199 | 0xd.2dd28417b4f8406p+4L, |
200 | 0x1.76e1b71f0710803ap+8L, |
201 | 0x2.9a7a096254ac032p+8L, |
202 | 0x4.a0e6109e2a039788p+8L, |
203 | 0x8.37ea17a93c877b2p+8L, |
204 | 0xe.9506a641143612bp+8L, |
205 | 0x1.b680ed4ea386d52p+12L, |
206 | 0x3.28a2130c8de0ae84p+12L, |
207 | /* Interval [-2.75, -2.625] (polynomial degree 15). */ |
208 | -0x6.b5d252a56e8a7548p-4L, |
209 | 0x1.28d60383da3ac72p+0L, |
210 | 0x1.db6513ada8a6703ap+0L, |
211 | 0x2.e217118f9d34aa7cp+0L, |
212 | 0x4.450112c5cbd6256p+0L, |
213 | 0x6.4af99151e972f92p+0L, |
214 | 0x9.2db598b5b183cd6p+0L, |
215 | 0xd.62bef9c9adcff6ap+0L, |
216 | 0x1.379f290d743d9774p+4L, |
217 | 0x1.c58271ff823caa26p+4L, |
218 | 0x2.93a871b87a06e73p+4L, |
219 | 0x3.bf9db66103d7ec98p+4L, |
220 | 0x5.73247c111fbf197p+4L, |
221 | 0x7.ec8b9973ba27d008p+4L, |
222 | 0xb.eca5f9619b39c03p+4L, |
223 | 0x1.18f2e46411c78b1cp+8L, |
224 | /* Interval [-2.875, -2.75] (polynomial degree 14). */ |
225 | -0x8.a41b1e4f36ff88ep-4L, |
226 | 0xc.da87d3b69dc0f34p-4L, |
227 | 0x1.1474ad5c36158ad2p+0L, |
228 | 0x1.761ecb90c5553996p+0L, |
229 | 0x1.d279bff9ae234f8p+0L, |
230 | 0x2.4e5d0055a16c5414p+0L, |
231 | 0x2.d57545a783902f8cp+0L, |
232 | 0x3.8514eec263aa9f98p+0L, |
233 | 0x4.5235e338245f6fe8p+0L, |
234 | 0x5.562b1ef200b256c8p+0L, |
235 | 0x6.8ec9782b93bd565p+0L, |
236 | 0x8.14baf4836483508p+0L, |
237 | 0x9.efaf35dc712ea79p+0L, |
238 | 0xc.8431f6a226507a9p+0L, |
239 | 0xf.80358289a768401p+0L, |
240 | /* Interval [-3, -2.875] (polynomial degree 13). */ |
241 | -0xa.046d667e468f3e4p-4L, |
242 | 0x9.70b88dcc006c216p-4L, |
243 | 0xa.a8a39421c86ce9p-4L, |
244 | 0xd.2f4d1363f321e89p-4L, |
245 | 0xd.ca9aa1a3ab2f438p-4L, |
246 | 0xf.cf09c31f05d02cbp-4L, |
247 | 0x1.04b133a195686a38p+0L, |
248 | 0x1.22b54799d0072024p+0L, |
249 | 0x1.2c5802b869a36ae8p+0L, |
250 | 0x1.4aadf23055d7105ep+0L, |
251 | 0x1.5794078dd45c55d6p+0L, |
252 | 0x1.7759069da18bcf0ap+0L, |
253 | 0x1.8e672cefa4623f34p+0L, |
254 | 0x1.b2acfa32c17145e6p+0L, |
255 | }; |
256 | |
257 | static const size_t poly_deg[] = |
258 | { |
259 | 13, |
260 | 13, |
261 | 14, |
262 | 15, |
263 | 16, |
264 | 15, |
265 | 14, |
266 | 13, |
267 | }; |
268 | |
269 | static const size_t poly_end[] = |
270 | { |
271 | 13, |
272 | 27, |
273 | 42, |
274 | 58, |
275 | 75, |
276 | 91, |
277 | 106, |
278 | 120, |
279 | }; |
280 | |
281 | /* Compute sin (pi * X) for -0.25 <= X <= 0.5. */ |
282 | |
283 | static long double |
284 | lg_sinpi (long double x) |
285 | { |
286 | if (x <= 0.25L) |
287 | return __sinl (M_PIl * x); |
288 | else |
289 | return __cosl (M_PIl * (0.5L - x)); |
290 | } |
291 | |
292 | /* Compute cos (pi * X) for -0.25 <= X <= 0.5. */ |
293 | |
294 | static long double |
295 | lg_cospi (long double x) |
296 | { |
297 | if (x <= 0.25L) |
298 | return __cosl (M_PIl * x); |
299 | else |
300 | return __sinl (M_PIl * (0.5L - x)); |
301 | } |
302 | |
303 | /* Compute cot (pi * X) for -0.25 <= X <= 0.5. */ |
304 | |
305 | static long double |
306 | lg_cotpi (long double x) |
307 | { |
308 | return lg_cospi (x) / lg_sinpi (x); |
309 | } |
310 | |
311 | /* Compute lgamma of a negative argument -33 < X < -2, setting |
312 | *SIGNGAMP accordingly. */ |
313 | |
314 | long double |
315 | __lgamma_negl (long double x, int *signgamp) |
316 | { |
317 | /* Determine the half-integer region X lies in, handle exact |
318 | integers and determine the sign of the result. */ |
319 | int i = floorl (-2 * x); |
320 | if ((i & 1) == 0 && i == -2 * x) |
321 | return 1.0L / 0.0L; |
322 | long double xn = ((i & 1) == 0 ? -i / 2 : (-i - 1) / 2); |
323 | i -= 4; |
324 | *signgamp = ((i & 2) == 0 ? -1 : 1); |
325 | |
326 | SET_RESTORE_ROUNDL (FE_TONEAREST); |
327 | |
328 | /* Expand around the zero X0 = X0_HI + X0_LO. */ |
329 | long double x0_hi = lgamma_zeros[i][0], x0_lo = lgamma_zeros[i][1]; |
330 | long double xdiff = x - x0_hi - x0_lo; |
331 | |
332 | /* For arguments in the range -3 to -2, use polynomial |
333 | approximations to an adjusted version of the gamma function. */ |
334 | if (i < 2) |
335 | { |
336 | int j = floorl (-8 * x) - 16; |
337 | long double xm = (-33 - 2 * j) * 0.0625L; |
338 | long double x_adj = x - xm; |
339 | size_t deg = poly_deg[j]; |
340 | size_t end = poly_end[j]; |
341 | long double g = poly_coeff[end]; |
342 | for (size_t j = 1; j <= deg; j++) |
343 | g = g * x_adj + poly_coeff[end - j]; |
344 | return __log1pl (g * xdiff / (x - xn)); |
345 | } |
346 | |
347 | /* The result we want is log (sinpi (X0) / sinpi (X)) |
348 | + log (gamma (1 - X0) / gamma (1 - X)). */ |
349 | long double x_idiff = fabsl (xn - x), x0_idiff = fabsl (xn - x0_hi - x0_lo); |
350 | long double log_sinpi_ratio; |
351 | if (x0_idiff < x_idiff * 0.5L) |
352 | /* Use log not log1p to avoid inaccuracy from log1p of arguments |
353 | close to -1. */ |
354 | log_sinpi_ratio = __ieee754_logl (lg_sinpi (x0_idiff) |
355 | / lg_sinpi (x_idiff)); |
356 | else |
357 | { |
358 | /* Use log1p not log to avoid inaccuracy from log of arguments |
359 | close to 1. X0DIFF2 has positive sign if X0 is further from |
360 | XN than X is from XN, negative sign otherwise. */ |
361 | long double x0diff2 = ((i & 1) == 0 ? xdiff : -xdiff) * 0.5L; |
362 | long double sx0d2 = lg_sinpi (x0diff2); |
363 | long double cx0d2 = lg_cospi (x0diff2); |
364 | log_sinpi_ratio = __log1pl (2 * sx0d2 |
365 | * (-sx0d2 + cx0d2 * lg_cotpi (x_idiff))); |
366 | } |
367 | |
368 | long double log_gamma_ratio; |
369 | long double y0 = 1 - x0_hi; |
370 | long double y0_eps = -x0_hi + (1 - y0) - x0_lo; |
371 | long double y = 1 - x; |
372 | long double y_eps = -x + (1 - y); |
373 | /* We now wish to compute LOG_GAMMA_RATIO |
374 | = log (gamma (Y0 + Y0_EPS) / gamma (Y + Y_EPS)). XDIFF |
375 | accurately approximates the difference Y0 + Y0_EPS - Y - |
376 | Y_EPS. Use Stirling's approximation. First, we may need to |
377 | adjust into the range where Stirling's approximation is |
378 | sufficiently accurate. */ |
379 | long double log_gamma_adj = 0; |
380 | if (i < 8) |
381 | { |
382 | int n_up = (9 - i) / 2; |
383 | long double ny0, ny0_eps, ny, ny_eps; |
384 | ny0 = y0 + n_up; |
385 | ny0_eps = y0 - (ny0 - n_up) + y0_eps; |
386 | y0 = ny0; |
387 | y0_eps = ny0_eps; |
388 | ny = y + n_up; |
389 | ny_eps = y - (ny - n_up) + y_eps; |
390 | y = ny; |
391 | y_eps = ny_eps; |
392 | long double prodm1 = __lgamma_productl (xdiff, y - n_up, y_eps, n_up); |
393 | log_gamma_adj = -__log1pl (prodm1); |
394 | } |
395 | long double log_gamma_high |
396 | = (xdiff * __log1pl ((y0 - e_hi - e_lo + y0_eps) / e_hi) |
397 | + (y - 0.5L + y_eps) * __log1pl (xdiff / y) + log_gamma_adj); |
398 | /* Compute the sum of (B_2k / 2k(2k-1))(Y0^-(2k-1) - Y^-(2k-1)). */ |
399 | long double y0r = 1 / y0, yr = 1 / y; |
400 | long double y0r2 = y0r * y0r, yr2 = yr * yr; |
401 | long double rdiff = -xdiff / (y * y0); |
402 | long double bterm[NCOEFF]; |
403 | long double dlast = rdiff, elast = rdiff * yr * (yr + y0r); |
404 | bterm[0] = dlast * lgamma_coeff[0]; |
405 | for (size_t j = 1; j < NCOEFF; j++) |
406 | { |
407 | long double dnext = dlast * y0r2 + elast; |
408 | long double enext = elast * yr2; |
409 | bterm[j] = dnext * lgamma_coeff[j]; |
410 | dlast = dnext; |
411 | elast = enext; |
412 | } |
413 | long double log_gamma_low = 0; |
414 | for (size_t j = 0; j < NCOEFF; j++) |
415 | log_gamma_low += bterm[NCOEFF - 1 - j]; |
416 | log_gamma_ratio = log_gamma_high + log_gamma_low; |
417 | |
418 | return log_sinpi_ratio + log_gamma_ratio; |
419 | } |
420 | |