1 | /* |
2 | * ==================================================== |
3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
4 | * |
5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
6 | * Permission to use, copy, modify, and distribute this |
7 | * software is freely granted, provided that this notice |
8 | * is preserved. |
9 | * ==================================================== |
10 | */ |
11 | |
12 | /* Long double expansions are |
13 | Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> |
14 | and are incorporated herein by permission of the author. The author |
15 | reserves the right to distribute this material elsewhere under different |
16 | copying permissions. These modifications are distributed here under |
17 | the following terms: |
18 | |
19 | This library is free software; you can redistribute it and/or |
20 | modify it under the terms of the GNU Lesser General Public |
21 | License as published by the Free Software Foundation; either |
22 | version 2.1 of the License, or (at your option) any later version. |
23 | |
24 | This library is distributed in the hope that it will be useful, |
25 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
26 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
27 | Lesser General Public License for more details. |
28 | |
29 | You should have received a copy of the GNU Lesser General Public |
30 | License along with this library; if not, see |
31 | <https://www.gnu.org/licenses/>. */ |
32 | |
33 | /* __ieee754_lgammal_r(x, signgamp) |
34 | * Reentrant version of the logarithm of the Gamma function |
35 | * with user provide pointer for the sign of Gamma(x). |
36 | * |
37 | * Method: |
38 | * 1. Argument Reduction for 0 < x <= 8 |
39 | * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may |
40 | * reduce x to a number in [1.5,2.5] by |
41 | * lgamma(1+s) = log(s) + lgamma(s) |
42 | * for example, |
43 | * lgamma(7.3) = log(6.3) + lgamma(6.3) |
44 | * = log(6.3*5.3) + lgamma(5.3) |
45 | * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3) |
46 | * 2. Polynomial approximation of lgamma around its |
47 | * minimun ymin=1.461632144968362245 to maintain monotonicity. |
48 | * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use |
49 | * Let z = x-ymin; |
50 | * lgamma(x) = -1.214862905358496078218 + z^2*poly(z) |
51 | * 2. Rational approximation in the primary interval [2,3] |
52 | * We use the following approximation: |
53 | * s = x-2.0; |
54 | * lgamma(x) = 0.5*s + s*P(s)/Q(s) |
55 | * Our algorithms are based on the following observation |
56 | * |
57 | * zeta(2)-1 2 zeta(3)-1 3 |
58 | * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ... |
59 | * 2 3 |
60 | * |
61 | * where Euler = 0.5771... is the Euler constant, which is very |
62 | * close to 0.5. |
63 | * |
64 | * 3. For x>=8, we have |
65 | * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+.... |
66 | * (better formula: |
67 | * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...) |
68 | * Let z = 1/x, then we approximation |
69 | * f(z) = lgamma(x) - (x-0.5)(log(x)-1) |
70 | * by |
71 | * 3 5 11 |
72 | * w = w0 + w1*z + w2*z + w3*z + ... + w6*z |
73 | * |
74 | * 4. For negative x, since (G is gamma function) |
75 | * -x*G(-x)*G(x) = pi/sin(pi*x), |
76 | * we have |
77 | * G(x) = pi/(sin(pi*x)*(-x)*G(-x)) |
78 | * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0 |
79 | * Hence, for x<0, signgam = sign(sin(pi*x)) and |
80 | * lgamma(x) = log(|Gamma(x)|) |
81 | * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x); |
82 | * Note: one should avoid compute pi*(-x) directly in the |
83 | * computation of sin(pi*(-x)). |
84 | * |
85 | * 5. Special Cases |
86 | * lgamma(2+s) ~ s*(1-Euler) for tiny s |
87 | * lgamma(1)=lgamma(2)=0 |
88 | * lgamma(x) ~ -log(x) for tiny x |
89 | * lgamma(0) = lgamma(inf) = inf |
90 | * lgamma(-integer) = +-inf |
91 | * |
92 | */ |
93 | |
94 | #include <math.h> |
95 | #include <math_private.h> |
96 | #include <libc-diag.h> |
97 | #include <libm-alias-finite.h> |
98 | |
99 | static const long double |
100 | half = 0.5L, |
101 | one = 1.0L, |
102 | pi = 3.14159265358979323846264L, |
103 | two63 = 9.223372036854775808e18L, |
104 | |
105 | /* lgam(1+x) = 0.5 x + x a(x)/b(x) |
106 | -0.268402099609375 <= x <= 0 |
107 | peak relative error 6.6e-22 */ |
108 | a0 = -6.343246574721079391729402781192128239938E2L, |
109 | a1 = 1.856560238672465796768677717168371401378E3L, |
110 | a2 = 2.404733102163746263689288466865843408429E3L, |
111 | a3 = 8.804188795790383497379532868917517596322E2L, |
112 | a4 = 1.135361354097447729740103745999661157426E2L, |
113 | a5 = 3.766956539107615557608581581190400021285E0L, |
114 | |
115 | b0 = 8.214973713960928795704317259806842490498E3L, |
116 | b1 = 1.026343508841367384879065363925870888012E4L, |
117 | b2 = 4.553337477045763320522762343132210919277E3L, |
118 | b3 = 8.506975785032585797446253359230031874803E2L, |
119 | b4 = 6.042447899703295436820744186992189445813E1L, |
120 | /* b5 = 1.000000000000000000000000000000000000000E0 */ |
121 | |
122 | |
123 | tc = 1.4616321449683623412626595423257213284682E0L, |
124 | tf = -1.2148629053584961146050602565082954242826E-1,/* double precision */ |
125 | /* tt = (tail of tf), i.e. tf + tt has extended precision. */ |
126 | tt = 3.3649914684731379602768989080467587736363E-18L, |
127 | /* lgam ( 1.4616321449683623412626595423257213284682E0 ) = |
128 | -1.2148629053584960809551455717769158215135617312999903886372437313313530E-1 */ |
129 | |
130 | /* lgam (x + tc) = tf + tt + x g(x)/h(x) |
131 | - 0.230003726999612341262659542325721328468 <= x |
132 | <= 0.2699962730003876587373404576742786715318 |
133 | peak relative error 2.1e-21 */ |
134 | g0 = 3.645529916721223331888305293534095553827E-18L, |
135 | g1 = 5.126654642791082497002594216163574795690E3L, |
136 | g2 = 8.828603575854624811911631336122070070327E3L, |
137 | g3 = 5.464186426932117031234820886525701595203E3L, |
138 | g4 = 1.455427403530884193180776558102868592293E3L, |
139 | g5 = 1.541735456969245924860307497029155838446E2L, |
140 | g6 = 4.335498275274822298341872707453445815118E0L, |
141 | |
142 | h0 = 1.059584930106085509696730443974495979641E4L, |
143 | h1 = 2.147921653490043010629481226937850618860E4L, |
144 | h2 = 1.643014770044524804175197151958100656728E4L, |
145 | h3 = 5.869021995186925517228323497501767586078E3L, |
146 | h4 = 9.764244777714344488787381271643502742293E2L, |
147 | h5 = 6.442485441570592541741092969581997002349E1L, |
148 | /* h6 = 1.000000000000000000000000000000000000000E0 */ |
149 | |
150 | |
151 | /* lgam (x+1) = -0.5 x + x u(x)/v(x) |
152 | -0.100006103515625 <= x <= 0.231639862060546875 |
153 | peak relative error 1.3e-21 */ |
154 | u0 = -8.886217500092090678492242071879342025627E1L, |
155 | u1 = 6.840109978129177639438792958320783599310E2L, |
156 | u2 = 2.042626104514127267855588786511809932433E3L, |
157 | u3 = 1.911723903442667422201651063009856064275E3L, |
158 | u4 = 7.447065275665887457628865263491667767695E2L, |
159 | u5 = 1.132256494121790736268471016493103952637E2L, |
160 | u6 = 4.484398885516614191003094714505960972894E0L, |
161 | |
162 | v0 = 1.150830924194461522996462401210374632929E3L, |
163 | v1 = 3.399692260848747447377972081399737098610E3L, |
164 | v2 = 3.786631705644460255229513563657226008015E3L, |
165 | v3 = 1.966450123004478374557778781564114347876E3L, |
166 | v4 = 4.741359068914069299837355438370682773122E2L, |
167 | v5 = 4.508989649747184050907206782117647852364E1L, |
168 | /* v6 = 1.000000000000000000000000000000000000000E0 */ |
169 | |
170 | |
171 | /* lgam (x+2) = .5 x + x s(x)/r(x) |
172 | 0 <= x <= 1 |
173 | peak relative error 7.2e-22 */ |
174 | s0 = 1.454726263410661942989109455292824853344E6L, |
175 | s1 = -3.901428390086348447890408306153378922752E6L, |
176 | s2 = -6.573568698209374121847873064292963089438E6L, |
177 | s3 = -3.319055881485044417245964508099095984643E6L, |
178 | s4 = -7.094891568758439227560184618114707107977E5L, |
179 | s5 = -6.263426646464505837422314539808112478303E4L, |
180 | s6 = -1.684926520999477529949915657519454051529E3L, |
181 | |
182 | r0 = -1.883978160734303518163008696712983134698E7L, |
183 | r1 = -2.815206082812062064902202753264922306830E7L, |
184 | r2 = -1.600245495251915899081846093343626358398E7L, |
185 | r3 = -4.310526301881305003489257052083370058799E6L, |
186 | r4 = -5.563807682263923279438235987186184968542E5L, |
187 | r5 = -3.027734654434169996032905158145259713083E4L, |
188 | r6 = -4.501995652861105629217250715790764371267E2L, |
189 | /* r6 = 1.000000000000000000000000000000000000000E0 */ |
190 | |
191 | |
192 | /* lgam(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x w(1/x^2) |
193 | x >= 8 |
194 | Peak relative error 1.51e-21 |
195 | w0 = LS2PI - 0.5 */ |
196 | w0 = 4.189385332046727417803e-1L, |
197 | w1 = 8.333333333333331447505E-2L, |
198 | w2 = -2.777777777750349603440E-3L, |
199 | w3 = 7.936507795855070755671E-4L, |
200 | w4 = -5.952345851765688514613E-4L, |
201 | w5 = 8.412723297322498080632E-4L, |
202 | w6 = -1.880801938119376907179E-3L, |
203 | w7 = 4.885026142432270781165E-3L; |
204 | |
205 | static const long double zero = 0.0L; |
206 | |
207 | static long double |
208 | sin_pi (long double x) |
209 | { |
210 | long double y, z; |
211 | int n, ix; |
212 | uint32_t se, i0, i1; |
213 | |
214 | GET_LDOUBLE_WORDS (se, i0, i1, x); |
215 | ix = se & 0x7fff; |
216 | ix = (ix << 16) | (i0 >> 16); |
217 | if (ix < 0x3ffd8000) /* 0.25 */ |
218 | return __sinl (pi * x); |
219 | y = -x; /* x is assume negative */ |
220 | |
221 | /* |
222 | * argument reduction, make sure inexact flag not raised if input |
223 | * is an integer |
224 | */ |
225 | z = floorl (y); |
226 | if (z != y) |
227 | { /* inexact anyway */ |
228 | y *= 0.5; |
229 | y = 2.0*(y - floorl(y)); /* y = |x| mod 2.0 */ |
230 | n = (int) (y*4.0); |
231 | } |
232 | else |
233 | { |
234 | if (ix >= 0x403f8000) /* 2^64 */ |
235 | { |
236 | y = zero; n = 0; /* y must be even */ |
237 | } |
238 | else |
239 | { |
240 | if (ix < 0x403e8000) /* 2^63 */ |
241 | z = y + two63; /* exact */ |
242 | GET_LDOUBLE_WORDS (se, i0, i1, z); |
243 | n = i1 & 1; |
244 | y = n; |
245 | n <<= 2; |
246 | } |
247 | } |
248 | |
249 | switch (n) |
250 | { |
251 | case 0: |
252 | y = __sinl (pi * y); |
253 | break; |
254 | case 1: |
255 | case 2: |
256 | y = __cosl (pi * (half - y)); |
257 | break; |
258 | case 3: |
259 | case 4: |
260 | y = __sinl (pi * (one - y)); |
261 | break; |
262 | case 5: |
263 | case 6: |
264 | y = -__cosl (pi * (y - 1.5)); |
265 | break; |
266 | default: |
267 | y = __sinl (pi * (y - 2.0)); |
268 | break; |
269 | } |
270 | return -y; |
271 | } |
272 | |
273 | |
274 | long double |
275 | __ieee754_lgammal_r (long double x, int *signgamp) |
276 | { |
277 | long double t, y, z, nadj, p, p1, p2, q, r, w; |
278 | int i, ix; |
279 | uint32_t se, i0, i1; |
280 | |
281 | *signgamp = 1; |
282 | GET_LDOUBLE_WORDS (se, i0, i1, x); |
283 | ix = se & 0x7fff; |
284 | |
285 | if (__builtin_expect((ix | i0 | i1) == 0, 0)) |
286 | { |
287 | if (se & 0x8000) |
288 | *signgamp = -1; |
289 | return one / fabsl (x); |
290 | } |
291 | |
292 | ix = (ix << 16) | (i0 >> 16); |
293 | |
294 | /* purge off +-inf, NaN, +-0, and negative arguments */ |
295 | if (__builtin_expect(ix >= 0x7fff0000, 0)) |
296 | return x * x; |
297 | |
298 | if (__builtin_expect(ix < 0x3fc08000, 0)) /* 2^-63 */ |
299 | { /* |x|<2**-63, return -log(|x|) */ |
300 | if (se & 0x8000) |
301 | { |
302 | *signgamp = -1; |
303 | return -__ieee754_logl (-x); |
304 | } |
305 | else |
306 | return -__ieee754_logl (x); |
307 | } |
308 | if (se & 0x8000) |
309 | { |
310 | if (x < -2.0L && x > -33.0L) |
311 | return __lgamma_negl (x, signgamp); |
312 | t = sin_pi (x); |
313 | if (t == zero) |
314 | return one / fabsl (t); /* -integer */ |
315 | nadj = __ieee754_logl (pi / fabsl (t * x)); |
316 | if (t < zero) |
317 | *signgamp = -1; |
318 | x = -x; |
319 | } |
320 | |
321 | /* purge off 1 and 2 */ |
322 | if ((((ix - 0x3fff8000) | i0 | i1) == 0) |
323 | || (((ix - 0x40008000) | i0 | i1) == 0)) |
324 | r = 0; |
325 | else if (ix < 0x40008000) /* 2.0 */ |
326 | { |
327 | /* x < 2.0 */ |
328 | if (ix <= 0x3ffee666) /* 8.99993896484375e-1 */ |
329 | { |
330 | /* lgamma(x) = lgamma(x+1) - log(x) */ |
331 | r = -__ieee754_logl (x); |
332 | if (ix >= 0x3ffebb4a) /* 7.31597900390625e-1 */ |
333 | { |
334 | y = x - one; |
335 | i = 0; |
336 | } |
337 | else if (ix >= 0x3ffced33)/* 2.31639862060546875e-1 */ |
338 | { |
339 | y = x - (tc - one); |
340 | i = 1; |
341 | } |
342 | else |
343 | { |
344 | /* x < 0.23 */ |
345 | y = x; |
346 | i = 2; |
347 | } |
348 | } |
349 | else |
350 | { |
351 | r = zero; |
352 | if (ix >= 0x3fffdda6) /* 1.73162841796875 */ |
353 | { |
354 | /* [1.7316,2] */ |
355 | y = x - 2.0; |
356 | i = 0; |
357 | } |
358 | else if (ix >= 0x3fff9da6)/* 1.23162841796875 */ |
359 | { |
360 | /* [1.23,1.73] */ |
361 | y = x - tc; |
362 | i = 1; |
363 | } |
364 | else |
365 | { |
366 | /* [0.9, 1.23] */ |
367 | y = x - one; |
368 | i = 2; |
369 | } |
370 | } |
371 | switch (i) |
372 | { |
373 | case 0: |
374 | p1 = a0 + y * (a1 + y * (a2 + y * (a3 + y * (a4 + y * a5)))); |
375 | p2 = b0 + y * (b1 + y * (b2 + y * (b3 + y * (b4 + y)))); |
376 | r += half * y + y * p1/p2; |
377 | break; |
378 | case 1: |
379 | p1 = g0 + y * (g1 + y * (g2 + y * (g3 + y * (g4 + y * (g5 + y * g6))))); |
380 | p2 = h0 + y * (h1 + y * (h2 + y * (h3 + y * (h4 + y * (h5 + y))))); |
381 | p = tt + y * p1/p2; |
382 | r += (tf + p); |
383 | break; |
384 | case 2: |
385 | p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * (u5 + y * u6)))))); |
386 | p2 = v0 + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * (v5 + y))))); |
387 | r += (-half * y + p1 / p2); |
388 | } |
389 | } |
390 | else if (ix < 0x40028000) /* 8.0 */ |
391 | { |
392 | /* x < 8.0 */ |
393 | i = (int) x; |
394 | t = zero; |
395 | y = x - (double) i; |
396 | p = y * |
397 | (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6)))))); |
398 | q = r0 + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * (r6 + y)))))); |
399 | r = half * y + p / q; |
400 | z = one; /* lgamma(1+s) = log(s) + lgamma(s) */ |
401 | switch (i) |
402 | { |
403 | case 7: |
404 | z *= (y + 6.0); /* FALLTHRU */ |
405 | case 6: |
406 | z *= (y + 5.0); /* FALLTHRU */ |
407 | case 5: |
408 | z *= (y + 4.0); /* FALLTHRU */ |
409 | case 4: |
410 | z *= (y + 3.0); /* FALLTHRU */ |
411 | case 3: |
412 | z *= (y + 2.0); /* FALLTHRU */ |
413 | r += __ieee754_logl (z); |
414 | break; |
415 | } |
416 | } |
417 | else if (ix < 0x40418000) /* 2^66 */ |
418 | { |
419 | /* 8.0 <= x < 2**66 */ |
420 | t = __ieee754_logl (x); |
421 | z = one / x; |
422 | y = z * z; |
423 | w = w0 + z * (w1 |
424 | + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * (w6 + y * w7)))))); |
425 | r = (x - half) * (t - one) + w; |
426 | } |
427 | else |
428 | /* 2**66 <= x <= inf */ |
429 | r = x * (__ieee754_logl (x) - one); |
430 | /* NADJ is set for negative arguments but not otherwise, resulting |
431 | in warnings that it may be used uninitialized although in the |
432 | cases where it is used it has always been set. */ |
433 | DIAG_PUSH_NEEDS_COMMENT; |
434 | DIAG_IGNORE_NEEDS_COMMENT (4.9, "-Wmaybe-uninitialized" ); |
435 | if (se & 0x8000) |
436 | r = nadj - r; |
437 | DIAG_POP_NEEDS_COMMENT; |
438 | return r; |
439 | } |
440 | libm_alias_finite (__ieee754_lgammal_r, __lgammal_r) |
441 | |