1 | /* Implementation of gamma function according to ISO C. |
2 | Copyright (C) 1997-2021 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, see |
18 | <https://www.gnu.org/licenses/>. */ |
19 | |
20 | #include <math.h> |
21 | #include <math_private.h> |
22 | #include <fenv_private.h> |
23 | #include <math-underflow.h> |
24 | #include <float.h> |
25 | #include <libm-alias-finite.h> |
26 | |
27 | /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's |
28 | approximation to gamma function. */ |
29 | |
30 | static const long double gamma_coeff[] = |
31 | { |
32 | 0x1.5555555555555556p-4L, |
33 | -0xb.60b60b60b60b60bp-12L, |
34 | 0x3.4034034034034034p-12L, |
35 | -0x2.7027027027027028p-12L, |
36 | 0x3.72a3c5631fe46aep-12L, |
37 | -0x7.daac36664f1f208p-12L, |
38 | 0x1.a41a41a41a41a41ap-8L, |
39 | -0x7.90a1b2c3d4e5f708p-8L, |
40 | }; |
41 | |
42 | #define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0])) |
43 | |
44 | /* Return gamma (X), for positive X less than 1766, in the form R * |
45 | 2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to |
46 | avoid overflow or underflow in intermediate calculations. */ |
47 | |
48 | static long double |
49 | gammal_positive (long double x, int *exp2_adj) |
50 | { |
51 | int local_signgam; |
52 | if (x < 0.5L) |
53 | { |
54 | *exp2_adj = 0; |
55 | return __ieee754_expl (__ieee754_lgammal_r (x + 1, &local_signgam)) / x; |
56 | } |
57 | else if (x <= 1.5L) |
58 | { |
59 | *exp2_adj = 0; |
60 | return __ieee754_expl (__ieee754_lgammal_r (x, &local_signgam)); |
61 | } |
62 | else if (x < 7.5L) |
63 | { |
64 | /* Adjust into the range for using exp (lgamma). */ |
65 | *exp2_adj = 0; |
66 | long double n = ceill (x - 1.5L); |
67 | long double x_adj = x - n; |
68 | long double eps; |
69 | long double prod = __gamma_productl (x_adj, 0, n, &eps); |
70 | return (__ieee754_expl (__ieee754_lgammal_r (x_adj, &local_signgam)) |
71 | * prod * (1.0L + eps)); |
72 | } |
73 | else |
74 | { |
75 | long double eps = 0; |
76 | long double x_eps = 0; |
77 | long double x_adj = x; |
78 | long double prod = 1; |
79 | if (x < 13.0L) |
80 | { |
81 | /* Adjust into the range for applying Stirling's |
82 | approximation. */ |
83 | long double n = ceill (13.0L - x); |
84 | x_adj = x + n; |
85 | x_eps = (x - (x_adj - n)); |
86 | prod = __gamma_productl (x_adj - n, x_eps, n, &eps); |
87 | } |
88 | /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)). |
89 | Compute gamma (X_ADJ + X_EPS) using Stirling's approximation, |
90 | starting by computing pow (X_ADJ, X_ADJ) with a power of 2 |
91 | factored out. */ |
92 | long double exp_adj = -eps; |
93 | long double x_adj_int = roundl (x_adj); |
94 | long double x_adj_frac = x_adj - x_adj_int; |
95 | int x_adj_log2; |
96 | long double x_adj_mant = __frexpl (x_adj, &x_adj_log2); |
97 | if (x_adj_mant < M_SQRT1_2l) |
98 | { |
99 | x_adj_log2--; |
100 | x_adj_mant *= 2.0L; |
101 | } |
102 | *exp2_adj = x_adj_log2 * (int) x_adj_int; |
103 | long double ret = (__ieee754_powl (x_adj_mant, x_adj) |
104 | * __ieee754_exp2l (x_adj_log2 * x_adj_frac) |
105 | * __ieee754_expl (-x_adj) |
106 | * sqrtl (2 * M_PIl / x_adj) |
107 | / prod); |
108 | exp_adj += x_eps * __ieee754_logl (x_adj); |
109 | long double bsum = gamma_coeff[NCOEFF - 1]; |
110 | long double x_adj2 = x_adj * x_adj; |
111 | for (size_t i = 1; i <= NCOEFF - 1; i++) |
112 | bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i]; |
113 | exp_adj += bsum / x_adj; |
114 | return ret + ret * __expm1l (exp_adj); |
115 | } |
116 | } |
117 | |
118 | long double |
119 | __ieee754_gammal_r (long double x, int *signgamp) |
120 | { |
121 | uint32_t es, hx, lx; |
122 | long double ret; |
123 | |
124 | GET_LDOUBLE_WORDS (es, hx, lx, x); |
125 | |
126 | if (__glibc_unlikely (((es & 0x7fff) | hx | lx) == 0)) |
127 | { |
128 | /* Return value for x == 0 is Inf with divide by zero exception. */ |
129 | *signgamp = 0; |
130 | return 1.0 / x; |
131 | } |
132 | if (__glibc_unlikely (es == 0xffffffff && ((hx & 0x7fffffff) | lx) == 0)) |
133 | { |
134 | /* x == -Inf. According to ISO this is NaN. */ |
135 | *signgamp = 0; |
136 | return x - x; |
137 | } |
138 | if (__glibc_unlikely ((es & 0x7fff) == 0x7fff)) |
139 | { |
140 | /* Positive infinity (return positive infinity) or NaN (return |
141 | NaN). */ |
142 | *signgamp = 0; |
143 | return x + x; |
144 | } |
145 | if (__builtin_expect ((es & 0x8000) != 0, 0) && rintl (x) == x) |
146 | { |
147 | /* Return value for integer x < 0 is NaN with invalid exception. */ |
148 | *signgamp = 0; |
149 | return (x - x) / (x - x); |
150 | } |
151 | |
152 | if (x >= 1756.0L) |
153 | { |
154 | /* Overflow. */ |
155 | *signgamp = 0; |
156 | return LDBL_MAX * LDBL_MAX; |
157 | } |
158 | else |
159 | { |
160 | SET_RESTORE_ROUNDL (FE_TONEAREST); |
161 | if (x > 0.0L) |
162 | { |
163 | *signgamp = 0; |
164 | int exp2_adj; |
165 | ret = gammal_positive (x, &exp2_adj); |
166 | ret = __scalbnl (ret, exp2_adj); |
167 | } |
168 | else if (x >= -LDBL_EPSILON / 4.0L) |
169 | { |
170 | *signgamp = 0; |
171 | ret = 1.0L / x; |
172 | } |
173 | else |
174 | { |
175 | long double tx = truncl (x); |
176 | *signgamp = (tx == 2.0L * truncl (tx / 2.0L)) ? -1 : 1; |
177 | if (x <= -1766.0L) |
178 | /* Underflow. */ |
179 | ret = LDBL_MIN * LDBL_MIN; |
180 | else |
181 | { |
182 | long double frac = tx - x; |
183 | if (frac > 0.5L) |
184 | frac = 1.0L - frac; |
185 | long double sinpix = (frac <= 0.25L |
186 | ? __sinl (M_PIl * frac) |
187 | : __cosl (M_PIl * (0.5L - frac))); |
188 | int exp2_adj; |
189 | ret = M_PIl / (-x * sinpix |
190 | * gammal_positive (-x, &exp2_adj)); |
191 | ret = __scalbnl (ret, -exp2_adj); |
192 | math_check_force_underflow_nonneg (ret); |
193 | } |
194 | } |
195 | } |
196 | if (isinf (ret) && x != 0) |
197 | { |
198 | if (*signgamp < 0) |
199 | return -(-copysignl (LDBL_MAX, ret) * LDBL_MAX); |
200 | else |
201 | return copysignl (LDBL_MAX, ret) * LDBL_MAX; |
202 | } |
203 | else if (ret == 0) |
204 | { |
205 | if (*signgamp < 0) |
206 | return -(-copysignl (LDBL_MIN, ret) * LDBL_MIN); |
207 | else |
208 | return copysignl (LDBL_MIN, ret) * LDBL_MIN; |
209 | } |
210 | else |
211 | return ret; |
212 | } |
213 | libm_alias_finite (__ieee754_gammal_r, __gammal_r) |
214 | |