1 | /* e_j1f.c -- float version of e_j1.c. |
2 | * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
3 | */ |
4 | |
5 | /* |
6 | * ==================================================== |
7 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
8 | * |
9 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
10 | * Permission to use, copy, modify, and distribute this |
11 | * software is freely granted, provided that this notice |
12 | * is preserved. |
13 | * ==================================================== |
14 | */ |
15 | |
16 | #include <errno.h> |
17 | #include <float.h> |
18 | #include <math.h> |
19 | #include <math-narrow-eval.h> |
20 | #include <math_private.h> |
21 | #include <fenv_private.h> |
22 | #include <math-underflow.h> |
23 | #include <libm-alias-finite.h> |
24 | #include <reduce_aux.h> |
25 | |
26 | static float ponef(float), qonef(float); |
27 | |
28 | static const float |
29 | huge = 1e30, |
30 | one = 1.0, |
31 | invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */ |
32 | tpi = 6.3661974669e-01, /* 0x3f22f983 */ |
33 | /* R0/S0 on [0,2] */ |
34 | r00 = -6.2500000000e-02, /* 0xbd800000 */ |
35 | r01 = 1.4070566976e-03, /* 0x3ab86cfd */ |
36 | r02 = -1.5995563444e-05, /* 0xb7862e36 */ |
37 | r03 = 4.9672799207e-08, /* 0x335557d2 */ |
38 | s01 = 1.9153760746e-02, /* 0x3c9ce859 */ |
39 | s02 = 1.8594678841e-04, /* 0x3942fab6 */ |
40 | s03 = 1.1771846857e-06, /* 0x359dffc2 */ |
41 | s04 = 5.0463624390e-09, /* 0x31ad6446 */ |
42 | s05 = 1.2354227016e-11; /* 0x2d59567e */ |
43 | |
44 | static const float zero = 0.0; |
45 | |
46 | /* This is the nearest approximation of the first positive zero of j1. */ |
47 | #define FIRST_ZERO_J1 0x3.d4eabp+0f |
48 | |
49 | #define SMALL_SIZE 64 |
50 | |
51 | /* The following table contains successive zeros of j1 and degree-3 |
52 | polynomial approximations of j1 around these zeros: Pj[0] for the first |
53 | positive zero (3.831705), Pj[1] for the second one (7.015586), and so on. |
54 | Each line contains: |
55 | {x0, xmid, x1, p0, p1, p2, p3} |
56 | where [x0,x1] is the interval around the zero, xmid is the binary32 number |
57 | closest to the zero, and p0+p1*x+p2*x^2+p3*x^3 is the approximation |
58 | polynomial. Each polynomial was generated using Sollya on the interval |
59 | [x0,x1] around the corresponding zero where the error exceeds 9 ulps |
60 | for the alternate code. Degree 3 is enough to get an error at most |
61 | 9 ulps, except around the first zero. |
62 | */ |
63 | static const float Pj[SMALL_SIZE][7] = { |
64 | /* For index 0, we use a degree-4 polynomial generated by Sollya, with the |
65 | coefficient of degree 4 hard-coded in j1f_near_root(). */ |
66 | { 0x1.e09e5ep+1, 0x1.ea7558p+1, 0x1.ef7352p+1, -0x8.4f069p-28, |
67 | -0x6.71b3d8p-4, 0xd.744a2p-8, 0xd.acd9p-8/*, -0x1.3e51aap-8*/ }, /* 0 */ |
68 | { 0x1.bdb4c2p+2, 0x1.c0ff6p+2, 0x1.c27a8cp+2, 0xe.c2858p-28, |
69 | 0x4.cd464p-4, -0x5.79b71p-8, -0xc.11124p-8 }, /* 1 */ |
70 | { 0x1.43b214p+3, 0x1.458d0ep+3, 0x1.460ccep+3, -0x1.e7acecp-24, |
71 | -0x3.feca9p-4, 0x3.2470f8p-8, 0xa.625b7p-8 }, /* 2 */ |
72 | { 0x1.a9c98p+3, 0x1.aa5bbp+3, 0x1.aaa4d8p+3, 0x1.698158p-24, |
73 | 0x3.7e666cp-4, -0x2.1900ap-8, -0x9.2755p-8 }, /* 3 */ |
74 | { 0x1.073be4p+4, 0x1.0787b4p+4, 0x1.07aed8p+4, -0x1.f5f658p-24, |
75 | -0x3.24b8ep-4, 0x1.86e35cp-8, 0x8.4e4bbp-8 }, /* 4 */ |
76 | { 0x1.39ae2ap+4, 0x1.39da8ep+4, 0x1.39f3dap+4, -0x1.4e744p-24, |
77 | 0x2.e18a24p-4, -0x1.2ccd16p-8, -0x7.a27ep-8 }, /* 5 */ |
78 | { 0x1.6bfa46p+4, 0x1.6c294ep+4, 0x1.6c412p+4, 0xa.3fb7fp-28, |
79 | -0x2.acc9c4p-4, 0xf.0b783p-12, 0x7.1c0d3p-8 }, /* 6 */ |
80 | { 0x1.9e42bep+4, 0x1.9e757p+4, 0x1.9e876ep+4, -0x2.29f6f4p-24, |
81 | 0x2.81f21p-4, -0xc.641bp-12, -0x6.a7ea58p-8 }, /* 7 */ |
82 | { 0x1.d08a3ep+4, 0x1.d0bfdp+4, 0x1.d0cd3cp+4, -0x1.b5d196p-24, |
83 | -0x2.5e40e4p-4, 0xa.7059fp-12, 0x6.4d6bfp-8 }, /* 8 */ |
84 | { 0x1.017794p+5, 0x1.018476p+5, 0x1.018b8cp+5, -0x4.0e001p-24, |
85 | 0x2.3febep-4, -0x8.f23aap-12, -0x6.0102cp-8 }, /* 9 */ |
86 | { 0x1.1a9e78p+5, 0x1.1aa89p+5, 0x1.1aaf88p+5, 0x3.b26f2p-24, |
87 | -0x2.25babp-4, 0x7.c6d948p-12, 0x5.a1d988p-8 }, /* 10 */ |
88 | { 0x1.33bddep+5, 0x1.33cc52p+5, 0x1.33d2e4p+5, -0xf.c8cdap-28, |
89 | 0x2.0ed05p-4, -0x6.d97dbp-12, -0x5.8da498p-8 }, /* 11 */ |
90 | { 0x1.4ce7cp+5, 0x1.4cefdp+5, 0x1.4cf7d4p+5, -0x3.9940e4p-24, |
91 | -0x1.fa8b4p-4, 0x6.16108p-12, 0x5.4355e8p-8 }, /* 12 */ |
92 | { 0x1.6603e8p+5, 0x1.661316p+5, 0x1.66173ap+5, 0x9.da15dp-28, |
93 | 0x1.e8727ep-4, -0x5.742468p-12, -0x5.117c28p-8 }, /* 13 */ |
94 | { 0x1.7f2ebcp+5, 0x1.7f3632p+5, 0x1.7f3a7ep+5, -0x3.39b218p-24, |
95 | -0x1.d8293ap-4, 0x4.ee3348p-12, 0x4.f9bep-8 }, /* 14 */ |
96 | { 0x1.9850e6p+5, 0x1.985928p+5, 0x1.985d9ep+5, -0x3.7b5108p-24, |
97 | 0x1.c96702p-4, -0x4.7b0d08p-12, -0x4.c784a8p-8 }, /* 15 */ |
98 | { 0x1.b172e8p+5, 0x1.b17c04p+5, 0x1.b1805cp+5, -0x1.91e43ep-24, |
99 | -0x1.bbf246p-4, 0x4.18ad78p-12, 0x4.9bfae8p-8 }, /* 16 */ |
100 | { 0x1.ca955ap+5, 0x1.ca9ec6p+5, 0x1.caa2a4p+5, 0x1.28453cp-24, |
101 | 0x1.af9cb4p-4, -0x3.c3a494p-12, -0x4.78b69p-8 }, /* 17 */ |
102 | { 0x1.e3bc94p+5, 0x1.e3c174p+5, 0x1.e3c64p+5, -0x2.e7fef4p-24, |
103 | -0x1.a4407ep-4, 0x3.79b228p-12, 0x4.874f7p-8 }, /* 18 */ |
104 | { 0x1.fcdf16p+5, 0x1.fce40ep+5, 0x1.fce71p+5, -0x3.23b2fcp-24, |
105 | 0x1.99be76p-4, -0x3.39ad7cp-12, -0x4.92a55p-8 }, /* 19 */ |
106 | { 0x1.0afe34p+6, 0x1.0b034ep+6, 0x1.0b054ap+6, -0xd.19e93p-28, |
107 | -0x1.8ffc9cp-4, 0x2.fee7f8p-12, 0x4.2d33b8p-8 }, /* 20 */ |
108 | { 0x1.179344p+6, 0x1.17948ep+6, 0x1.1795bp+6, 0x1.c2ac48p-24, |
109 | 0x1.86e51cp-4, -0x2.cc5abp-12, -0x4.866d08p-8 }, /* 21 */ |
110 | { 0x1.24231ep+6, 0x1.2425c8p+6, 0x1.2426e2p+6, -0xd.31027p-28, |
111 | -0x1.7e656ep-4, 0x2.9db23cp-12, 0x3.cc63c8p-8 }, /* 22 */ |
112 | { 0x1.30b5a8p+6, 0x1.30b6fep+6, 0x1.30b84ep+6, 0x5.b5e53p-24, |
113 | 0x1.766dc2p-4, -0x2.754cfcp-12, -0x3.c39bb4p-8 }, /* 23 */ |
114 | { 0x1.3d46ccp+6, 0x1.3d482ep+6, 0x1.3d495ep+6, -0x1.340a8ap-24, |
115 | -0x1.6ef07ep-4, 0x2.4ff9d4p-12, 0x3.9b36e4p-8 }, /* 24 */ |
116 | { 0x1.49d688p+6, 0x1.49d95ap+6, 0x1.49dabep+6, -0x3.ba66p-24, |
117 | 0x1.67e1dcp-4, -0x2.2f32b8p-12, -0x3.e2aaf4p-8 }, /* 25 */ |
118 | { 0x1.566916p+6, 0x1.566a84p+6, 0x1.566bcp+6, 0x6.47ca5p-28, |
119 | -0x1.61379ap-4, 0x2.1096acp-12, 0x4.2d0968p-8 }, /* 26 */ |
120 | { 0x1.62f8dap+6, 0x1.62fbaap+6, 0x1.62fc9cp+6, -0x2.12affp-24, |
121 | 0x1.5ae8c4p-4, -0x1.f32444p-12, -0x3.9e592p-8 }, /* 27 */ |
122 | { 0x1.6f89e6p+6, 0x1.6f8ccep+6, 0x1.6f8e34p+6, -0x7.4853ap-28, |
123 | -0x1.54ed76p-4, 0x1.db004ap-12, 0x3.907034p-8 }, /* 28 */ |
124 | { 0x1.7c1c6ap+6, 0x1.7c1deep+6, 0x1.7c1f4cp+6, -0x4.f0a998p-24, |
125 | 0x1.4f3ebcp-4, -0x1.c26808p-12, -0x2.da8df8p-8 }, /* 29 */ |
126 | { 0x1.88adaep+6, 0x1.88af0ep+6, 0x1.88afc4p+6, -0x1.80c246p-24, |
127 | -0x1.49d668p-4, 0x1.aebc26p-12, 0x3.af7b5cp-8 }, /* 30 */ |
128 | { 0x1.953d7p+6, 0x1.95402ap+6, 0x1.9540ep+6, -0x2.22aff8p-24, |
129 | 0x1.44aefap-4, -0x1.99f25p-12, -0x3.5e9198p-8 }, /* 31 */ |
130 | { 0x1.a1d01ep+6, 0x1.a1d146p+6, 0x1.a1d20ap+6, -0x3.aad6d4p-24, |
131 | -0x1.3fc386p-4, 0x1.892858p-12, 0x3.fe0184p-8 }, /* 32 */ |
132 | { 0x1.ae60ecp+6, 0x1.ae625ep+6, 0x1.ae6326p+6, -0x2.010be4p-24, |
133 | 0x1.3b0fa4p-4, -0x1.7539ap-12, -0x2.b2c9bp-8 }, /* 33 */ |
134 | { 0x1.baf234p+6, 0x1.baf376p+6, 0x1.baf442p+6, -0xd.4fd17p-32, |
135 | -0x1.368f5cp-4, 0x1.6734e4p-12, 0x3.59f514p-8 }, /* 34 */ |
136 | { 0x1.c782e6p+6, 0x1.c7848cp+6, 0x1.c78516p+6, -0xa.d662dp-28, |
137 | 0x1.323f18p-4, -0x1.571c02p-12, -0x3.2be5bp-8 }, /* 35 */ |
138 | { 0x1.d4144ep+6, 0x1.d415ap+6, 0x1.d41622p+6, 0x4.9f217p-24, |
139 | -0x1.2e1b9ap-4, 0x1.4a2edap-12, 0x3.a4e96p-8 }, /* 36 */ |
140 | { 0x1.e0a5ep+6, 0x1.e0a6b4p+6, 0x1.e0a788p+6, -0x2.d167p-24, |
141 | 0x1.2a21eep-4, -0x1.3c4b46p-12, -0x4.9e0978p-8 }, /* 37 */ |
142 | { 0x1.ed36eep+6, 0x1.ed37c8p+6, 0x1.ed3892p+6, -0x4.15a83p-24, |
143 | -0x1.264f66p-4, 0x1.31dea4p-12, 0x3.d125ecp-8 }, /* 38 */ |
144 | { 0x1.f9c77p+6, 0x1.f9c8d8p+6, 0x1.f9c9acp+6, -0x2.a5bbbp-24, |
145 | 0x1.22a192p-4, -0x1.25e59ep-12, -0x2.ef6934p-8 }, /* 39 */ |
146 | { 0x1.032c54p+7, 0x1.032cf4p+7, 0x1.032d66p+7, 0x4.e828bp-24, |
147 | -0x1.1f1634p-4, 0x1.1c2394p-12, 0x3.6d744cp-8 }, /* 40 */ |
148 | { 0x1.09750cp+7, 0x1.09757cp+7, 0x1.0975b6p+7, -0x3.28a3bcp-24, |
149 | 0x1.1bab3ep-4, -0x1.1569cep-12, -0x5.84da7p-8 }, /* 41 */ |
150 | { 0x1.0fbd9ap+7, 0x1.0fbe04p+7, 0x1.0fbe5ep+7, -0x2.2f667p-24, |
151 | -0x1.185eccp-4, 0x1.07f42cp-12, 0x2.87896cp-8 }, /* 42 */ |
152 | { 0x1.160628p+7, 0x1.16068ap+7, 0x1.1606cep+7, -0x6.9097dp-24, |
153 | 0x1.152f28p-4, -0x1.0227fep-12, -0x5.da6e6p-8 }, /* 43 */ |
154 | { 0x1.1c4e9ap+7, 0x1.1c4f12p+7, 0x1.1c4f7cp+7, -0x5.1b408p-24, |
155 | -0x1.121abp-4, 0xf.6efcp-16, 0x2.c5e954p-8 }, /* 44 */ |
156 | { 0x1.2296aap+7, 0x1.229798p+7, 0x1.2297d4p+7, 0x2.70d0dp-24, |
157 | 0x1.0f1ffp-4, -0xf.523f5p-16, -0x3.5c0568p-8 }, /* 45 */ |
158 | { 0x1.28dfa4p+7, 0x1.28e01ep+7, 0x1.28e054p+7, -0x2.7c176p-24, |
159 | -0x1.0c3d8ap-4, 0xe.8329ap-16, 0x3.5eb34p-8 }, /* 46 */ |
160 | { 0x1.2f282ap+7, 0x1.2f28a4p+7, 0x1.2f28dep+7, 0x4.fd6368p-24, |
161 | 0x1.097236p-4, -0xe.17299p-16, -0x3.73a2e4p-8 }, /* 47 */ |
162 | { 0x1.3570bp+7, 0x1.357128p+7, 0x1.35716p+7, 0x6.b05f68p-24, |
163 | -0x1.06bccap-4, 0xd.527b8p-16, 0x2.b8bf9cp-8 }, /* 48 */ |
164 | { 0x1.3bb932p+7, 0x1.3bb9aep+7, 0x1.3bb9eap+7, 0x4.0d622p-28, |
165 | 0x1.041c28p-4, -0xd.0ac11p-16, -0x1.65f2ccp-8 }, /* 49 */ |
166 | { 0x1.4201b6p+7, 0x1.420232p+7, 0x1.42027p+7, 0x7.0d98cp-24, |
167 | -0x1.018f52p-4, 0xc.c4d8ep-16, 0x2.8f250cp-8 }, /* 50 */ |
168 | { 0x1.484a78p+7, 0x1.484ab8p+7, 0x1.484af4p+7, 0x3.93d10cp-24, |
169 | 0xf.f154fp-8, -0xc.7b7fep-16, -0x3.6b6e4cp-8 }, /* 51 */ |
170 | { 0x1.4e92c8p+7, 0x1.4e933cp+7, 0x1.4e9368p+7, 0xd.88185p-32, |
171 | -0xf.cad3fp-8, 0xc.1462p-16, 0x2.bd66p-8 }, /* 52 */ |
172 | { 0x1.54db84p+7, 0x1.54dbcp+7, 0x1.54dbf4p+7, -0x1.fe6b92p-24, |
173 | 0xf.a564cp-8, -0xb.c4e6cp-16, -0x3.d51decp-8 }, /* 53 */ |
174 | { 0x1.5b23c4p+7, 0x1.5b2444p+7, 0x1.5b2486p+7, 0x2.6137f4p-24, |
175 | -0xf.80faep-8, 0xb.5199ep-16, 0x1.9ca85ap-8 }, /* 54 */ |
176 | { 0x1.616c62p+7, 0x1.616cc8p+7, 0x1.616d0ap+7, -0x1.55468p-24, |
177 | 0xf.5d8acp-8, -0xb.21d16p-16, -0x1.b8809ap-8 }, /* 55 */ |
178 | { 0x1.67b4fp+7, 0x1.67b54cp+7, 0x1.67b588p+7, -0x1.08c6bep-24, |
179 | -0xf.3b096p-8, 0xa.e65efp-16, 0x3.642304p-8 }, /* 56 */ |
180 | { 0x1.6dfd8ep+7, 0x1.6dfddp+7, 0x1.6dfe0ap+7, 0x4.9ebfa8p-24, |
181 | 0xf.196c7p-8, -0xa.ba8c8p-16, -0x5.ad6a2p-8 }, /* 57 */ |
182 | { 0x1.74461p+7, 0x1.744652p+7, 0x1.744692p+7, 0x5.a4017p-24, |
183 | -0xe.f8aa5p-8, 0xa.49748p-16, 0x2.a86498p-8 }, /* 58 */ |
184 | { 0x1.7a8e5ep+7, 0x1.7a8ed6p+7, 0x1.7a8ef8p+7, 0x3.bcb2a8p-28, |
185 | 0xe.d8b9dp-8, -0x9.c43bep-16, -0x1.e7124ap-8 }, /* 59 */ |
186 | { 0x1.80d6cep+7, 0x1.80d75ap+7, 0x1.80d78ap+7, -0x7.1091fp-24, |
187 | -0xe.b9925p-8, 0x9.c43dap-16, 0x1.aba86p-8 }, /* 60 */ |
188 | { 0x1.871f58p+7, 0x1.871fdcp+7, 0x1.87201ep+7, 0x2.ca1cf4p-28, |
189 | 0xe.9b2bep-8, -0x9.843b3p-16, -0x2.093e68p-8 }, /* 61 */ |
190 | { 0x1.8d67e8p+7, 0x1.8d685ep+7, 0x1.8d688ep+7, 0x5.aa8908p-24, |
191 | -0xe.7d7ecp-8, 0x9.501a8p-16, 0x2.54a754p-8 }, /* 62 */ |
192 | { 0x1.93b09cp+7, 0x1.93b0e2p+7, 0x1.93b10ep+7, 0x3.d9cd9cp-24, |
193 | 0xe.6083ap-8, -0x9.45dadp-16, -0x5.112908p-8 }, /* 63 */ |
194 | }; |
195 | |
196 | /* Formula page 5 of https://www.cl.cam.ac.uk/~jrh13/papers/bessel.pdf: |
197 | j1f(x) ~ sqrt(2/(pi*x))*beta1(x)*cos(x-3pi/4-alpha1(x)) |
198 | where beta1(x) = 1 + 3/(16*x^2) - 99/(512*x^4) |
199 | and alpha1(x) = -3/(8*x) + 21/(128*x^3) - 1899/(5120*x^5). */ |
200 | static float |
201 | j1f_asympt (float x) |
202 | { |
203 | float cst = 0xc.c422ap-4; /* sqrt(2/pi) rounded to nearest */ |
204 | if (x < 0) |
205 | { |
206 | x = -x; |
207 | cst = -cst; |
208 | } |
209 | double y = 1.0 / (double) x; |
210 | double y2 = y * y; |
211 | double beta1 = 1.0f + y2 * (0x3p-4 - 0x3.18p-4 * y2); |
212 | double alpha1; |
213 | alpha1 = y * (-0x6p-4 + y2 * (0x2.ap-4 - 0x5.ef33333333334p-4 * y2)); |
214 | double h; |
215 | int n; |
216 | h = reduce_aux (x, &n, alpha1); |
217 | n--; /* Subtract pi/2. */ |
218 | /* Now x - 3pi/4 - alpha1 = h + n*pi/2 mod (2*pi). */ |
219 | float xr = (float) h; |
220 | n = n & 3; |
221 | float t = cst / sqrtf (x) * (float) beta1; |
222 | if (n == 0) |
223 | return t * __cosf (xr); |
224 | else if (n == 2) /* cos(x+pi) = -cos(x) */ |
225 | return -t * __cosf (xr); |
226 | else if (n == 1) /* cos(x+pi/2) = -sin(x) */ |
227 | return -t * __sinf (xr); |
228 | else /* cos(x+3pi/2) = sin(x) */ |
229 | return t * __sinf (xr); |
230 | } |
231 | |
232 | /* Special code for x near a root of j1. |
233 | z is the value computed by the generic code. |
234 | For small x, we use a polynomial approximating j1 around its root. |
235 | For large x, we use an asymptotic formula (j1f_asympt). */ |
236 | static float |
237 | j1f_near_root (float x, float z) |
238 | { |
239 | float index_f, sign = 1.0f; |
240 | int index; |
241 | |
242 | if (x < 0) |
243 | { |
244 | x = -x; |
245 | sign = -1.0f; |
246 | } |
247 | index_f = roundf ((x - FIRST_ZERO_J1) / (float) M_PI); |
248 | if (index_f >= SMALL_SIZE) |
249 | return sign * j1f_asympt (x); |
250 | index = (int) index_f; |
251 | const float *p = Pj[index]; |
252 | float x0 = p[0]; |
253 | float x1 = p[2]; |
254 | /* If not in the interval [x0,x1] around xmid, return the value z. */ |
255 | if (! (x0 <= x && x <= x1)) |
256 | return z; |
257 | float xmid = p[1]; |
258 | float y = x - xmid; |
259 | float p6 = (index > 0) ? p[6] : p[6] + y * -0x1.3e51aap-8f; |
260 | return sign * (p[3] + y * (p[4] + y * (p[5] + y * p6))); |
261 | } |
262 | |
263 | float |
264 | __ieee754_j1f(float x) |
265 | { |
266 | float z, s,c,ss,cc,r,u,v,y; |
267 | int32_t hx,ix; |
268 | |
269 | GET_FLOAT_WORD(hx,x); |
270 | ix = hx&0x7fffffff; |
271 | if(__builtin_expect(ix>=0x7f800000, 0)) return one/x; |
272 | y = fabsf(x); |
273 | if(ix >= 0x40000000) { /* |x| >= 2.0 */ |
274 | SET_RESTORE_ROUNDF (FE_TONEAREST); |
275 | __sincosf (y, &s, &c); |
276 | ss = -s-c; |
277 | cc = s-c; |
278 | if (ix >= 0x7f000000) |
279 | /* x >= 2^127: use asymptotic expansion. */ |
280 | return j1f_asympt (x); |
281 | /* Now we are sure that x+x cannot overflow. */ |
282 | z = __cosf(y+y); |
283 | if ((s*c)>zero) cc = z/ss; |
284 | else ss = z/cc; |
285 | /* |
286 | * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x) |
287 | * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x) |
288 | */ |
289 | if (ix <= 0x5c000000) |
290 | { |
291 | u = ponef(y); v = qonef(y); |
292 | cc = u*cc-v*ss; |
293 | } |
294 | z = (invsqrtpi * cc) / sqrtf(y); |
295 | /* Adjust sign of z. */ |
296 | z = (hx < 0) ? -z : z; |
297 | /* The following threshold is optimal: for x=0x1.e09e5ep+1 |
298 | and rounding upwards, cc=0x1.b79638p-4 and z is 10 ulps |
299 | far from the correctly rounded value. */ |
300 | float threshold = 0x1.b79638p-4; |
301 | if (fabsf (cc) > threshold) |
302 | return z; |
303 | else |
304 | return j1f_near_root (x, z); |
305 | } |
306 | if(__builtin_expect(ix<0x32000000, 0)) { /* |x|<2**-27 */ |
307 | if(huge+x>one) { /* inexact if x!=0 necessary */ |
308 | float ret = math_narrow_eval ((float) 0.5 * x); |
309 | math_check_force_underflow (ret); |
310 | if (ret == 0 && x != 0) |
311 | __set_errno (ERANGE); |
312 | return ret; |
313 | } |
314 | } |
315 | z = x*x; |
316 | r = z*(r00+z*(r01+z*(r02+z*r03))); |
317 | s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05)))); |
318 | r *= x; |
319 | return(x*(float)0.5+r/s); |
320 | } |
321 | libm_alias_finite (__ieee754_j1f, __j1f) |
322 | |
323 | static const float U0[5] = { |
324 | -1.9605709612e-01, /* 0xbe48c331 */ |
325 | 5.0443872809e-02, /* 0x3d4e9e3c */ |
326 | -1.9125689287e-03, /* 0xbafaaf2a */ |
327 | 2.3525259166e-05, /* 0x37c5581c */ |
328 | -9.1909917899e-08, /* 0xb3c56003 */ |
329 | }; |
330 | static const float V0[5] = { |
331 | 1.9916731864e-02, /* 0x3ca3286a */ |
332 | 2.0255257550e-04, /* 0x3954644b */ |
333 | 1.3560879779e-06, /* 0x35b602d4 */ |
334 | 6.2274145840e-09, /* 0x31d5f8eb */ |
335 | 1.6655924903e-11, /* 0x2d9281cf */ |
336 | }; |
337 | |
338 | /* This is the nearest approximation of the first zero of y1. */ |
339 | #define FIRST_ZERO_Y1 0x2.3277dcp+0f |
340 | |
341 | /* The following table contains successive zeros of y1 and degree-3 |
342 | polynomial approximations of y1 around these zeros: Py[0] for the first |
343 | positive zero (2.197141), Py[1] for the second one (5.429681), and so on. |
344 | Each line contains: |
345 | {x0, xmid, x1, p0, p1, p2, p3} |
346 | where [x0,x1] is the interval around the zero, xmid is the binary32 number |
347 | closest to the zero, and p0+p1*x+p2*x^2+p3*x^3 is the approximation |
348 | polynomial. Each polynomial was generated using Sollya on the interval |
349 | [x0,x1] around the corresponding zero where the error exceeds 9 ulps |
350 | for the alternate code. Degree 3 is enough, except for the first roots. |
351 | */ |
352 | static const float Py[SMALL_SIZE][7] = { |
353 | /* For index 0, we use a degree-5 polynomial generated by Sollya, with the |
354 | coefficients of degree 4 and 5 hard-coded in y1f_near_root(). */ |
355 | { 0x1.f7f16ap+0, 0x1.193beep+1, 0x1.2105dcp+1, 0xb.96749p-28, |
356 | 0x8.55241p-4, -0x1.e570bp-4, -0x8.68b61p-8 |
357 | /*, -0x1.28043p-8, 0x2.50e83p-8*/ }, /* 0 */ |
358 | /* For index 1, we use a degree-4 polynomial generated by Sollya, with the |
359 | coefficient of degree 4 hard-coded in y1f_near_root(). */ |
360 | { 0x1.55c6d2p+2, 0x1.5b7fe4p+2, 0x1.5cf8cap+2, 0x1.3c7822p-24, |
361 | -0x5.71f158p-4, 0x8.05cb4p-8, 0xd.0b15p-8/*, -0xf.ff6b8p-12*/ }, /* 1 */ |
362 | { 0x1.113c6p+3, 0x1.13127ap+3, 0x1.1387dcp+3, -0x1.f3ad8ep-24, |
363 | 0x4.57e66p-4, -0x4.0afb58p-8, -0xb.29207p-8 }, /* 2 */ |
364 | { 0x1.76e7dep+3, 0x1.77f914p+3, 0x1.786a6ap+3, -0xd.5608fp-28, |
365 | -0x3.b829d4p-4, 0x2.8852cp-8, 0x9.b70e3p-8 }, /* 3 */ |
366 | { 0x1.dc2794p+3, 0x1.dcb7d8p+3, 0x1.dd032p+3, -0xe.a7c04p-28, |
367 | 0x3.4e0458p-4, -0x1.c64b18p-8, -0x8.b0e7fp-8 }, /* 4 */ |
368 | { 0x1.20874p+4, 0x1.20b1c6p+4, 0x1.20c71p+4, 0x1.c2626p-24, |
369 | -0x3.00f03cp-4, 0x1.54f806p-8, 0x7.f9cf9p-8 }, /* 5 */ |
370 | { 0x1.52d848p+4, 0x1.530254p+4, 0x1.531962p+4, -0x1.9503ecp-24, |
371 | 0x2.c5b29cp-4, -0x1.0bf28p-8, -0x7.562e58p-8 }, /* 6 */ |
372 | { 0x1.851e64p+4, 0x1.854fa4p+4, 0x1.85679p+4, -0x2.8d40fcp-24, |
373 | -0x2.96547p-4, 0xd.9c38bp-12, 0x6.dcbf8p-8 }, /* 7 */ |
374 | { 0x1.b7808ep+4, 0x1.b79acep+4, 0x1.b7b2a8p+4, -0x2.36df5cp-24, |
375 | 0x2.6f55ap-4, -0xb.57f9fp-12, -0x6.82569p-8 }, /* 8 */ |
376 | { 0x1.e9c8fp+4, 0x1.e9e48p+4, 0x1.e9f24p+4, 0xd.e2eb7p-28, |
377 | -0x2.4e8104p-4, 0x9.a4be2p-12, 0x6.2541fp-8 }, /* 9 */ |
378 | { 0x1.0e0808p+5, 0x1.0e169p+5, 0x1.0e1d92p+5, -0x2.3070f4p-24, |
379 | 0x2.325e4cp-4, -0x8.53604p-12, -0x5.ca03a8p-8 }, /* 10 */ |
380 | { 0x1.272e08p+5, 0x1.273a7cp+5, 0x1.2741fcp+5, -0x3.525508p-24, |
381 | -0x2.19e7dcp-4, 0x7.49d1dp-12, 0x5.9cb02p-8 }, /* 11 */ |
382 | { 0x1.404ec6p+5, 0x1.405e18p+5, 0x1.4065cep+5, -0xe.6e158p-28, |
383 | 0x2.046174p-4, -0x6.71b3dp-12, -0x5.4c3c8p-8 }, /* 12 */ |
384 | { 0x1.5971dcp+5, 0x1.598178p+5, 0x1.598592p+5, 0x1.e72698p-24, |
385 | -0x1.f13fb2p-4, 0x5.c0f938p-12, 0x5.28ca78p-8 }, /* 13 */ |
386 | { 0x1.729c4ep+5, 0x1.72a4a8p+5, 0x1.72a8eap+5, -0x1.5bed9cp-24, |
387 | 0x1.e018dcp-4, -0x5.2f11e8p-12, -0x5.16ce48p-8 }, /* 14 */ |
388 | { 0x1.8bbf4ep+5, 0x1.8bc7b2p+5, 0x1.8bcc1p+5, -0x3.6b654cp-24, |
389 | -0x1.d09b2p-4, 0x4.b1747p-12, 0x4.bd22fp-8 }, /* 15 */ |
390 | { 0x1.a4e272p+5, 0x1.a4ea9ap+5, 0x1.a4eef4p+5, 0x1.6f11bp-24, |
391 | 0x1.c28612p-4, -0x4.47462p-12, -0x4.947c5p-8 }, /* 16 */ |
392 | { 0x1.be08bep+5, 0x1.be0d68p+5, 0x1.be1088p+5, -0x2.0bc074p-24, |
393 | -0x1.b5a622p-4, 0x3.ed52d4p-12, 0x4.b76fc8p-8 }, /* 17 */ |
394 | { 0x1.d7272ap+5, 0x1.d7301ep+5, 0x1.d734aep+5, -0x2.87dd4p-24, |
395 | 0x1.a9d184p-4, -0x3.9cf494p-12, -0x4.6303ep-8 }, /* 18 */ |
396 | { 0x1.f0499ap+5, 0x1.f052c4p+5, 0x1.f05758p+5, -0x2.fb964p-24, |
397 | -0x1.9ee5eep-4, 0x3.5800dp-12, 0x4.4e9f9p-8 }, /* 19 */ |
398 | { 0x1.04b63ap+6, 0x1.04baacp+6, 0x1.04bc92p+6, 0x2.cf5adp-24, |
399 | 0x1.94c6f4p-4, -0x3.1a83e4p-12, -0x4.2311fp-8 }, /* 20 */ |
400 | { 0x1.1146dp+6, 0x1.114beep+6, 0x1.114e12p+6, 0x3.6766fp-24, |
401 | -0x1.8b5cccp-4, 0x2.e4a4e4p-12, 0x4.20bf9p-8 }, /* 21 */ |
402 | { 0x1.1dda8cp+6, 0x1.1ddd2cp+6, 0x1.1dde7ap+6, 0x3.501424p-24, |
403 | 0x1.829356p-4, -0x2.b47524p-12, -0x4.04bf18p-8 }, /* 22 */ |
404 | { 0x1.2a6bcp+6, 0x1.2a6e64p+6, 0x1.2a6faap+6, -0x5.c05808p-24, |
405 | -0x1.7a597ep-4, 0x2.8a0498p-12, 0x4.187258p-8 }, /* 23 */ |
406 | { 0x1.36fcd6p+6, 0x1.36ff96p+6, 0x1.3700f6p+6, 0x7.1e1478p-28, |
407 | 0x1.72a09ap-4, -0x2.61a7fp-12, -0x3.c0b54p-8 }, /* 24 */ |
408 | { 0x1.438f46p+6, 0x1.4390c4p+6, 0x1.4392p+6, 0x3.e36e6cp-24, |
409 | -0x1.6b5c06p-4, 0x2.3f612p-12, 0x4.18f868p-8 }, /* 25 */ |
410 | { 0x1.501f4cp+6, 0x1.5021fp+6, 0x1.50235p+6, 0x1.3f9e5ap-24, |
411 | 0x1.6480c4p-4, -0x2.1f28fcp-12, -0x3.bb4e3cp-8 }, /* 26 */ |
412 | { 0x1.5cb07cp+6, 0x1.5cb318p+6, 0x1.5cb464p+6, -0x2.39e41cp-24, |
413 | -0x1.5e0544p-4, 0x2.0189f4p-12, 0x3.8b55acp-8 }, /* 27 */ |
414 | { 0x1.694166p+6, 0x1.69443cp+6, 0x1.694594p+6, -0x2.912f84p-24, |
415 | 0x1.57e12p-4, -0x1.e6fabep-12, -0x3.850174p-8 }, /* 28 */ |
416 | { 0x1.75d27cp+6, 0x1.75d55ep+6, 0x1.75d67ep+6, 0x3.d5b00cp-24, |
417 | -0x1.520ceep-4, 0x1.d0286ep-12, 0x3.8e7d1p-8 }, /* 29 */ |
418 | { 0x1.82653ep+6, 0x1.82667ep+6, 0x1.82674p+6, -0x3.1726ecp-24, |
419 | 0x1.4c8222p-4, -0x1.b98206p-12, -0x3.f34978p-8 }, /* 30 */ |
420 | { 0x1.8ef4b4p+6, 0x1.8ef79cp+6, 0x1.8ef888p+6, 0x1.949e22p-24, |
421 | -0x1.473ae6p-4, 0x1.a47388p-12, 0x3.69eefcp-8 }, /* 31 */ |
422 | { 0x1.9b8728p+6, 0x1.9b88b8p+6, 0x1.9b896cp+6, -0x5.5553bp-28, |
423 | 0x1.42320ap-4, -0x1.90f0b8p-12, -0x3.6565p-8 }, /* 32 */ |
424 | { 0x1.a8183cp+6, 0x1.a819d2p+6, 0x1.a81aecp+6, 0x3.2df7ecp-28, |
425 | -0x1.3d62e4p-4, 0x1.7dae28p-12, 0x2.9eb128p-8 }, /* 33 */ |
426 | { 0x1.b4aa1cp+6, 0x1.b4aaeap+6, 0x1.b4abb8p+6, -0x1.e13fcep-24, |
427 | 0x1.38c948p-4, -0x1.6eb0ecp-12, -0x1.f9ddf8p-8 }, /* 34 */ |
428 | { 0x1.c13a7ap+6, 0x1.c13c02p+6, 0x1.c13cbp+6, -0x3.ad9974p-24, |
429 | -0x1.34616ep-4, 0x1.5e36ecp-12, 0x2.a9fc5p-8 }, /* 35 */ |
430 | { 0x1.cdcb76p+6, 0x1.cdcd16p+6, 0x1.cdcde4p+6, -0x3.6977e8p-24, |
431 | 0x1.3027fp-4, -0x1.4f703p-12, -0x2.9817d4p-8 }, /* 36 */ |
432 | { 0x1.da5cdep+6, 0x1.da5e2ap+6, 0x1.da5efp+6, 0x4.654cbp-24, |
433 | -0x1.2c19b6p-4, 0x1.455982p-12, 0x3.f1c564p-8 }, /* 37 */ |
434 | { 0x1.e6edccp+6, 0x1.e6ef3ep+6, 0x1.e6f00ap+6, 0x8.825c8p-32, |
435 | 0x1.2833eep-4, -0x1.39097p-12, -0x3.b2646p-8 }, /* 38 */ |
436 | { 0x1.f37f72p+6, 0x1.f3805p+6, 0x1.f3812ap+6, -0x2.0d11d8p-28, |
437 | -0x1.24740ap-4, 0x1.2c16p-12, 0x1.fc3804p-8 }, /* 39 */ |
438 | { 0x1.000842p+7, 0x1.0008bp+7, 0x1.000908p+7, -0x4.4e495p-24, |
439 | 0x1.20d7b6p-4, -0x1.20816p-12, -0x2.d1ebe8p-8 }, /* 40 */ |
440 | { 0x1.06505cp+7, 0x1.065138p+7, 0x1.06518p+7, 0x4.81c1c8p-24, |
441 | -0x1.1d5ccap-4, 0x1.17ad5ap-12, 0x2.fda33p-8 }, /* 41 */ |
442 | { 0x1.0c98dap+7, 0x1.0c99cp+7, 0x1.0c9a28p+7, -0xe.99386p-28, |
443 | 0x1.1a015p-4, -0x1.0bd50ap-12, -0x2.9dfb68p-8 }, /* 42 */ |
444 | { 0x1.12e212p+7, 0x1.12e248p+7, 0x1.12e29p+7, -0x6.16f1c8p-24, |
445 | -0x1.16c37ap-4, 0x1.0303dcp-12, 0x4.34316p-8 }, /* 43 */ |
446 | { 0x1.192a68p+7, 0x1.192acep+7, 0x1.192b02p+7, -0x1.129336p-24, |
447 | 0x1.13a19ep-4, -0xf.bd247p-16, -0x3.851d18p-8 }, /* 44 */ |
448 | { 0x1.1f727p+7, 0x1.1f7354p+7, 0x1.1f73ap+7, 0x5.19c09p-24, |
449 | -0x1.109a32p-4, 0xf.09644p-16, 0x2.d78194p-8 }, /* 45 */ |
450 | { 0x1.25bb8p+7, 0x1.25bbdap+7, 0x1.25bc12p+7, -0x6.497dp-24, |
451 | 0x1.0dabc8p-4, -0xe.a1d25p-16, -0x2.3378bp-8 }, /* 46 */ |
452 | { 0x1.2c04p+7, 0x1.2c046p+7, 0x1.2c04ap+7, 0x4.e4f338p-24, |
453 | -0x1.0ad512p-4, 0xe.52d84p-16, 0x4.3bfa08p-8 }, /* 47 */ |
454 | { 0x1.324cbp+7, 0x1.324ce6p+7, 0x1.324d4p+7, -0x1.287c58p-24, |
455 | 0x1.0814d4p-4, -0xe.03a95p-16, 0x3.9930ap-12 }, /* 48 */ |
456 | { 0x1.3894f6p+7, 0x1.38956cp+7, 0x1.3895ap+7, -0x4.b594ep-24, |
457 | -0x1.0569fp-4, 0xd.6787ep-16, 0x4.0a5148p-8 }, /* 49 */ |
458 | { 0x1.3edd98p+7, 0x1.3eddfp+7, 0x1.3ede2ap+7, -0x3.a8f164p-24, |
459 | 0x1.02d354p-4, -0xd.0309dp-16, -0x3.2ebfb4p-8 }, /* 50 */ |
460 | { 0x1.452638p+7, 0x1.452676p+7, 0x1.4526b4p+7, -0x6.12505p-24, |
461 | -0x1.005004p-4, 0xc.a0045p-16, 0x4.87c67p-8 }, /* 51 */ |
462 | { 0x1.4b6e8p+7, 0x1.4b6efap+7, 0x1.4b6f34p+7, 0x1.8acf4ep-24, |
463 | 0xf.ddf16p-8, -0xc.2d207p-16, -0x1.da6c36p-8 }, /* 52 */ |
464 | { 0x1.51b742p+7, 0x1.51b77ep+7, 0x1.51b7b2p+7, 0x1.39cf86p-24, |
465 | -0xf.b7faep-8, 0xb.db598p-16, -0x8.945b1p-12 }, /* 53 */ |
466 | { 0x1.57ffc4p+7, 0x1.580002p+7, 0x1.58003cp+7, -0x2.5f8de8p-24, |
467 | 0xf.930fep-8, -0xb.91889p-16, -0xa.30df9p-12 }, /* 54 */ |
468 | { 0x1.5e483p+7, 0x1.5e4886p+7, 0x1.5e48c8p+7, 0x2.073d64p-24, |
469 | -0xf.6f245p-8, 0xb.4085fp-16, 0x2.128188p-8 }, /* 55 */ |
470 | { 0x1.64908cp+7, 0x1.64910ap+7, 0x1.64912ap+7, -0x4.ed26ep-28, |
471 | 0xf.4c2cep-8, -0xa.fe719p-16, -0x2.9374b8p-8 }, /* 56 */ |
472 | { 0x1.6ad91ep+7, 0x1.6ad98ep+7, 0x1.6ad9cep+7, -0x2.ae5204p-24, |
473 | -0xf.2a1efp-8, 0xa.aa585p-16, 0x2.1c0834p-8 }, /* 57 */ |
474 | { 0x1.7121cep+7, 0x1.712212p+7, 0x1.712238p+7, 0x6.d72168p-24, |
475 | 0xf.08f09p-8, -0xa.7da49p-16, -0x3.4f5f1cp-8 }, /* 58 */ |
476 | { 0x1.776a0cp+7, 0x1.776a94p+7, 0x1.776accp+7, 0x2.d3f294p-24, |
477 | -0xe.e8986p-8, 0xa.23ccdp-16, 0x2.2a6678p-8 }, /* 59 */ |
478 | { 0x1.7db2e8p+7, 0x1.7db318p+7, 0x1.7db35ap+7, 0x3.88c0fp-24, |
479 | 0xe.c90d7p-8, -0x9.eaeap-16, -0x2.86438cp-8 }, /* 60 */ |
480 | { 0x1.83fb56p+7, 0x1.83fb9ap+7, 0x1.83fbep+7, 0x3.d94d34p-24, |
481 | -0xe.aa478p-8, 0x9.abac7p-16, 0x1.ac2d84p-8 }, /* 61 */ |
482 | { 0x1.8a43e8p+7, 0x1.8a441ep+7, 0x1.8a446p+7, 0x4.66b7ep-24, |
483 | 0xe.8c3e9p-8, -0x9.87682p-16, -0x7.9ab4a8p-12 }, /* 62 */ |
484 | { 0x1.908c6p+7, 0x1.908cap+7, 0x1.908ce6p+7, 0xf.f7ac9p-28, |
485 | -0xe.6eeb6p-8, 0x9.4423p-16, 0x4.54c4d8p-8 }, /* 63 */ |
486 | }; |
487 | |
488 | /* Formula page 5 of https://www.cl.cam.ac.uk/~jrh13/papers/bessel.pdf: |
489 | y1f(x) ~ sqrt(2/(pi*x))*beta1(x)*sin(x-3pi/4-alpha1(x)) |
490 | where beta1(x) = 1 + 3/(16*x^2) - 99/(512*x^4) |
491 | and alpha1(x) = -3/(8*x) + 21/(128*x^3) - 1899/(5120*x^5). */ |
492 | static float |
493 | y1f_asympt (float x) |
494 | { |
495 | float cst = 0xc.c422ap-4; /* sqrt(2/pi) rounded to nearest */ |
496 | double y = 1.0 / (double) x; |
497 | double y2 = y * y; |
498 | double beta1 = 1.0f + y2 * (0x3p-4 - 0x3.18p-4 * y2); |
499 | double alpha1; |
500 | alpha1 = y * (-0x6p-4 + y2 * (0x2.ap-4 - 0x5.ef33333333334p-4 * y2)); |
501 | double h; |
502 | int n; |
503 | h = reduce_aux (x, &n, alpha1); |
504 | n--; /* Subtract pi/2. */ |
505 | /* Now x - 3pi/4 - alpha1 = h + n*pi/2 mod (2*pi). */ |
506 | float xr = (float) h; |
507 | n = n & 3; |
508 | float t = cst / sqrtf (x) * (float) beta1; |
509 | if (n == 0) |
510 | return t * __sinf (xr); |
511 | else if (n == 2) /* sin(x+pi) = -sin(x) */ |
512 | return -t * __sinf (xr); |
513 | else if (n == 1) /* sin(x+pi/2) = cos(x) */ |
514 | return t * __cosf (xr); |
515 | else /* sin(x+3pi/2) = -cos(x) */ |
516 | return -t * __cosf (xr); |
517 | } |
518 | |
519 | /* Special code for x near a root of y1. |
520 | z is the value computed by the generic code. |
521 | For small x, we use a polynomial approximating y1 around its root. |
522 | For large x, we use an asymptotic formula (y1f_asympt). */ |
523 | static float |
524 | y1f_near_root (float x, float z) |
525 | { |
526 | float index_f; |
527 | int index; |
528 | |
529 | index_f = roundf ((x - FIRST_ZERO_Y1) / (float) M_PI); |
530 | if (index_f >= SMALL_SIZE) |
531 | return y1f_asympt (x); |
532 | index = (int) index_f; |
533 | const float *p = Py[index]; |
534 | float x0 = p[0]; |
535 | float x1 = p[2]; |
536 | /* If not in the interval [x0,x1] around xmid, return the value z. */ |
537 | if (! (x0 <= x && x <= x1)) |
538 | return z; |
539 | float xmid = p[1]; |
540 | float y = x - xmid, p6; |
541 | if (index == 0) |
542 | p6 = p[6] + y * (-0x1.28043p-8 + y * 0x2.50e83p-8); |
543 | else if (index == 1) |
544 | p6 = p[6] + y * -0xf.ff6b8p-12; |
545 | else |
546 | p6 = p[6]; |
547 | return p[3] + y * (p[4] + y * (p[5] + y * p6)); |
548 | } |
549 | |
550 | float |
551 | __ieee754_y1f(float x) |
552 | { |
553 | float z, s,c,ss,cc,u,v; |
554 | int32_t hx,ix; |
555 | |
556 | GET_FLOAT_WORD(hx,x); |
557 | ix = 0x7fffffff&hx; |
558 | /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */ |
559 | if(__builtin_expect(ix>=0x7f800000, 0)) return one/(x+x*x); |
560 | if(__builtin_expect(ix==0, 0)) |
561 | return -1/zero; /* -inf and divide by zero exception. */ |
562 | if(__builtin_expect(hx<0, 0)) return zero/(zero*x); |
563 | if (ix >= 0x3fe0dfbc) { /* |x| >= 0x1.c1bf78p+0 */ |
564 | SET_RESTORE_ROUNDF (FE_TONEAREST); |
565 | __sincosf (x, &s, &c); |
566 | ss = -s-c; |
567 | cc = s-c; |
568 | if (ix >= 0x7f000000) |
569 | /* x >= 2^127: use asymptotic expansion. */ |
570 | return y1f_asympt (x); |
571 | /* Now we are sure that x+x cannot overflow. */ |
572 | z = __cosf(x+x); |
573 | if ((s*c)>zero) cc = z/ss; |
574 | else ss = z/cc; |
575 | /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0)) |
576 | * where x0 = x-3pi/4 |
577 | * Better formula: |
578 | * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) |
579 | * = 1/sqrt(2) * (sin(x) - cos(x)) |
580 | * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) |
581 | * = -1/sqrt(2) * (cos(x) + sin(x)) |
582 | * To avoid cancellation, use |
583 | * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
584 | * to compute the worse one. |
585 | */ |
586 | if (ix <= 0x5c000000) |
587 | { |
588 | u = ponef(x); v = qonef(x); |
589 | ss = u*ss+v*cc; |
590 | } |
591 | z = (invsqrtpi * ss) / sqrtf(x); |
592 | float threshold = 0x1.3e014cp-2; |
593 | /* The following threshold is optimal: for x=0x1.f7f16ap+0 |
594 | and rounding upwards, |ss|=-0x1.3e014cp-2 and z is 11 ulps |
595 | far from the correctly rounded value. */ |
596 | if (fabsf (ss) > threshold) |
597 | return z; |
598 | else |
599 | return y1f_near_root (x, z); |
600 | } |
601 | if(__builtin_expect(ix<=0x33000000, 0)) { /* x < 2**-25 */ |
602 | z = -tpi / x; |
603 | if (isinf (z)) |
604 | __set_errno (ERANGE); |
605 | return z; |
606 | } |
607 | /* Now 2**-25 <= x < 0x1.c1bf78p+0. */ |
608 | z = x*x; |
609 | u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4]))); |
610 | v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4])))); |
611 | return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x)); |
612 | } |
613 | libm_alias_finite (__ieee754_y1f, __y1f) |
614 | |
615 | /* For x >= 8, the asymptotic expansion of pone is |
616 | * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. |
617 | * We approximate pone by |
618 | * pone(x) = 1 + (R/S) |
619 | * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 |
620 | * S = 1 + ps0*s^2 + ... + ps4*s^10 |
621 | * and |
622 | * | pone(x)-1-R/S | <= 2 ** ( -60.06) |
623 | */ |
624 | |
625 | static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
626 | 0.0000000000e+00, /* 0x00000000 */ |
627 | 1.1718750000e-01, /* 0x3df00000 */ |
628 | 1.3239480972e+01, /* 0x4153d4ea */ |
629 | 4.1205184937e+02, /* 0x43ce06a3 */ |
630 | 3.8747453613e+03, /* 0x45722bed */ |
631 | 7.9144794922e+03, /* 0x45f753d6 */ |
632 | }; |
633 | static const float ps8[5] = { |
634 | 1.1420736694e+02, /* 0x42e46a2c */ |
635 | 3.6509309082e+03, /* 0x45642ee5 */ |
636 | 3.6956207031e+04, /* 0x47105c35 */ |
637 | 9.7602796875e+04, /* 0x47bea166 */ |
638 | 3.0804271484e+04, /* 0x46f0a88b */ |
639 | }; |
640 | |
641 | static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
642 | 1.3199052094e-11, /* 0x2d68333f */ |
643 | 1.1718749255e-01, /* 0x3defffff */ |
644 | 6.8027510643e+00, /* 0x40d9b023 */ |
645 | 1.0830818176e+02, /* 0x42d89dca */ |
646 | 5.1763616943e+02, /* 0x440168b7 */ |
647 | 5.2871520996e+02, /* 0x44042dc6 */ |
648 | }; |
649 | static const float ps5[5] = { |
650 | 5.9280597687e+01, /* 0x426d1f55 */ |
651 | 9.9140142822e+02, /* 0x4477d9b1 */ |
652 | 5.3532670898e+03, /* 0x45a74a23 */ |
653 | 7.8446904297e+03, /* 0x45f52586 */ |
654 | 1.5040468750e+03, /* 0x44bc0180 */ |
655 | }; |
656 | |
657 | static const float pr3[6] = { |
658 | 3.0250391081e-09, /* 0x314fe10d */ |
659 | 1.1718686670e-01, /* 0x3defffab */ |
660 | 3.9329774380e+00, /* 0x407bb5e7 */ |
661 | 3.5119403839e+01, /* 0x420c7a45 */ |
662 | 9.1055007935e+01, /* 0x42b61c2a */ |
663 | 4.8559066772e+01, /* 0x42423c7c */ |
664 | }; |
665 | static const float ps3[5] = { |
666 | 3.4791309357e+01, /* 0x420b2a4d */ |
667 | 3.3676245117e+02, /* 0x43a86198 */ |
668 | 1.0468714600e+03, /* 0x4482dbe3 */ |
669 | 8.9081134033e+02, /* 0x445eb3ed */ |
670 | 1.0378793335e+02, /* 0x42cf936c */ |
671 | }; |
672 | |
673 | static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
674 | 1.0771083225e-07, /* 0x33e74ea8 */ |
675 | 1.1717621982e-01, /* 0x3deffa16 */ |
676 | 2.3685150146e+00, /* 0x401795c0 */ |
677 | 1.2242610931e+01, /* 0x4143e1bc */ |
678 | 1.7693971634e+01, /* 0x418d8d41 */ |
679 | 5.0735230446e+00, /* 0x40a25a4d */ |
680 | }; |
681 | static const float ps2[5] = { |
682 | 2.1436485291e+01, /* 0x41ab7dec */ |
683 | 1.2529022980e+02, /* 0x42fa9499 */ |
684 | 2.3227647400e+02, /* 0x436846c7 */ |
685 | 1.1767937469e+02, /* 0x42eb5bd7 */ |
686 | 8.3646392822e+00, /* 0x4105d590 */ |
687 | }; |
688 | |
689 | static float |
690 | ponef(float x) |
691 | { |
692 | const float *p,*q; |
693 | float z,r,s; |
694 | int32_t ix; |
695 | GET_FLOAT_WORD(ix,x); |
696 | ix &= 0x7fffffff; |
697 | /* ix >= 0x40000000 for all calls to this function. */ |
698 | if(ix>=0x41000000) {p = pr8; q= ps8;} |
699 | else if(ix>=0x40f71c58){p = pr5; q= ps5;} |
700 | else if(ix>=0x4036db68){p = pr3; q= ps3;} |
701 | else {p = pr2; q= ps2;} |
702 | z = one/(x*x); |
703 | r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
704 | s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); |
705 | return one+ r/s; |
706 | } |
707 | |
708 | /* For x >= 8, the asymptotic expansion of qone is |
709 | * 3/8 s - 105/1024 s^3 - ..., where s = 1/x. |
710 | * We approximate pone by |
711 | * qone(x) = s*(0.375 + (R/S)) |
712 | * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10 |
713 | * S = 1 + qs1*s^2 + ... + qs6*s^12 |
714 | * and |
715 | * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13) |
716 | */ |
717 | |
718 | static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
719 | 0.0000000000e+00, /* 0x00000000 */ |
720 | -1.0253906250e-01, /* 0xbdd20000 */ |
721 | -1.6271753311e+01, /* 0xc1822c8d */ |
722 | -7.5960174561e+02, /* 0xc43de683 */ |
723 | -1.1849806641e+04, /* 0xc639273a */ |
724 | -4.8438511719e+04, /* 0xc73d3683 */ |
725 | }; |
726 | static const float qs8[6] = { |
727 | 1.6139537048e+02, /* 0x43216537 */ |
728 | 7.8253862305e+03, /* 0x45f48b17 */ |
729 | 1.3387534375e+05, /* 0x4802bcd6 */ |
730 | 7.1965775000e+05, /* 0x492fb29c */ |
731 | 6.6660125000e+05, /* 0x4922be94 */ |
732 | -2.9449025000e+05, /* 0xc88fcb48 */ |
733 | }; |
734 | |
735 | static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
736 | -2.0897993405e-11, /* 0xadb7d219 */ |
737 | -1.0253904760e-01, /* 0xbdd1fffe */ |
738 | -8.0564479828e+00, /* 0xc100e736 */ |
739 | -1.8366960144e+02, /* 0xc337ab6b */ |
740 | -1.3731937256e+03, /* 0xc4aba633 */ |
741 | -2.6124443359e+03, /* 0xc523471c */ |
742 | }; |
743 | static const float qs5[6] = { |
744 | 8.1276550293e+01, /* 0x42a28d98 */ |
745 | 1.9917987061e+03, /* 0x44f8f98f */ |
746 | 1.7468484375e+04, /* 0x468878f8 */ |
747 | 4.9851425781e+04, /* 0x4742bb6d */ |
748 | 2.7948074219e+04, /* 0x46da5826 */ |
749 | -4.7191835938e+03, /* 0xc5937978 */ |
750 | }; |
751 | |
752 | static const float qr3[6] = { |
753 | -5.0783124372e-09, /* 0xb1ae7d4f */ |
754 | -1.0253783315e-01, /* 0xbdd1ff5b */ |
755 | -4.6101160049e+00, /* 0xc0938612 */ |
756 | -5.7847221375e+01, /* 0xc267638e */ |
757 | -2.2824453735e+02, /* 0xc3643e9a */ |
758 | -2.1921012878e+02, /* 0xc35b35cb */ |
759 | }; |
760 | static const float qs3[6] = { |
761 | 4.7665153503e+01, /* 0x423ea91e */ |
762 | 6.7386511230e+02, /* 0x4428775e */ |
763 | 3.3801528320e+03, /* 0x45534272 */ |
764 | 5.5477290039e+03, /* 0x45ad5dd5 */ |
765 | 1.9031191406e+03, /* 0x44ede3d0 */ |
766 | -1.3520118713e+02, /* 0xc3073381 */ |
767 | }; |
768 | |
769 | static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
770 | -1.7838172539e-07, /* 0xb43f8932 */ |
771 | -1.0251704603e-01, /* 0xbdd1f475 */ |
772 | -2.7522056103e+00, /* 0xc0302423 */ |
773 | -1.9663616180e+01, /* 0xc19d4f16 */ |
774 | -4.2325313568e+01, /* 0xc2294d1f */ |
775 | -2.1371921539e+01, /* 0xc1aaf9b2 */ |
776 | }; |
777 | static const float qs2[6] = { |
778 | 2.9533363342e+01, /* 0x41ec4454 */ |
779 | 2.5298155212e+02, /* 0x437cfb47 */ |
780 | 7.5750280762e+02, /* 0x443d602e */ |
781 | 7.3939318848e+02, /* 0x4438d92a */ |
782 | 1.5594900513e+02, /* 0x431bf2f2 */ |
783 | -4.9594988823e+00, /* 0xc09eb437 */ |
784 | }; |
785 | |
786 | static float |
787 | qonef(float x) |
788 | { |
789 | const float *p,*q; |
790 | float s,r,z; |
791 | int32_t ix; |
792 | GET_FLOAT_WORD(ix,x); |
793 | ix &= 0x7fffffff; |
794 | /* ix >= 0x40000000 for all calls to this function. */ |
795 | if(ix>=0x41000000) {p = qr8; q= qs8;} /* x >= 8 */ |
796 | else if(ix>=0x40f71c58){p = qr5; q= qs5;} /* x >= 7.722209930e+00 */ |
797 | else if(ix>=0x4036db68){p = qr3; q= qs3;} /* x >= 2.857141495e+00 */ |
798 | else {p = qr2; q= qs2;} /* x >= 2 */ |
799 | z = one/(x*x); |
800 | r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
801 | s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); |
802 | return ((float).375 + r/s)/x; |
803 | } |
804 | |