1 | /* Implementation of gamma function according to ISO C. |
2 | Copyright (C) 1997-2021 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, see |
18 | <https://www.gnu.org/licenses/>. */ |
19 | |
20 | #include <math.h> |
21 | #include <math-narrow-eval.h> |
22 | #include <math_private.h> |
23 | #include <fenv_private.h> |
24 | #include <math-underflow.h> |
25 | #include <float.h> |
26 | #include <libm-alias-finite.h> |
27 | |
28 | /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's |
29 | approximation to gamma function. */ |
30 | |
31 | static const float gamma_coeff[] = |
32 | { |
33 | 0x1.555556p-4f, |
34 | -0xb.60b61p-12f, |
35 | 0x3.403404p-12f, |
36 | }; |
37 | |
38 | #define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0])) |
39 | |
40 | /* Return gamma (X), for positive X less than 42, in the form R * |
41 | 2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to |
42 | avoid overflow or underflow in intermediate calculations. */ |
43 | |
44 | static float |
45 | gammaf_positive (float x, int *exp2_adj) |
46 | { |
47 | int local_signgam; |
48 | if (x < 0.5f) |
49 | { |
50 | *exp2_adj = 0; |
51 | return __ieee754_expf (__ieee754_lgammaf_r (x + 1, &local_signgam)) / x; |
52 | } |
53 | else if (x <= 1.5f) |
54 | { |
55 | *exp2_adj = 0; |
56 | return __ieee754_expf (__ieee754_lgammaf_r (x, &local_signgam)); |
57 | } |
58 | else if (x < 2.5f) |
59 | { |
60 | *exp2_adj = 0; |
61 | float x_adj = x - 1; |
62 | return (__ieee754_expf (__ieee754_lgammaf_r (x_adj, &local_signgam)) |
63 | * x_adj); |
64 | } |
65 | else |
66 | { |
67 | float eps = 0; |
68 | float x_eps = 0; |
69 | float x_adj = x; |
70 | float prod = 1; |
71 | if (x < 4.0f) |
72 | { |
73 | /* Adjust into the range for applying Stirling's |
74 | approximation. */ |
75 | float n = ceilf (4.0f - x); |
76 | x_adj = math_narrow_eval (x + n); |
77 | x_eps = (x - (x_adj - n)); |
78 | prod = __gamma_productf (x_adj - n, x_eps, n, &eps); |
79 | } |
80 | /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)). |
81 | Compute gamma (X_ADJ + X_EPS) using Stirling's approximation, |
82 | starting by computing pow (X_ADJ, X_ADJ) with a power of 2 |
83 | factored out. */ |
84 | float exp_adj = -eps; |
85 | float x_adj_int = roundf (x_adj); |
86 | float x_adj_frac = x_adj - x_adj_int; |
87 | int x_adj_log2; |
88 | float x_adj_mant = __frexpf (x_adj, &x_adj_log2); |
89 | if (x_adj_mant < (float) M_SQRT1_2) |
90 | { |
91 | x_adj_log2--; |
92 | x_adj_mant *= 2.0f; |
93 | } |
94 | *exp2_adj = x_adj_log2 * (int) x_adj_int; |
95 | float ret = (__ieee754_powf (x_adj_mant, x_adj) |
96 | * __ieee754_exp2f (x_adj_log2 * x_adj_frac) |
97 | * __ieee754_expf (-x_adj) |
98 | * sqrtf (2 * (float) M_PI / x_adj) |
99 | / prod); |
100 | exp_adj += x_eps * __ieee754_logf (x_adj); |
101 | float bsum = gamma_coeff[NCOEFF - 1]; |
102 | float x_adj2 = x_adj * x_adj; |
103 | for (size_t i = 1; i <= NCOEFF - 1; i++) |
104 | bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i]; |
105 | exp_adj += bsum / x_adj; |
106 | return ret + ret * __expm1f (exp_adj); |
107 | } |
108 | } |
109 | |
110 | float |
111 | __ieee754_gammaf_r (float x, int *signgamp) |
112 | { |
113 | int32_t hx; |
114 | float ret; |
115 | |
116 | GET_FLOAT_WORD (hx, x); |
117 | |
118 | if (__glibc_unlikely ((hx & 0x7fffffff) == 0)) |
119 | { |
120 | /* Return value for x == 0 is Inf with divide by zero exception. */ |
121 | *signgamp = 0; |
122 | return 1.0 / x; |
123 | } |
124 | if (__builtin_expect (hx < 0, 0) |
125 | && (uint32_t) hx < 0xff800000 && rintf (x) == x) |
126 | { |
127 | /* Return value for integer x < 0 is NaN with invalid exception. */ |
128 | *signgamp = 0; |
129 | return (x - x) / (x - x); |
130 | } |
131 | if (__glibc_unlikely (hx == 0xff800000)) |
132 | { |
133 | /* x == -Inf. According to ISO this is NaN. */ |
134 | *signgamp = 0; |
135 | return x - x; |
136 | } |
137 | if (__glibc_unlikely ((hx & 0x7f800000) == 0x7f800000)) |
138 | { |
139 | /* Positive infinity (return positive infinity) or NaN (return |
140 | NaN). */ |
141 | *signgamp = 0; |
142 | return x + x; |
143 | } |
144 | |
145 | if (x >= 36.0f) |
146 | { |
147 | /* Overflow. */ |
148 | *signgamp = 0; |
149 | ret = math_narrow_eval (FLT_MAX * FLT_MAX); |
150 | return ret; |
151 | } |
152 | else |
153 | { |
154 | SET_RESTORE_ROUNDF (FE_TONEAREST); |
155 | if (x > 0.0f) |
156 | { |
157 | *signgamp = 0; |
158 | int exp2_adj; |
159 | float tret = gammaf_positive (x, &exp2_adj); |
160 | ret = __scalbnf (tret, exp2_adj); |
161 | } |
162 | else if (x >= -FLT_EPSILON / 4.0f) |
163 | { |
164 | *signgamp = 0; |
165 | ret = 1.0f / x; |
166 | } |
167 | else |
168 | { |
169 | float tx = truncf (x); |
170 | *signgamp = (tx == 2.0f * truncf (tx / 2.0f)) ? -1 : 1; |
171 | if (x <= -42.0f) |
172 | /* Underflow. */ |
173 | ret = FLT_MIN * FLT_MIN; |
174 | else |
175 | { |
176 | float frac = tx - x; |
177 | if (frac > 0.5f) |
178 | frac = 1.0f - frac; |
179 | float sinpix = (frac <= 0.25f |
180 | ? __sinf ((float) M_PI * frac) |
181 | : __cosf ((float) M_PI * (0.5f - frac))); |
182 | int exp2_adj; |
183 | float tret = (float) M_PI / (-x * sinpix |
184 | * gammaf_positive (-x, &exp2_adj)); |
185 | ret = __scalbnf (tret, -exp2_adj); |
186 | math_check_force_underflow_nonneg (ret); |
187 | } |
188 | } |
189 | ret = math_narrow_eval (ret); |
190 | } |
191 | if (isinf (ret) && x != 0) |
192 | { |
193 | if (*signgamp < 0) |
194 | { |
195 | ret = math_narrow_eval (-copysignf (FLT_MAX, ret) * FLT_MAX); |
196 | ret = -ret; |
197 | } |
198 | else |
199 | ret = math_narrow_eval (copysignf (FLT_MAX, ret) * FLT_MAX); |
200 | return ret; |
201 | } |
202 | else if (ret == 0) |
203 | { |
204 | if (*signgamp < 0) |
205 | { |
206 | ret = math_narrow_eval (-copysignf (FLT_MIN, ret) * FLT_MIN); |
207 | ret = -ret; |
208 | } |
209 | else |
210 | ret = math_narrow_eval (copysignf (FLT_MIN, ret) * FLT_MIN); |
211 | return ret; |
212 | } |
213 | else |
214 | return ret; |
215 | } |
216 | libm_alias_finite (__ieee754_gammaf_r, __gammaf_r) |
217 | |