| 1 | /* Rewritten for 64-bit machines by Ulrich Drepper <drepper@gmail.com>. */ |
| 2 | /* |
| 3 | * ==================================================== |
| 4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 5 | * |
| 6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 7 | * Permission to use, copy, modify, and distribute this |
| 8 | * software is freely granted, provided that this notice |
| 9 | * is preserved. |
| 10 | * ==================================================== |
| 11 | */ |
| 12 | |
| 13 | /* |
| 14 | * __ieee754_fmod(x,y) |
| 15 | * Return x mod y in exact arithmetic |
| 16 | * Method: shift and subtract |
| 17 | */ |
| 18 | |
| 19 | #include <math.h> |
| 20 | #include <math_private.h> |
| 21 | #include <stdint.h> |
| 22 | #include <libm-alias-finite.h> |
| 23 | |
| 24 | static const double one = 1.0, Zero[] = {0.0, -0.0,}; |
| 25 | |
| 26 | double |
| 27 | __ieee754_fmod (double x, double y) |
| 28 | { |
| 29 | int32_t n,ix,iy; |
| 30 | int64_t hx,hy,hz,sx,i; |
| 31 | |
| 32 | EXTRACT_WORDS64(hx,x); |
| 33 | EXTRACT_WORDS64(hy,y); |
| 34 | sx = hx&UINT64_C(0x8000000000000000); /* sign of x */ |
| 35 | hx ^=sx; /* |x| */ |
| 36 | hy &= UINT64_C(0x7fffffffffffffff); /* |y| */ |
| 37 | |
| 38 | /* purge off exception values */ |
| 39 | if(__builtin_expect(hy==0 |
| 40 | || hx >= UINT64_C(0x7ff0000000000000) |
| 41 | || hy > UINT64_C(0x7ff0000000000000), 0)) |
| 42 | /* y=0,or x not finite or y is NaN */ |
| 43 | return (x*y)/(x*y); |
| 44 | if(__builtin_expect(hx<=hy, 0)) { |
| 45 | if(hx<hy) return x; /* |x|<|y| return x */ |
| 46 | return Zero[(uint64_t)sx>>63]; /* |x|=|y| return x*0*/ |
| 47 | } |
| 48 | |
| 49 | /* determine ix = ilogb(x) */ |
| 50 | if(__builtin_expect(hx<UINT64_C(0x0010000000000000), 0)) { |
| 51 | /* subnormal x */ |
| 52 | for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1; |
| 53 | } else ix = (hx>>52)-1023; |
| 54 | |
| 55 | /* determine iy = ilogb(y) */ |
| 56 | if(__builtin_expect(hy<UINT64_C(0x0010000000000000), 0)) { /* subnormal y */ |
| 57 | for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1; |
| 58 | } else iy = (hy>>52)-1023; |
| 59 | |
| 60 | /* set up hx, hy and align y to x */ |
| 61 | if(__builtin_expect(ix >= -1022, 1)) |
| 62 | hx = UINT64_C(0x0010000000000000)|(UINT64_C(0x000fffffffffffff)&hx); |
| 63 | else { /* subnormal x, shift x to normal */ |
| 64 | n = -1022-ix; |
| 65 | hx<<=n; |
| 66 | } |
| 67 | if(__builtin_expect(iy >= -1022, 1)) |
| 68 | hy = UINT64_C(0x0010000000000000)|(UINT64_C(0x000fffffffffffff)&hy); |
| 69 | else { /* subnormal y, shift y to normal */ |
| 70 | n = -1022-iy; |
| 71 | hy<<=n; |
| 72 | } |
| 73 | |
| 74 | /* fix point fmod */ |
| 75 | n = ix - iy; |
| 76 | while(n--) { |
| 77 | hz=hx-hy; |
| 78 | if(hz<0){hx = hx+hx;} |
| 79 | else { |
| 80 | if(hz==0) /* return sign(x)*0 */ |
| 81 | return Zero[(uint64_t)sx>>63]; |
| 82 | hx = hz+hz; |
| 83 | } |
| 84 | } |
| 85 | hz=hx-hy; |
| 86 | if(hz>=0) {hx=hz;} |
| 87 | |
| 88 | /* convert back to floating value and restore the sign */ |
| 89 | if(hx==0) /* return sign(x)*0 */ |
| 90 | return Zero[(uint64_t)sx>>63]; |
| 91 | while(hx<UINT64_C(0x0010000000000000)) { /* normalize x */ |
| 92 | hx = hx+hx; |
| 93 | iy -= 1; |
| 94 | } |
| 95 | if(__builtin_expect(iy>= -1022, 1)) { /* normalize output */ |
| 96 | hx = ((hx-UINT64_C(0x0010000000000000))|((uint64_t)(iy+1023)<<52)); |
| 97 | INSERT_WORDS64(x,hx|sx); |
| 98 | } else { /* subnormal output */ |
| 99 | n = -1022 - iy; |
| 100 | hx>>=n; |
| 101 | INSERT_WORDS64(x,hx|sx); |
| 102 | x *= one; /* create necessary signal */ |
| 103 | } |
| 104 | return x; /* exact output */ |
| 105 | } |
| 106 | libm_alias_finite (__ieee754_fmod, __fmod) |
| 107 | |