1 | /* e_asinhl.c -- long double version of e_asinh.c. |
2 | * Conversion to long double by Ulrich Drepper, |
3 | * Cygnus Support, drepper@cygnus.com. |
4 | */ |
5 | |
6 | /* |
7 | * ==================================================== |
8 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
9 | * |
10 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
11 | * Permission to use, copy, modify, and distribute this |
12 | * software is freely granted, provided that this notice |
13 | * is preserved. |
14 | * ==================================================== |
15 | */ |
16 | |
17 | #if defined(LIBM_SCCS) && !defined(lint) |
18 | static char rcsid[] = "$NetBSD: $" ; |
19 | #endif |
20 | |
21 | /* __ieee754_sinhl(x) |
22 | * Method : |
23 | * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2 |
24 | * 1. Replace x by |x| (sinhl(-x) = -sinhl(x)). |
25 | * 2. |
26 | * E + E/(E+1) |
27 | * 0 <= x <= 25 : sinhl(x) := --------------, E=expm1l(x) |
28 | * 2 |
29 | * |
30 | * 25 <= x <= lnovft : sinhl(x) := expl(x)/2 |
31 | * lnovft <= x <= ln2ovft: sinhl(x) := expl(x/2)/2 * expl(x/2) |
32 | * ln2ovft < x : sinhl(x) := x*shuge (overflow) |
33 | * |
34 | * Special cases: |
35 | * sinhl(x) is |x| if x is +INF, -INF, or NaN. |
36 | * only sinhl(0)=0 is exact for finite x. |
37 | */ |
38 | |
39 | #include <float.h> |
40 | #include <math.h> |
41 | #include <math_private.h> |
42 | #include <math-underflow.h> |
43 | #include <libm-alias-finite.h> |
44 | |
45 | static const long double one = 1.0, shuge = 1.0e4931L; |
46 | |
47 | long double |
48 | __ieee754_sinhl(long double x) |
49 | { |
50 | long double t,w,h; |
51 | uint32_t jx,ix,i0,i1; |
52 | |
53 | /* Words of |x|. */ |
54 | GET_LDOUBLE_WORDS(jx,i0,i1,x); |
55 | ix = jx&0x7fff; |
56 | |
57 | /* x is INF or NaN */ |
58 | if(__builtin_expect(ix==0x7fff, 0)) return x+x; |
59 | |
60 | h = 0.5; |
61 | if (jx & 0x8000) h = -h; |
62 | /* |x| in [0,25], return sign(x)*0.5*(E+E/(E+1))) */ |
63 | if (ix < 0x4003 || (ix == 0x4003 && i0 <= 0xc8000000)) { /* |x|<25 */ |
64 | if (ix<0x3fdf) { /* |x|<2**-32 */ |
65 | math_check_force_underflow (x); |
66 | if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */ |
67 | } |
68 | t = __expm1l(fabsl(x)); |
69 | if(ix<0x3fff) return h*(2.0*t-t*t/(t+one)); |
70 | return h*(t+t/(t+one)); |
71 | } |
72 | |
73 | /* |x| in [25, log(maxdouble)] return 0.5*exp(|x|) */ |
74 | if (ix < 0x400c || (ix == 0x400c && i0 < 0xb17217f7)) |
75 | return h*__ieee754_expl(fabsl(x)); |
76 | |
77 | /* |x| in [log(maxdouble), overflowthreshold] */ |
78 | if (ix<0x400c || (ix == 0x400c && (i0 < 0xb174ddc0 |
79 | || (i0 == 0xb174ddc0 |
80 | && i1 <= 0x31aec0ea)))) { |
81 | w = __ieee754_expl(0.5*fabsl(x)); |
82 | t = h*w; |
83 | return t*w; |
84 | } |
85 | |
86 | /* |x| > overflowthreshold, sinhl(x) overflow */ |
87 | return x*shuge; |
88 | } |
89 | libm_alias_finite (__ieee754_sinhl, __sinhl) |
90 | |