1 | /* Quad-precision floating point cosine on <-pi/4,pi/4>. |
2 | Copyright (C) 1999-2021 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Jakub Jelinek <jj@ultra.linux.cz> |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, see |
18 | <https://www.gnu.org/licenses/>. */ |
19 | |
20 | #include <math.h> |
21 | #include <math_private.h> |
22 | |
23 | static const _Float128 c[] = { |
24 | #define ONE c[0] |
25 | L(1.00000000000000000000000000000000000E+00), /* 3fff0000000000000000000000000000 */ |
26 | |
27 | /* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 ) |
28 | x in <0,1/256> */ |
29 | #define SCOS1 c[1] |
30 | #define SCOS2 c[2] |
31 | #define SCOS3 c[3] |
32 | #define SCOS4 c[4] |
33 | #define SCOS5 c[5] |
34 | L(-5.00000000000000000000000000000000000E-01), /* bffe0000000000000000000000000000 */ |
35 | L(4.16666666666666666666666666556146073E-02), /* 3ffa5555555555555555555555395023 */ |
36 | L(-1.38888888888888888888309442601939728E-03), /* bff56c16c16c16c16c16a566e42c0375 */ |
37 | L(2.48015873015862382987049502531095061E-05), /* 3fefa01a01a019ee02dcf7da2d6d5444 */ |
38 | L(-2.75573112601362126593516899592158083E-07), /* bfe927e4f5dce637cb0b54908754bde0 */ |
39 | |
40 | /* cos x ~ ONE + x^2 ( COS1 + COS2 * x^2 + ... + COS7 * x^12 + COS8 * x^14 ) |
41 | x in <0,0.1484375> */ |
42 | #define COS1 c[6] |
43 | #define COS2 c[7] |
44 | #define COS3 c[8] |
45 | #define COS4 c[9] |
46 | #define COS5 c[10] |
47 | #define COS6 c[11] |
48 | #define COS7 c[12] |
49 | #define COS8 c[13] |
50 | L(-4.99999999999999999999999999999999759E-01), /* bffdfffffffffffffffffffffffffffb */ |
51 | L(4.16666666666666666666666666651287795E-02), /* 3ffa5555555555555555555555516f30 */ |
52 | L(-1.38888888888888888888888742314300284E-03), /* bff56c16c16c16c16c16c16a463dfd0d */ |
53 | L(2.48015873015873015867694002851118210E-05), /* 3fefa01a01a01a01a0195cebe6f3d3a5 */ |
54 | L(-2.75573192239858811636614709689300351E-07), /* bfe927e4fb7789f5aa8142a22044b51f */ |
55 | L(2.08767569877762248667431926878073669E-09), /* 3fe21eed8eff881d1e9262d7adff4373 */ |
56 | L(-1.14707451049343817400420280514614892E-11), /* bfda9397496922a9601ed3d4ca48944b */ |
57 | L(4.77810092804389587579843296923533297E-14), /* 3fd2ae5f8197cbcdcaf7c3fb4523414c */ |
58 | |
59 | /* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 ) |
60 | x in <0,1/256> */ |
61 | #define SSIN1 c[14] |
62 | #define SSIN2 c[15] |
63 | #define SSIN3 c[16] |
64 | #define SSIN4 c[17] |
65 | #define SSIN5 c[18] |
66 | L(-1.66666666666666666666666666666666659E-01), /* bffc5555555555555555555555555555 */ |
67 | L(8.33333333333333333333333333146298442E-03), /* 3ff81111111111111111111110fe195d */ |
68 | L(-1.98412698412698412697726277416810661E-04), /* bff2a01a01a01a01a019e7121e080d88 */ |
69 | L(2.75573192239848624174178393552189149E-06), /* 3fec71de3a556c640c6aaa51aa02ab41 */ |
70 | L(-2.50521016467996193495359189395805639E-08), /* bfe5ae644ee90c47dc71839de75b2787 */ |
71 | }; |
72 | |
73 | #define SINCOSL_COS_HI 0 |
74 | #define SINCOSL_COS_LO 1 |
75 | #define SINCOSL_SIN_HI 2 |
76 | #define SINCOSL_SIN_LO 3 |
77 | extern const _Float128 __sincosl_table[]; |
78 | |
79 | _Float128 |
80 | __kernel_cosl(_Float128 x, _Float128 y) |
81 | { |
82 | _Float128 h, l, z, sin_l, cos_l_m1; |
83 | int64_t ix; |
84 | uint32_t tix, hix, index; |
85 | GET_LDOUBLE_MSW64 (ix, x); |
86 | tix = ((uint64_t)ix) >> 32; |
87 | tix &= ~0x80000000; /* tix = |x|'s high 32 bits */ |
88 | if (tix < 0x3ffc3000) /* |x| < 0.1484375 */ |
89 | { |
90 | /* Argument is small enough to approximate it by a Chebyshev |
91 | polynomial of degree 16. */ |
92 | if (tix < 0x3fc60000) /* |x| < 2^-57 */ |
93 | if (!((int)x)) return ONE; /* generate inexact */ |
94 | z = x * x; |
95 | return ONE + (z*(COS1+z*(COS2+z*(COS3+z*(COS4+ |
96 | z*(COS5+z*(COS6+z*(COS7+z*COS8)))))))); |
97 | } |
98 | else |
99 | { |
100 | /* So that we don't have to use too large polynomial, we find |
101 | l and h such that x = l + h, where fabsl(l) <= 1.0/256 with 83 |
102 | possible values for h. We look up cosl(h) and sinl(h) in |
103 | pre-computed tables, compute cosl(l) and sinl(l) using a |
104 | Chebyshev polynomial of degree 10(11) and compute |
105 | cosl(h+l) = cosl(h)cosl(l) - sinl(h)sinl(l). */ |
106 | index = 0x3ffe - (tix >> 16); |
107 | hix = (tix + (0x200 << index)) & (0xfffffc00 << index); |
108 | if (signbit (x)) |
109 | { |
110 | x = -x; |
111 | y = -y; |
112 | } |
113 | switch (index) |
114 | { |
115 | case 0: index = ((45 << 10) + hix - 0x3ffe0000) >> 8; break; |
116 | case 1: index = ((13 << 11) + hix - 0x3ffd0000) >> 9; break; |
117 | default: |
118 | case 2: index = (hix - 0x3ffc3000) >> 10; break; |
119 | } |
120 | |
121 | SET_LDOUBLE_WORDS64(h, ((uint64_t)hix) << 32, 0); |
122 | l = y - (h - x); |
123 | z = l * l; |
124 | sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5))))); |
125 | cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5)))); |
126 | return __sincosl_table [index + SINCOSL_COS_HI] |
127 | + (__sincosl_table [index + SINCOSL_COS_LO] |
128 | - (__sincosl_table [index + SINCOSL_SIN_HI] * sin_l |
129 | - __sincosl_table [index + SINCOSL_COS_HI] * cos_l_m1)); |
130 | } |
131 | } |
132 | |